WO2010064686A1 - Dielectric compound and manufacturing method thereof - Google Patents

Dielectric compound and manufacturing method thereof Download PDF

Info

Publication number
WO2010064686A1
WO2010064686A1 PCT/JP2009/070323 JP2009070323W WO2010064686A1 WO 2010064686 A1 WO2010064686 A1 WO 2010064686A1 JP 2009070323 W JP2009070323 W JP 2009070323W WO 2010064686 A1 WO2010064686 A1 WO 2010064686A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
dielectric compound
dielectric
powder
firing
Prior art date
Application number
PCT/JP2009/070323
Other languages
French (fr)
Japanese (ja)
Inventor
達生 藤井
潤 高田
直 池田
真 中西
Original Assignee
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学 filed Critical 国立大学法人岡山大学
Priority to JP2010541352A priority Critical patent/JP5688733B2/en
Publication of WO2010064686A1 publication Critical patent/WO2010064686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0054Mixed oxides or hydroxides containing one rare earth metal, yttrium or scandium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a dielectric compound having a composition represented by (RMbO 3- ⁇ ) n (MaO) m and having a layered triangular lattice structure, and a method for producing the same.
  • a layered triangular lattice compound typified by RFe 2 O 4 has attracted attention as a substance that exhibits dielectric properties on a principle different from that of conventional dielectrics.
  • the crystal of the compound RFe 2 O 4 has a stacked structure in which triangular lattices each composed of R, Fe, and O are stacked in layers in the c-axis direction (for example, Patent Document 1, Non-Patent Document 1, 2).
  • the above-mentioned layered triangular lattice structure of RFe 2 O 4 includes a structure in which two triangular lattice layers composed of Fe—O are stacked, and such a crystal structure depends on the geometric characteristics of the triangle. It plays the main role in the expression mechanism of physical properties characteristic of RFe 2 O 4 .
  • the multilayer structure of the triangular lattice layer of Fe-O, and the charge number of Fe in the layer of the other hand is the charge number of Fe in the other layer, while the Fe 2+ is large, on the other hand As Fe 3+ increases, they do not match.
  • the synthesis is performed at a high temperature of 1100 ° C. or more, for example.
  • the synthesis is performed under such conditions, there is a problem that the raw material powder is sintered and grain-grown during firing to produce coarse grains. With such coarse particles, when RFe 2 O 4 is used as a material for an electronic component or the like, its formability, workability, and the like are inferior.
  • energy consumption during synthesis is increased, and there is a problem in cost. Such a problem generally occurs similarly for the dielectric compound (RMbO 3 ) n (MaO) m .
  • the present invention has been made to solve the above problems, and provides a method for producing a dielectric compound capable of efficiently synthesizing a dielectric compound such as RFe 2 O 4 having a layered triangular lattice structure.
  • the purpose is to provide.
  • the dielectric compound manufacturing method has a composition of (RMbO 3- ⁇ ) n (MaO) m (R is In, Sc, Y, Dy, Ho, Er). , Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, Hf, at least one element, Ma, Mb is Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, A dielectric having a layered triangular lattice structure represented by at least one element selected from Cd with duplication allowed, n is an integer of 1 or more, m is an integer of 0 or more, and ⁇ is a real number of 0 to 0.2.
  • a method of manufacturing a body compound (1) a dielectric compound (RMbO 3- ⁇ ) n ( MaO) compounds containing R which is a raw material of m, compounds containing Ma, and a mixture of compounds containing Mb, Prepare a raw material solution containing each element of R, Ma, and Mb. And (2) a liquid phase synthesis step for obtaining a precursor solid of a dielectric compound from a raw material solution by a liquid phase method, and (3) a precursor solid obtained in the liquid phase synthesis step at a predetermined firing temperature. And a firing step of obtaining a dielectric compound powder by heating.
  • a dielectric compound (RMbO 3- ⁇ ) n ( MaO) compounds containing R which is a raw material of m, compounds containing Ma, and a mixture of compounds containing Mb
  • a liquid phase synthesis step for obtaining a precursor solid of a dielectric compound from a raw material solution by a liquid phase method, and (3) a precursor solid obtained in the liquid phase synthesis step at a predetermined
  • the reaction rate is faster than in the case of using the solid phase method, and it is possible to synthesize the compound by heating in a short time.
  • the compound can be suitably synthesized, and the resulting dielectric compound powder can be sufficiently finely divided.
  • the dielectric compound (RMbO 3- ⁇ ) n (MaO) m having a layered triangular lattice structure can be synthesized efficiently and under suitable conditions.
  • the precursor solid in the firing step, is preferably heated in a furnace at 700 ° C. or higher with an oxygen partial pressure of 10 ⁇ 12 to 1 Pa for 1 minute or longer. From the state heated to 700 ° C. or higher in the firing step, it is preferable to cool to 200 ° C. or lower within 30 minutes.
  • Ma and Mb are Fe, and the ratio of Fe 2+ to Fe 3+ in the raw material solution is preferably 0.5 to 1.5.
  • the particle size of the powder obtained by firing the precursor solid is preferably 1 to 100 nm.
  • the composition is (RMbO3 - ⁇ ) n (MaO) m (R is In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr.
  • n is an integer of 1 or more
  • m is an integer of 0 or more
  • is a real number of 0 or more and 0.2 or less, and has a layered triangular lattice structure, a dielectric compound (RMbO 3 - ⁇ ) n (MaO) compounds containing R as a raw material for m, using a compound containing Ma, and R generated by mixing a compound containing a Mb, Ma, a raw material solution containing each element Mb, liquid
  • a dielectric compound precursor solid is generated by a phase method, The precursor solids are a powder obtained by heating to a predetermined firing temperature.
  • the particle size of the powder is preferably 1 to 100 nm.
  • the precursor solid is preferably heated to a powder in an oven at 700 ° C. or higher with an oxygen partial pressure of 10 ⁇ 12 to 1 Pa for 1 minute or more, and the powder is heated from 700 ° C. to 200 ° C. within 30 minutes. It is preferable to cool to below °C.
  • Ma and Mb are Fe and the ratio of Fe 2+ to Fe 3+ in the raw material solution is 0.5 to 1.5.
  • the dielectric compound produced by the production method of the present invention and the dielectric compound produced by this production method are obtained by synthesizing R, Ma, and R in the synthesis of the dielectric compound whose composition is represented by (RMbO 3- ⁇ ) n (MaO) m .
  • a layered triangular lattice is prepared by preparing a raw material solution containing each element of Mb, generating a precursor solid of a dielectric compound by a liquid phase method, and heating it at a predetermined firing temperature to obtain a powder of the dielectric compound.
  • a dielectric compound such as RFe 2 O 4 having a structure can be efficiently synthesized.
  • FIG. 1 is a flowchart showing an embodiment of a method for producing a dielectric compound.
  • FIG. 2 is a graph showing an X-ray diffraction pattern of a dielectric compound powder obtained using a liquid phase method and a solid phase method.
  • FIG. 3 shows SEM images of dielectric compound powders obtained using the liquid phase method and the solid phase method.
  • FIG. 4 is a graph showing an X-ray diffraction pattern of a dielectric compound powder obtained using a method in which a raw material solution is dropped into a base solution by a coprecipitation method.
  • FIG. 1 is a flowchart showing an embodiment of a method for producing a dielectric compound.
  • FIG. 2 is a graph showing an X-ray diffraction pattern of a dielectric compound powder obtained using a liquid phase method and a solid phase method.
  • FIG. 3 shows SEM images of dielectric compound powders obtained using the liquid phase method and the solid phase method.
  • FIG. 4 is a graph showing an X
  • FIG. 5 is a graph showing an X-ray diffraction pattern of a dielectric compound powder obtained using a method in which a base solution is dropped into a raw material solution by a coprecipitation method.
  • FIG. 6 is a graph showing an X-ray diffraction pattern of a dielectric compound powder obtained by cooling under different cooling conditions after firing.
  • FIG. 7 is a graph showing the magnetic characteristics of the dielectric compound powder.
  • FIG. 8 is a graph showing a Mossbauer spectrum of a dielectric compound powder.
  • FIG. 9 is a graph showing an X-ray diffraction pattern of a dielectric compound powder.
  • FIG. 10 is a graph showing an X-ray diffraction pattern of a dielectric compound powder.
  • FIG. 1 is a flowchart showing an embodiment of a method for producing a dielectric compound.
  • the compound to be synthesized is a dielectric compound RFe 2 O 4- ⁇ having a layered triangular lattice structure.
  • R represents at least one element selected from In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf, and oxygen deficiency.
  • is a real number between 0 and 0.2.
  • a compound containing R and a compound containing Fe are prepared as raw materials for the dielectric compound RFe 2 O 4 . And those compounds are mixed and the raw material solution containing each element of R and Fe is prepared (step S101, preparation process).
  • a raw material solution containing R and Fe and a separately prepared base solution are mixed, and a precursor (hydroxide) that is a precursor solid of RFe 2 O 4 is obtained by a kind of coprecipitation method of a liquid phase method.
  • a precipitate is generated (S102, coprecipitation step, liquid phase synthesis step).
  • the obtained precipitate of RFe 2 O 4 precursor is subjected to treatment such as washing and filtration (S103, washing step).
  • the precursor precipitate obtained by the coprecipitation method is subjected to heat treatment at a predetermined baking temperature for a predetermined baking time. Thereby, a powder of the dielectric compound RFe 2 O 4 is generated (S104, firing step).
  • the generated RFe 2 O 4 powder is subjected to an evaluation process such as characteristic measurement (S105, evaluation step).
  • S105 characteristic measurement
  • the reaction rate is faster than in the case of using the solid phase method, and it is possible to synthesize the compound by heating in a short time.
  • the compound can be suitably synthesized, and the resulting compound RFe 2 O 4 powder can be sufficiently finely divided.
  • RFe 2 O 4- ⁇ is targeted in the embodiment of FIG.
  • a manufacturing method has a crystal structure and characteristics similar to those of RFe 2 O 4 , a composition represented by (RMbO 3- ⁇ ) n (MaO) m , and a dielectric having a layered triangular lattice structure It can be suitably applied to a compound.
  • R is at least one element selected from In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf, and Ma and Mb are Ti. , Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, Cd, at least one element selected with duplication allowed, n is an integer of 1 or more, m is an integer of 0 or more, and ⁇ is 0 or more of 0 A real number of 2 or less.
  • the compound (RMbO 3- ⁇ ) n (MaO) m is to be synthesized, in the preparation step (step S101 in FIG. 1), the compound containing R, the compound containing Ma, and the Mb, which are raw materials for the compound, A compound solution, preferably a solution of these compounds is mixed to prepare a raw material solution containing each element of R, Ma, and Mb.
  • the subsequent coprecipitation step (liquid phase synthesis step), washing step, and firing step (S102 to S104) are the same as in the case of RFe 2 O 4- ⁇ .
  • the raw material solution and the base solution are mixed, and the precipitate of the precursor that is the precursor solid of the dielectric compound is obtained by the coprecipitation method.
  • the coprecipitation method which is a kind of liquid phase method, enables the dielectric compound to be synthesized in a suitable and reliable manner.
  • liquid phase method specifically, other methods besides the coprecipitation method may be used.
  • a method of obtaining a precursor solid of a dielectric compound from a raw material solution by a liquid phase method can be used.
  • uniform mixing of the raw materials at the atomic level is realized, and the synthesis at a low firing temperature is facilitated.
  • the resulting compound powder can be expected to have effects such as fine particle formation and improved characteristics.
  • the compound RFe 2 O 4 to be synthesized is LuFe 2 O 4 .
  • a first solution composed of a solution of a compound containing Lu is prepared.
  • Lu 2 O 3 weighed to 0.5 g (1.25 mmol) is dissolved in 4 ml of hot concentrated nitric acid (HNO 3 , 60 wt%) to form a Lu 3+ solution.
  • 4 ml of concentrated nitric acid is added again at room temperature to completely dissolve it.
  • the 2nd solution consisting of the solution of the compound containing Fe is produced.
  • the Fe 2+ solution is most simply prepared by adding 10 ml of distilled water to FeC 2 O 4 .2H 2 O weighed to 0.9 g (5 mmol). At this stage, iron oxalate is not completely dissolved.
  • a solution containing Fe 2+ and Fe 3+ can be obtained in a solution of a compound containing Fe.
  • the ratio of Fe 2+ to Fe 3+ in the solution can be adjusted to 0.5 to 1.5 by adjusting the blending ratio of iron oxalate and iron sulfate.
  • a mixed solution of the first solution and the second solution to be a raw material solution is prepared.
  • This mixed solution is prepared by adding the second solution to the first solution obtained in the above step.
  • the contents of the beaker are washed out with a small amount of distilled water so that iron oxalate or iron sulfate remaining at the bottom of the beaker is completely moved to the first solution side.
  • This mixed solution becomes a raw material solution for the LuFe 2 O 4 synthesis.
  • LuFe 2 O 4 precursor (hydroxide) powder is synthesized by coprecipitation reaction (S102, S103).
  • the mixed raw material solution obtained in the above step is dropped dropwise with a dropper into 10 ml of NH 3 water (28 wt%) as a base solution with stirring. And a base solution are mixed.
  • aqueous NaOH in place of NH 3 water.
  • a precursor solid of the dielectric compound LuFe 2 O 4 is generated as a precipitate at the bottom of the beaker.
  • the generated precipitate is filtered through a membrane filter (0.2 ⁇ m), and the precipitate is rinsed once with distilled water.
  • the obtained precipitate is dried in a dryer at 100 ° C. for 24 hours.
  • the dried precursor solid is in the form of a powder having a particle size of 1 to 100 nm, and if this precursor solid is baked as it is, a dielectric compound having a particle size of 1 to 100 nm can be obtained. it can.
  • the LuFe 2 O 4 phase is synthesized by firing (S104).
  • firing as a pellet for measuring physical property values
  • dry powder of the precursor precipitate produced in the above process is put into a ⁇ 12 mm mold and press-molded into a pellet.
  • the obtained pellet-shaped sample is vacuum fired. Specifically, a sample is put into a quartz tube sealed on one side, and a vacuum is drawn from the other side with a rotary pump. This quartz tube is put into an electric furnace and heated from a room temperature to a predetermined firing temperature (for example, 900 ° C.) at a predetermined temperature increase rate (for example, 10 ° C./min). At this time, the inside of the quartz tube is continuously evacuated by a rotary pump.
  • a predetermined firing temperature for example, 900 ° C.
  • a predetermined temperature increase rate for example, 10 ° C./min
  • the electric furnace When the electric furnace reaches a predetermined temperature, the electric furnace is held at that temperature for a predetermined baking time (for example, 1 hour). Similarly, during this time, the inside of the quartz tube is continuously evacuated by the rotary pump.
  • a predetermined baking time for example, 1 hour.
  • the quartz tube When the firing time has elapsed, the quartz tube is quickly taken out of the electric furnace, immediately put into water and rapidly cooled. At this time, the inside of the quartz tube is continuously evacuated by the rotary pump. Thus, a powder of the dielectric compound LuFe 2 O 4 is obtained.
  • a method of strictly controlling the O 2 partial pressure of the reaction field by flowing a CO / CO 2 mixed gas into the quartz tube may be used for a portion that is evacuated by a rotary pump.
  • the powder of a compound LuFe 2 O 4 obtained by the above method may be carried out Characterization if necessary (S105).
  • Characterization if necessary S105
  • SEM scanning electron microscope
  • the RFe 2 O 4 powder synthesis method using the liquid phase method such as the coprecipitation method can suitably synthesize the compound at a low temperature in a shorter time than the solid phase method.
  • the compound powder can be sufficiently finely divided.
  • FIG. 2 is a graph showing an X-ray diffraction pattern of a dielectric compound powder obtained by using a liquid phase method and a solid phase method.
  • FIG. 2 (a) shows a case where baking is performed at 900 ° C. for 1 hour.
  • FIG. 2B shows the X-ray diffraction result of the compound powder obtained by firing for 1 hour at a firing temperature of 1200 ° C.
  • Rigaku RINT2000 is used as an X-ray diffractometer, and measurement is performed by a powder X-ray diffraction method using Cu—K ⁇ rays (output: 40 kV, 200 mA).
  • graphs A1 and A3 show the results of compound synthesis by the liquid phase method
  • graphs A2 and A4 show the results of synthesis by the conventional solid phase method.
  • the liquid phase method obtained the LuFe 2 O 4 phase in a substantially single phase in a short time firing as compared with the solid phase method.
  • the crystallite size of the LuFe 2 O 4 powder was determined from these X-ray diffraction results. Under the firing conditions of 900 ° C. for 1 hour, the liquid phase method was 49.7 nm, the solid phase method was 63.3 nm, and 1200 Under baking conditions of 1 ° C. for 1 hour, the liquid phase method was 73.5 nm and the solid phase method was 72.9 nm.
  • FIG. 3 is a view showing an SEM image of a dielectric compound powder obtained by using the liquid phase method and the solid phase method
  • FIG. FIG. 3 (b) shows an SEM photograph of the compound powder obtained by firing the synthesized powder by the solid phase method at a firing temperature of 900 ° C. for 1 hour. Is shown.
  • FIG. 4 is a graph showing an example of an X-ray diffraction pattern of a dielectric compound powder obtained using a coprecipitation method.
  • a method for generating a precipitate of the precursor of the compound LuFe 2 O 4 by a coprecipitation method a method of generating a precipitate by dropping a mixed solution that is a raw material solution into NH 3 water that is a base solution, The X-ray-diffraction result of the compound powder synthesize
  • graphs B1, B2, and B3 show the synthesis results when the firing temperatures are 900 ° C., 800 ° C., and 700 ° C., respectively.
  • a LuFe 2 O 4 phase is generated to some extent even at a firing temperature of 700 ° C., and further, at a firing temperature of 800 ° C. and 900 ° C., LuFe 2 it can be seen that the O 4 phase are mass produced.
  • FIG. 5 is a graph showing another example of an X-ray diffraction pattern of a dielectric compound powder obtained by using a coprecipitation method.
  • a method of generating a precipitate of the precursor of the compound LuFe 2 O 4 by the coprecipitation method unlike the above method, a method of generating a precipitate by dropping NH 3 water into the mixed solution is used.
  • combined by heating the obtained deposit at the predetermined baking temperature for 1 hour in a vacuum is shown.
  • graphs C1, C2, and C3 show the synthesis results when the firing temperatures are 900 ° C., 800 ° C., and 700 ° C., respectively.
  • the firing temperatures are 900 ° C., 800 ° C., and 700 ° C., respectively.
  • the LuFe 2 O 4 phase is generated, but the method of dropping the raw material solution into the base solution is used.
  • the firing temperature is 900 ° C.
  • a large amount of different phases such as Lu 2 O 3 and FeO are mixed, and it is difficult to make LuFe 2 O 4 into a single phase under the firing conditions for 1 hour. .
  • the specific synthesis conditions and synthesis method are dropped while stirring the raw material solution in the base solution in the coprecipitation step. It is preferable to mix the raw material solution and the base solution.
  • a base solution is dropped onto the raw material solution side, and the pH is raised to a predetermined value to obtain a precursor (hydroxide) precipitate (see FIG. 5).
  • a precursor hydrooxide precipitate
  • the solubility of ions generally varies depending on the ion species, for example, in the synthesis of RFe 2 O 4 , the composition of R 3+ , Fe 2+ , and Fe 3+ changes between the initial and final stages of precipitation by coprecipitation reaction There is a possibility that.
  • NH 3 solution an ammonia solution
  • various base solutions such as a NaOH solution can be used.
  • NaOH solution Na may enter impurities in the resulting dielectric compound powder, which may affect the physical properties thereof. Therefore, the NH 3 solution is more preferable in this respect.
  • Lu 2 O 3 As for the specific starting material compounds used in the raw material solution, in the above example, for compounds LuFe 2 O 4 to be combined, Lu 2 O 3, nitric acid, are used FeC 2 O 4 ⁇ 2H 2 O
  • various raw materials may be used.
  • the above-described Lu 2 O 3 is available at a low price, but other compounds may be used as raw materials.
  • iron-containing compounds other iron compounds such as iron chloride and iron sulfate may be used.
  • iron oxalate is used in consideration of the influence of the residual elements after synthesis.
  • the firing conditions of the precursor obtained by a liquid phase method such as a coprecipitation method it is preferable to heat the precursor solid at a firing temperature of 900 ° C. or less in the firing step. In this case, the synthesis of the dielectric compound can be performed at a sufficiently low temperature.
  • the precursor solid is heated for a firing time of 2 hours or less in the firing step.
  • the synthesis of the dielectric compound can be performed in a sufficiently short time.
  • the precursor solid when firing in an atmosphere in which the oxygen partial pressure is adjusted to 10 ⁇ 12 to 1 Pa, the precursor solid can be sintered only by maintaining the state of 700 ° C. or higher for 1 minute or longer.
  • the processing time can be greatly reduced and the manufacturing cost can be greatly reduced.
  • the precursor solid can be effectively fired by using a rotary kiln furnace.
  • a rotary kiln furnace when used, a dielectric compound can be obtained directly from a precursor solid in a powder state, and the manufacturing cost can be easily reduced.
  • the sintered dielectric compound it is preferable to suppress the appearance of grain growth and different crystalline states by rapidly cooling the sintered dielectric compound. From the state heated to 700 ° C. or higher to 200 ° C. or lower within 30 minutes. It is preferable to cool.
  • the dielectric compound heated to 700 ° C. or higher and sintered can be simply taken out of the heating furnace, and the dielectric compound can be discharged out of the heating furnace with an appropriate discharging means to be naturally cooled. You can just let it.
  • FIG. 6 is a graph showing an X-ray diffraction pattern of a powder of the dielectric compound LuFe 2 O 4 when the dielectric compound heated to 800 ° C. and sintered is cooled under different cooling conditions.
  • F1 in FIG. 6 is a graph when the precursor solid is heated at 800 ° C. for 1 hour and calcined and then rapidly cooled by taking it out of the heating furnace.
  • F2 in FIG. After heating for 1 hour and baking, the heating condition of the heating furnace is controlled and the temperature is cooled to 200 ° C. or less over about 3 hours.
  • the LuFe 2 O 4 phase can be effectively generated by rapid cooling.
  • FIG. 7 is a graph showing the magnetic properties (magnetization-temperature curve) of the LuFe 2 O 4 powder synthesized by the above method using the coprecipitation method.
  • FIG. 8 is a graph showing the room temperature Mossbauer spectrum of the LuFe 2 O 4 powder. Here is shown the measurement results of the NH 3 compound powder mixed solution precipitate obtained was added dropwise to have been fired to synthesize at 900 ° C. in water is a base solution.
  • the LuFe 2 O 4 crystal powder obtained by the above method has the same characteristics as the LuFe 2 O 4 crystal synthesized using the solid phase method (Non-patent Document). 6). That is, it is considered that the RFe 2 O 4 crystal synthesized using the coprecipitation method exhibits the same interesting physical properties as those of the RFe 2 O 4 crystal synthesized using the solid phase method so far. .
  • FIG. 9 is a graph showing an X-ray diffraction pattern of a powder of dielectric compound LuFe 2 O 4 obtained by the above synthesis method. Here is shown the measurement results of the NH 3 compound powder mixed solution precipitate obtained was added dropwise to have been fired to synthesize at 900 ° C. in water is a base solution.
  • graphs D1, D2, D3, and D4 show the synthesis results when the firing time is 2 hours, 1 hour, 0.5 hours, and 0 hours, respectively.
  • the firing time of 0 hour means that the quartz tube containing the sample is heated from room temperature to a firing temperature of 900 ° C. at a predetermined rate of temperature rise, and when the temperature reaches 900 ° C., the sample is not held at the firing temperature. The case where the heat treatment is immediately finished is shown.
  • the LuFe 2 O 4 phase is considerably generated. From this, it can be seen that according to the synthesis method described above, the compound powder can be synthesized even in a very short time. However, in the synthesis example shown in FIG. 9, the Lu 2 O 3 phase exists to some extent when firing is performed for a short time. On the other hand, when firing for a relatively long time at 1 hour or longer, the Lu 2 Fe 3 O 7 phase appears.
  • the concentration of the raw material solution in the coprecipitation method specifically, the concentration of the mixed solution dropped into the NH 3 water that is the base solution will be described.
  • FIG. 10 is a graph showing an X-ray diffraction pattern of a powder of dielectric compound LuFe 2 O 4 obtained by the above synthesis method.
  • Lu 3+ to NH 3 in water the precipitate obtained was added dropwise to Fe 2+ solution 900 ° C., shows the measurement results for compound powder fired to synthesized in 1 hour.
  • graphs E1, E2, and E3 show the synthesis results when the concentration of the LuFe 2 aqueous solution is 0.05 mol / l, 0.1 mol / l, and 0.2 mol / l, respectively.
  • the LuFe 2 O 4 phase is generated in the entire concentration range.
  • the LuFe 2 aqueous solution concentration is 0.1 mol / l, which is closest to the single phase of the LuFe 2 O 4 phase, and in other cases, the LuFeO 3 phase, which is a different phase, is present. It is mixed.
  • the method for producing a dielectric compound according to the present invention is not limited to the above-described embodiment and configuration examples, and various modifications are possible.
  • the conditions for generating the precursor solid of the dielectric compound by the coprecipitation method and the firing conditions of the precursor solid are not limited to the above-described conditions, and various conditions may be changed as necessary.
  • various methods other than the coprecipitation method may be used as the liquid phase method used for producing the precursor solid of the dielectric compound.
  • a liquid phase method include a sol-gel method using a metal alkoxide as a raw material and a complex polymerization method using an organometallic complex as a raw material.
  • the present invention can be used as a method for producing a dielectric compound capable of suitably synthesizing a dielectric compound such as RFe 2 O 4 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

Provided are a dielectric compound and a method for manufacturing said compound with which dielectric compounds such as RFe2O4 can be efficiently synthesized. In the manufacture of a dielectric compound which is represented by (RMbO3- δ)n(MaO)m and has a stratified triangular lattice structure, a compound containing R as the dielectric compound starting material, a compound containing Ma, and a compound containing Mb are mixed in order to prepare a starting material solution containing each of the elements, namely, R, Ma, and Mb (S101, preparation step); and a solid precursor of the dielectric compound is created from the starting material solution using a liquid phase method, such as coprecipitation (S102, liquid phase synthesis step). Then, the obtained solid precursor is heated at a prescribed calcination temperature in order to obtain a dielectric compound powder (S104, calcination step).

Description

誘電体化合物及びその製造方法Dielectric compound and manufacturing method thereof
 本発明は、組成が(RMbO3-δ(MaO)で表され、層状三角格子構造を有する誘電体化合物及びその製造方法に関するものである。 The present invention relates to a dielectric compound having a composition represented by (RMbO 3-δ ) n (MaO) m and having a layered triangular lattice structure, and a method for producing the same.
 近年、従来の誘電体とは異なる原理で誘電性を発現する物質として、RFeに代表される層状三角格子化合物が注目されている。例えば、化合物RFeの結晶は、R、Fe、Oによりそれぞれ構成される三角格子がc軸方向に層状に積み重なった積層構造を有している(例えば特許文献1、非特許文献1、2を参照)。 In recent years, a layered triangular lattice compound typified by RFe 2 O 4 has attracted attention as a substance that exhibits dielectric properties on a principle different from that of conventional dielectrics. For example, the crystal of the compound RFe 2 O 4 has a stacked structure in which triangular lattices each composed of R, Fe, and O are stacked in layers in the c-axis direction (for example, Patent Document 1, Non-Patent Document 1, 2).
 上記したRFeの層状三角格子構造は、Fe-Oで構成される三角格子層が2枚積み重なった構造を含んでおり、このような結晶構造は、三角形が持つ幾何学的特徴などにより、RFeに特徴的な物性の発現機構の主役を担っている。具体的には、Fe-Oの三角格子層の積層構造では、その一方の層でのFeの電荷数と、他方の層でのFeの電荷数とが、一方でFe2+が多く、他方でFe3+が多くなることによって一致しなくなる。 The above-mentioned layered triangular lattice structure of RFe 2 O 4 includes a structure in which two triangular lattice layers composed of Fe—O are stacked, and such a crystal structure depends on the geometric characteristics of the triangle. It plays the main role in the expression mechanism of physical properties characteristic of RFe 2 O 4 . Specifically, the multilayer structure of the triangular lattice layer of Fe-O, and the charge number of Fe in the layer of the other hand, is the charge number of Fe in the other layer, while the Fe 2+ is large, on the other hand As Fe 3+ increases, they do not match.
 また、この構造では、Feの平均電荷数Fe2.5+からみて、Fe2+は電子が過剰な負電荷としての役割を持ち、Fe3+は電子が欠損した正電荷としての役割を持つ。したがって、上記のようなFe2+及びFe3+の秩序配列構造と、その配置の偏りにより、双極子状の電子配置、電子密度分布が形成される。RFeでは、このような電子の双極子構造により、強誘電性が現れる。また、より一般的に(RMbO(MaO)について考えた場合、Ma-OあるいはMb-Oで構成する三角格子層が2枚積み重なった構造により、RFeと同様に特徴的な物性が発現する。 In addition, in this structure, when viewed from the average charge number Fe 2.5+ of Fe, Fe 2+ has a role as an excessive negative charge of electrons, and Fe 3+ has a role of a positive charge with missing electrons. Therefore, a dipole-like electron arrangement and an electron density distribution are formed by the ordered arrangement structure of Fe 2+ and Fe 3+ and the deviation of the arrangement. In RFe 2 O 4 , ferroelectricity appears due to such an electron dipole structure. Further, when considering (RMbO 3 ) n (MaO) m more generally, it has the same characteristic as RFe 2 O 4 due to the structure in which two triangular lattice layers composed of Ma—O or Mb—O are stacked. Physical properties are expressed.
特開2007-223886号公報JP 2007-223886 A
 上記した誘電体化合物RFeの合成は、従来、固相反応法を用いて行われている(非特許文献3~5参照)。しかしながら、このような固相反応法による合成では、その反応速度が遅いため、最低でも数時間以上、通常は12時間以上の加熱、焼成が必要となる。この場合、合成時間が長くなってしまうため、RFeの合成を効率良く行うことができないという問題がある。 The synthesis of the dielectric compound RFe 2 O 4 described above has been conventionally performed using a solid phase reaction method (see Non-Patent Documents 3 to 5). However, in the synthesis by such a solid phase reaction method, since the reaction rate is slow, heating and baking are required for at least several hours, usually 12 hours or more. In this case, since the synthesis time becomes long, there is a problem that synthesis of RFe 2 O 4 cannot be performed efficiently.
 また、従来の固相反応法による合成では、例えば1100℃以上の高温で合成が行われている。このような条件で合成を行った場合、焼成時に原料粉末が焼結、粒成長して粗大粒が生成されてしまうという問題がある。このような粗大粒では、RFeを電子部品の材料等として利用する上で、その成形性、加工性などが劣ることとなる。また、上記のような高温、長時間の合成では、合成時のエネルギー消費が大きくなり、コスト的にも問題がある。このような問題は、一般的に誘電体化合物(RMbO(MaO)についても同様に生じる。 Moreover, in the synthesis by the conventional solid phase reaction method, the synthesis is performed at a high temperature of 1100 ° C. or more, for example. When the synthesis is performed under such conditions, there is a problem that the raw material powder is sintered and grain-grown during firing to produce coarse grains. With such coarse particles, when RFe 2 O 4 is used as a material for an electronic component or the like, its formability, workability, and the like are inferior. Further, in the synthesis at a high temperature and for a long time as described above, energy consumption during synthesis is increased, and there is a problem in cost. Such a problem generally occurs similarly for the dielectric compound (RMbO 3 ) n (MaO) m .
 本発明は、以上の問題点を解決するためになされたものであり、層状三角格子構造を有するRFeなどの誘電体化合物を効率良く合成することが可能な誘電体化合物の製造方法を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a method for producing a dielectric compound capable of efficiently synthesizing a dielectric compound such as RFe 2 O 4 having a layered triangular lattice structure. The purpose is to provide.
 このような目的を達成するために、本発明による誘電体化合物の製造方法は、その組成が(RMbO3-δ(MaO)(Rは、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma、Mbは、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nは1以上の整数、mは0以上の整数、δは0以上0.2以下の実数)で表され、層状三角格子構造を有する誘電体化合物の製造方法であって、(1)誘電体化合物(RMbO3-δ(MaO)の原料となるRを含む化合物、Maを含む化合物、及びMbを含む化合物を混合して、R、Ma、Mbの各元素を含む原料溶液を準備する準備工程と、(2)原料溶液から液相法によって誘電体化合物の前駆体固体を得る液相合成工程と、(3)液相合成工程で得られた前駆体固体を所定の焼成温度で加熱することで、誘電体化合物の粉末を得る焼成工程とを備えることを特徴とする。 In order to achieve such an object, the dielectric compound manufacturing method according to the present invention has a composition of (RMbO 3-δ ) n (MaO) m (R is In, Sc, Y, Dy, Ho, Er). , Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, Hf, at least one element, Ma, Mb is Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, A dielectric having a layered triangular lattice structure represented by at least one element selected from Cd with duplication allowed, n is an integer of 1 or more, m is an integer of 0 or more, and δ is a real number of 0 to 0.2. a method of manufacturing a body compound, (1) a dielectric compound (RMbO 3-δ) n ( MaO) compounds containing R which is a raw material of m, compounds containing Ma, and a mixture of compounds containing Mb, Prepare a raw material solution containing each element of R, Ma, and Mb. And (2) a liquid phase synthesis step for obtaining a precursor solid of a dielectric compound from a raw material solution by a liquid phase method, and (3) a precursor solid obtained in the liquid phase synthesis step at a predetermined firing temperature. And a firing step of obtaining a dielectric compound powder by heating.
 このように液相法を用いる方法では、反応速度が固相法を用いた場合と比べて速く、短時間の加熱で化合物を合成することが可能である。また、その焼成温度を低温とした場合でも化合物の合成を好適に行うことができ、得られる誘電体化合物の粉末についても、充分な微粒子化を達成することができる。以上より、上記方法によれば、層状三角格子構造を有する誘電体化合物(RMbO3-δ(MaO)を効率良く、かつ好適な条件で合成することが可能となる。 Thus, in the method using the liquid phase method, the reaction rate is faster than in the case of using the solid phase method, and it is possible to synthesize the compound by heating in a short time. In addition, even when the firing temperature is low, the compound can be suitably synthesized, and the resulting dielectric compound powder can be sufficiently finely divided. As described above, according to the above method, the dielectric compound (RMbO 3-δ ) n (MaO) m having a layered triangular lattice structure can be synthesized efficiently and under suitable conditions.
 ここで、誘電体化合物の具体的な合成方法については、焼成工程では、酸素分圧を10-12~1Paとした700℃以上の炉内で、前駆体固体を1分以上加熱することが好ましく、焼成工程で700℃以上に加熱した状態から、30分以内で200℃以下にまで冷却することが好ましい。また、Ma及びMbはFeであって、原料溶液中のFe2+のFe3+に対する存在比率を0.5~1.5としていることが好ましい。そして、前駆体固体を焼成して得られた粉末の粒径を1~100nmとしていることが好ましい。 Here, regarding a specific method for synthesizing the dielectric compound, in the firing step, the precursor solid is preferably heated in a furnace at 700 ° C. or higher with an oxygen partial pressure of 10 −12 to 1 Pa for 1 minute or longer. From the state heated to 700 ° C. or higher in the firing step, it is preferable to cool to 200 ° C. or lower within 30 minutes. Ma and Mb are Fe, and the ratio of Fe 2+ to Fe 3+ in the raw material solution is preferably 0.5 to 1.5. The particle size of the powder obtained by firing the precursor solid is preferably 1 to 100 nm.
 また、本発明の誘電体化合物では、組成が(RMbO3-δ(MaO)(Rは、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma,Mbは、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nは1以上の整数、mは0以上の整数、δは0以上0.2以下の実数)で表され、層状三角格子構造を有する誘電体化合物であって、誘電体化合物(RMbO3-δ(MaO)の原料となるRを含む化合物、Maを含む化合物、及びMbを含む化合物を混合して生成したR、Ma、Mbの各元素を含む原料溶液を用いて、液相法により誘電体化合物の前駆体固体を生成し、この前駆体固体を所定の焼成温度に加熱して得た粉末としている。 Further, in the dielectric compound of the present invention, the composition is (RMbO3 ) n (MaO) m (R is In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr. , Ce, Sn, Hf, at least one element selected from the group consisting of Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd is allowed at least one type Element, n is an integer of 1 or more, m is an integer of 0 or more, and δ is a real number of 0 or more and 0.2 or less, and has a layered triangular lattice structure, a dielectric compound (RMbO 3 -δ) n (MaO) compounds containing R as a raw material for m, using a compound containing Ma, and R generated by mixing a compound containing a Mb, Ma, a raw material solution containing each element Mb, liquid A dielectric compound precursor solid is generated by a phase method, The precursor solids are a powder obtained by heating to a predetermined firing temperature.
 特に、粉末の粒径は1~100nmとしていることが好ましい。 In particular, the particle size of the powder is preferably 1 to 100 nm.
 また、前駆体固体は、酸素分圧を10-12~1Paとした700℃以上の炉内で1分以上加熱して粉末とすることが好ましく、粉末は、30分以内で700℃以上から200℃以下にまで冷却していることが好ましい。 Further, the precursor solid is preferably heated to a powder in an oven at 700 ° C. or higher with an oxygen partial pressure of 10 −12 to 1 Pa for 1 minute or more, and the powder is heated from 700 ° C. to 200 ° C. within 30 minutes. It is preferable to cool to below ℃.
 また、Ma及びMbはFeとして、原料溶液中のFe2+のFe3+に対する存在比率を0.5~1.5としていることが好ましい。 Further, it is preferable that Ma and Mb are Fe and the ratio of Fe 2+ to Fe 3+ in the raw material solution is 0.5 to 1.5.
 本発明の誘電体化合物の製造方法及びこの製造方法で生成された誘電体化合物は、組成が(RMbO3-δ(MaO)で表される誘電体化合物の合成において、R、Ma、Mbの各元素を含む原料溶液を用意して液相法によって誘電体化合物の前駆体固体を生成させ、それを所定の焼成温度で加熱して誘電体化合物の粉末を得ることにより、層状三角格子構造を有するRFeなどの誘電体化合物を効率良く合成することが可能となる。 The dielectric compound produced by the production method of the present invention and the dielectric compound produced by this production method are obtained by synthesizing R, Ma, and R in the synthesis of the dielectric compound whose composition is represented by (RMbO 3-δ ) n (MaO) m . A layered triangular lattice is prepared by preparing a raw material solution containing each element of Mb, generating a precursor solid of a dielectric compound by a liquid phase method, and heating it at a predetermined firing temperature to obtain a powder of the dielectric compound. A dielectric compound such as RFe 2 O 4 having a structure can be efficiently synthesized.
図1は、誘電体化合物の製造方法の一実施形態を示すフローチャートである。FIG. 1 is a flowchart showing an embodiment of a method for producing a dielectric compound. 図2は、液相法及び固相法を用いて得られた誘電体化合物の粉末のX線回折パターンを示すグラフである。FIG. 2 is a graph showing an X-ray diffraction pattern of a dielectric compound powder obtained using a liquid phase method and a solid phase method. 図3は、液相法及び固相法を用いて得られた誘電体化合物の粉末のSEM画像を示す図である。FIG. 3 shows SEM images of dielectric compound powders obtained using the liquid phase method and the solid phase method. 図4は、共沈法で塩基溶液中に原料溶液を滴下する方法を用いて得られた誘電体化合物の粉末のX線回折パターンを示すグラフである。FIG. 4 is a graph showing an X-ray diffraction pattern of a dielectric compound powder obtained using a method in which a raw material solution is dropped into a base solution by a coprecipitation method. 図5は、共沈法で原料溶液中に塩基溶液を滴下する方法を用いて得られた誘電体化合物の粉末のX線回折パターンを示すグラフである。FIG. 5 is a graph showing an X-ray diffraction pattern of a dielectric compound powder obtained using a method in which a base solution is dropped into a raw material solution by a coprecipitation method. 図6は、焼成後に異なる冷却条件で冷却して得られた誘電体化合物の粉末のX線回折パターンを示すグラフである。FIG. 6 is a graph showing an X-ray diffraction pattern of a dielectric compound powder obtained by cooling under different cooling conditions after firing. 図7は、誘電体化合物の粉末の磁気特性を示すグラフである。FIG. 7 is a graph showing the magnetic characteristics of the dielectric compound powder. 図8は、誘電体化合物の粉末のメスバウアスペクトルを示すグラフである。FIG. 8 is a graph showing a Mossbauer spectrum of a dielectric compound powder. 図9は、誘電体化合物の粉末のX線回折パターンを示すグラフである。FIG. 9 is a graph showing an X-ray diffraction pattern of a dielectric compound powder. 図10は、誘電体化合物の粉末のX線回折パターンを示すグラフである。FIG. 10 is a graph showing an X-ray diffraction pattern of a dielectric compound powder.
 以下、図面とともに本発明による誘電体化合物の製造方法の好適な実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。 Hereinafter, preferred embodiments of a method for producing a dielectric compound according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings do not necessarily match those described.
 図1は、誘電体化合物の製造方法の一実施形態を示すフローチャートである。なお、本実施形態の製造方法では、合成の対象となる化合物を、層状三角格子構造を有する誘電体化合物RFe4-δとしている。ここで、Rは、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、また、酸素欠損を示すδは0以上0.2以下の実数である。 FIG. 1 is a flowchart showing an embodiment of a method for producing a dielectric compound. In the manufacturing method of the present embodiment, the compound to be synthesized is a dielectric compound RFe 2 O 4-δ having a layered triangular lattice structure. Here, R represents at least one element selected from In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf, and oxygen deficiency. δ is a real number between 0 and 0.2.
 このような誘電体化合物RFe4-δは、上述したように、近年、従来の強誘電体とは異なる原理で誘電性を発現する物質として注目されているものである。なお、以下においては、酸素欠損δについて、特に必要な場合を除いて記載を省略し、単にRFeと表記する。 As described above, such a dielectric compound RFe 2 O 4-δ has recently been attracting attention as a substance that exhibits dielectric properties based on a principle different from that of conventional ferroelectrics. In the following, the description of oxygen deficiency δ is omitted except where particularly necessary, and is simply expressed as RFe 2 O 4 .
 まず、本実施形態による誘電体化合物の製造方法の概略について説明する。 First, the outline of the dielectric compound manufacturing method according to the present embodiment will be described.
 図1に示す製造方法では、まず、誘電体化合物RFeの原料として、Rを含む化合物、及びFeを含む化合物を用意する。そして、それらの化合物を混合して、R、Feの各元素を含む原料溶液を準備する(ステップS101、準備工程)。 In the manufacturing method shown in FIG. 1, first, a compound containing R and a compound containing Fe are prepared as raw materials for the dielectric compound RFe 2 O 4 . And those compounds are mixed and the raw material solution containing each element of R and Fe is prepared (step S101, preparation process).
 次に、R、Feを含む原料溶液と、別に用意した塩基溶液とを混合し、液相法の一種の共沈法によってRFeの前駆体固体である前駆体(水酸化物)の沈殿物を生成する(S102、共沈工程、液相合成工程)。 Next, a raw material solution containing R and Fe and a separately prepared base solution are mixed, and a precursor (hydroxide) that is a precursor solid of RFe 2 O 4 is obtained by a kind of coprecipitation method of a liquid phase method. A precipitate is generated (S102, coprecipitation step, liquid phase synthesis step).
 また、得られたRFeの前駆体の沈殿物に対し、必要であれば、洗浄、濾過等の処理を行う(S103、洗浄工程)。 Further, if necessary, the obtained precipitate of RFe 2 O 4 precursor is subjected to treatment such as washing and filtration (S103, washing step).
 続いて、共沈法によって得られた前駆体の沈殿物に対して、所定の焼成温度で、所定の焼成時間にわたって加熱処理を行う。これによって、誘電体化合物RFeの粉末が生成される(S104、焼成工程)。 Subsequently, the precursor precipitate obtained by the coprecipitation method is subjected to heat treatment at a predetermined baking temperature for a predetermined baking time. Thereby, a powder of the dielectric compound RFe 2 O 4 is generated (S104, firing step).
 また、生成されたRFeの粉末に対し、その特性測定などによる評価処理を行う(S105、評価工程)。なお、この評価工程については、不要であれば行わない構成としても良い。 In addition, the generated RFe 2 O 4 powder is subjected to an evaluation process such as characteristic measurement (S105, evaluation step). In addition, about this evaluation process, it is good also as a structure which is not performed if unnecessary.
 上記実施形態による誘電体化合物RFe4-δの製造方法の効果について説明する。 The effect of the manufacturing method of the dielectric compound RFe 2 O 4-δ according to the above embodiment will be described.
 図1に示した製造方法においては、誘電体化合物RFeの合成において、従来用いられている固相反応法ではなく、R、Feの各元素を含む原料溶液を用意して液相法の一種である共沈法によって前駆体の沈殿物(前駆体固体)を生成させる。そして、その前駆体の沈殿物を所定の条件下で焼成して誘電体化合物の粉末を得る方法によって、化合物RFeの合成を行っている。 In the production method shown in FIG. 1, in the synthesis of the dielectric compound RFe 2 O 4 , instead of the conventionally used solid phase reaction method, a raw material solution containing each element of R and Fe is prepared and the liquid phase method is used. A precursor precipitate (precursor solid) is produced by a coprecipitation method which is a kind of the above. Then, the method for obtaining a powder precipitate was calcined under predetermined conditions dielectric compound in the precursor, which was synthesized compound RFe 2 O 4.
 このように共沈法を用いる方法では、反応速度が固相法を用いた場合と比べて速く、短時間の加熱で化合物を合成することが可能である。また、その焼成温度を低温とした場合でも化合物の合成を好適に行うことができ、得られる化合物RFeの粉末についても、充分な微粒子化を達成することができる。以上より、上記の製造方法によれば、層状三角格子構造を有する誘電体化合物RFeを効率良く、かつ好適な条件で合成することが可能となる。 Thus, in the method using the coprecipitation method, the reaction rate is faster than in the case of using the solid phase method, and it is possible to synthesize the compound by heating in a short time. In addition, even when the firing temperature is low, the compound can be suitably synthesized, and the resulting compound RFe 2 O 4 powder can be sufficiently finely divided. As described above, according to the above-described manufacturing method, it is possible to synthesize a dielectric compound RFe 2 O 4 having a layered triangular lattice structure efficiently, and preferred conditions.
 上記した製造方法において合成の対象となる誘電体化合物については、図1の実施形態ではRFe4-δを対象としている。一般には、このような製造方法は、RFeと同様の結晶構造及び特性を有し、組成が(RMbO3-δ(MaO)で表され、層状三角格子構造を有する誘電体化合物に対して好適に適用することが可能である。 With respect to the dielectric compound to be synthesized in the above manufacturing method, RFe 2 O 4-δ is targeted in the embodiment of FIG. Generally, such a manufacturing method has a crystal structure and characteristics similar to those of RFe 2 O 4 , a composition represented by (RMbO 3-δ ) n (MaO) m , and a dielectric having a layered triangular lattice structure It can be suitably applied to a compound.
 ここで、Rは、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma、Mbは、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nは1以上の整数、mは0以上の整数、δは0以上0.2以下の実数である。 Here, R is at least one element selected from In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, and Hf, and Ma and Mb are Ti. , Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, Cd, at least one element selected with duplication allowed, n is an integer of 1 or more, m is an integer of 0 or more, and δ is 0 or more of 0 A real number of 2 or less.
 上記実施形態で例示したRFe4-δは、組成式(RMbO3-δ(MaO)においてMa=Mb=Fe、n=m=1とした場合に相当する。 RFe 2 O 4-δ exemplified in the above embodiment corresponds to a case where Ma = Mb = Fe and n = m = 1 in the composition formula (RMbO 3-δ ) n (MaO) m .
 また、化合物(RMbO3-δ(MaO)を合成対象とする場合、準備工程(図1のステップS101)では、化合物の原料となるRを含む化合物、Maを含む化合物、及びMbを含む化合物、好ましくはそれらの化合物の溶液を混合して、R、Ma、Mbの各元素を含む原料溶液を準備する。 Further, when the compound (RMbO 3-δ ) n (MaO) m is to be synthesized, in the preparation step (step S101 in FIG. 1), the compound containing R, the compound containing Ma, and the Mb, which are raw materials for the compound, A compound solution, preferably a solution of these compounds is mixed to prepare a raw material solution containing each element of R, Ma, and Mb.
 その後の共沈工程(液相合成工程)、洗浄工程、焼成工程(S102~S104)については、RFe4-δの場合と同様である。 The subsequent coprecipitation step (liquid phase synthesis step), washing step, and firing step (S102 to S104) are the same as in the case of RFe 2 O 4-δ .
 また、上記実施形態では、誘電体化合物の前駆体を生成する液相合成工程について、原料溶液及び塩基溶液を混合し、共沈法によって誘電体化合物の前駆体固体である前駆体の沈殿物を得る共沈工程を用いている。このように液相法の一種である共沈法を用いて合成を行うことにより、誘電体化合物の合成を好適かつ確実に行うことができる。 Further, in the above-described embodiment, for the liquid phase synthesis step for generating the precursor of the dielectric compound, the raw material solution and the base solution are mixed, and the precipitate of the precursor that is the precursor solid of the dielectric compound is obtained by the coprecipitation method. Use coprecipitation process. As described above, the synthesis using the coprecipitation method, which is a kind of liquid phase method, enables the dielectric compound to be synthesized in a suitable and reliable manner.
 また、液相法については、具体的には共沈法以外にも他の方法を用いても良い。一般には、液相合成工程では、原料溶液から液相法によって誘電体化合物の前駆体固体を得る方法を用いることが可能である。このように、誘電体化合物の前駆体固体の合成に液相法を用いることにより、原料の原子レベルでの均一な混合が実現され、低温の焼成温度での合成が容易化される。また、得られる化合物粉末についても、その微粒子化や特性の向上等の効果が期待できる。 Further, as for the liquid phase method, specifically, other methods besides the coprecipitation method may be used. In general, in the liquid phase synthesis step, a method of obtaining a precursor solid of a dielectric compound from a raw material solution by a liquid phase method can be used. Thus, by using the liquid phase method for the synthesis of the precursor solid of the dielectric compound, uniform mixing of the raw materials at the atomic level is realized, and the synthesis at a low firing temperature is facilitated. In addition, the resulting compound powder can be expected to have effects such as fine particle formation and improved characteristics.
 図1に示した誘電体化合物の製造方法の具体的な一例について説明する。ここでは、合成対象の化合物RFeをLuFeとする。最初に、化合物の合成の準備段階として、Lu(=R)、Feを含む原料溶液の作製を行う(S101)。 A specific example of the method for producing the dielectric compound shown in FIG. 1 will be described. Here, the compound RFe 2 O 4 to be synthesized is LuFe 2 O 4 . First, as a preparation stage for the synthesis of a compound, a raw material solution containing Lu (= R) and Fe is prepared (S101).
 具体的に説明すると、まず、Luを含む化合物の溶液からなる第1溶液を作製する。この第1溶液では、0.5g(1.25mmol)に秤量したLuを、4mlの熱濃硝酸(HNO、60wt%)に溶かすことにより、Lu3+溶液としている。そして、一度、溶媒を完全に蒸発させた後、あらためて常温で4mlの濃硝酸を加え、完全に溶解させている。 Specifically, first, a first solution composed of a solution of a compound containing Lu is prepared. In this first solution, Lu 2 O 3 weighed to 0.5 g (1.25 mmol) is dissolved in 4 ml of hot concentrated nitric acid (HNO 3 , 60 wt%) to form a Lu 3+ solution. Then, once the solvent is completely evaporated, 4 ml of concentrated nitric acid is added again at room temperature to completely dissolve it.
 次に、Feを含む化合物の溶液からなる第2溶液を作製する。この第2溶液では、最も簡単には、0.9g(5mmol)に秤量したFeC・2HOを、蒸留水10mlを加えることにより、Fe2+溶液としている。この段階では、蓚酸鉄は完全には溶解していない。 Next, the 2nd solution consisting of the solution of the compound containing Fe is produced. In the second solution, the Fe 2+ solution is most simply prepared by adding 10 ml of distilled water to FeC 2 O 4 .2H 2 O weighed to 0.9 g (5 mmol). At this stage, iron oxalate is not completely dissolved.
 ここで、蓚酸鉄だけでなく硫酸鉄も合わせて用いることにより、Feを含む化合物の溶液において、Fe2+とFe3+が存在する溶液とすることができる。特に、蓚酸鉄と硫酸鉄との配合比を調整することにより、溶液中のFe2+のFe3+に対する存在比率を0.5~1.5に調整できる。 Here, by using not only iron oxalate but also iron sulfate, a solution containing Fe 2+ and Fe 3+ can be obtained in a solution of a compound containing Fe. In particular, the ratio of Fe 2+ to Fe 3+ in the solution can be adjusted to 0.5 to 1.5 by adjusting the blending ratio of iron oxalate and iron sulfate.
 続いて、原料溶液となる第1溶液と第2溶液の混合溶液を作製する。この混合溶液は、上記の工程で得られた第1溶液に対して第2溶液を加えることによって作製している。このとき、第2溶液では、ビーカの底に残った蓚酸鉄または硫酸鉄も完全に第1溶液側に移るように、少量の蒸留水でビーカの中身を洗い出している。 Subsequently, a mixed solution of the first solution and the second solution to be a raw material solution is prepared. This mixed solution is prepared by adding the second solution to the first solution obtained in the above step. At this time, in the second solution, the contents of the beaker are washed out with a small amount of distilled water so that iron oxalate or iron sulfate remaining at the bottom of the beaker is completely moved to the first solution side.
 これにより、第2溶液において溶け残った蓚酸鉄または硫酸鉄も、第1溶液との混合後は完全に溶解して、透明な混合溶液が得られる。この混合溶液が、LuFe合成の原料溶液となる。 Thereby, the iron oxalate or iron sulfate remaining undissolved in the second solution is completely dissolved after mixing with the first solution, and a transparent mixed solution is obtained. This mixed solution becomes a raw material solution for the LuFe 2 O 4 synthesis.
 次に、共沈反応によるLuFeの前駆体(水酸化物)の粉末の合成を行う(S102、S103)。 Next, LuFe 2 O 4 precursor (hydroxide) powder is synthesized by coprecipitation reaction (S102, S103).
 共沈反応に際して、本実施形態では、塩基溶液である10mlのNH水(28wt%)に、上記の工程で得られた混合原料溶液を、攪拌しながらスポイトで一滴ずつ滴下して、原料溶液と塩基溶液とを混合している。なお、原料溶液と塩基溶液との混合にともなって金属成分の沈殿が生じない場合には、NH水の代わりにNaOH水を用いてもよい。 In the coprecipitation reaction, in this embodiment, the mixed raw material solution obtained in the above step is dropped dropwise with a dropper into 10 ml of NH 3 water (28 wt%) as a base solution with stirring. And a base solution are mixed. In the case where precipitation of the metal components with the mixing of the raw material solution and the base solution does not occur, it may be used aqueous NaOH in place of NH 3 water.
 原料溶液と塩基溶液とを混合させて共沈反応を生じさせることにより、ビーカの底に沈殿物として誘電体化合物LuFeの前駆体固体が生成する。 By mixing the raw material solution and the base solution to cause a coprecipitation reaction, a precursor solid of the dielectric compound LuFe 2 O 4 is generated as a precipitate at the bottom of the beaker.
 続いて、生成した沈殿物をメンブレンフィルタ(0.2μm)で濾過し、沈殿物を蒸留水で1回すすぐ。そして、得られた沈殿物を100℃にて24時間、乾燥機に入れて乾燥させる。 Subsequently, the generated precipitate is filtered through a membrane filter (0.2 μm), and the precipitate is rinsed once with distilled water. The obtained precipitate is dried in a dryer at 100 ° C. for 24 hours.
 乾燥した前駆体固体は、粒径が1~100nmの粉末状となっており、この前駆体固体をそのまま焼成すれば、粒径が1~100nmの粉末状となった誘電体化合物とすることができる。 The dried precursor solid is in the form of a powder having a particle size of 1 to 100 nm, and if this precursor solid is baked as it is, a dielectric compound having a particle size of 1 to 100 nm can be obtained. it can.
 続いて、焼成によるLuFe相の合成を行う(S104)。なお、以下においては、物性値の計測のため、ペレット状として焼成する場合について説明する。 Subsequently, the LuFe 2 O 4 phase is synthesized by firing (S104). In the following, the case of firing as a pellet for measuring physical property values will be described.
 まず、上記の工程で作製された前駆体の沈殿物の乾燥粉をφ12mmの金型に入れ、ペレット状にプレス成型する。 First, dry powder of the precursor precipitate produced in the above process is put into a φ12 mm mold and press-molded into a pellet.
 そして、得られたペレット状の試料の真空焼成を行う。具体的には、片方を封じた石英管に試料を入れ、もう片方からロータリポンプで真空に引く。この石英管を電気炉に入れ、室温から所定の焼成温度(例えば900℃)まで、所定の昇温速度(例えば10℃/分)で昇温する。このとき、石英管の内部は、ロータリポンプで真空に引き続ける。 Then, the obtained pellet-shaped sample is vacuum fired. Specifically, a sample is put into a quartz tube sealed on one side, and a vacuum is drawn from the other side with a rotary pump. This quartz tube is put into an electric furnace and heated from a room temperature to a predetermined firing temperature (for example, 900 ° C.) at a predetermined temperature increase rate (for example, 10 ° C./min). At this time, the inside of the quartz tube is continuously evacuated by a rotary pump.
 電気炉が所定の温度に達したら、その温度で所定の焼成時間(例えば1時間)だけ保持する。この間も同様に、石英管の内部は、ロータリポンプで真空に引き続ける。 When the electric furnace reaches a predetermined temperature, the electric furnace is held at that temperature for a predetermined baking time (for example, 1 hour). Similarly, during this time, the inside of the quartz tube is continuously evacuated by the rotary pump.
 焼成時間が経過したら、電気炉から石英管をすばやく取り出し、直ちに水中に入れて急冷する。このとき、石英管の内部は、同様にロータリポンプで真空に引き続ける。以上により、誘電体化合物LuFeの粉末が得られる。 When the firing time has elapsed, the quartz tube is quickly taken out of the electric furnace, immediately put into water and rapidly cooled. At this time, the inside of the quartz tube is continuously evacuated by the rotary pump. Thus, a powder of the dielectric compound LuFe 2 O 4 is obtained.
 なお、上記の製造工程においてロータリポンプで真空に引く部分については、石英管内にCO/CO混合ガスを流すことで、反応場のO分圧を厳密に制御する方法を用いても良い。 In the above manufacturing process, a method of strictly controlling the O 2 partial pressure of the reaction field by flowing a CO / CO 2 mixed gas into the quartz tube may be used for a portion that is evacuated by a rotary pump.
 また、上記方法によって得られた化合物LuFeの粉末については、必要があればその特性評価を行っても良い(S105)。この場合の化合物粉末の評価方法としては、具体的には例えば、X線回折による生成相の同定、走査型電子顕微鏡(SEM)による粒子形態、サイズの評価、試料振動式磁力計(VSM)による磁性の評価、メスバウア分光による電子状態の評価などが挙げられる。 Also, the powder of a compound LuFe 2 O 4 obtained by the above method may be carried out Characterization if necessary (S105). As a method for evaluating the compound powder in this case, specifically, for example, identification of a generated phase by X-ray diffraction, particle shape and size evaluation by a scanning electron microscope (SEM), and sample vibration magnetometer (VSM) Examples include evaluation of magnetism and evaluation of electronic state by Mossbauer spectroscopy.
 このように共沈法などの液相法を用いたRFeの粉末の合成方法では、上述したように、固相法に比べて短時間、低温で化合物の合成を好適に行うことができ、また、得られる化合物の粉末についても、充分な微粒子化が可能である。 As described above, the RFe 2 O 4 powder synthesis method using the liquid phase method such as the coprecipitation method can suitably synthesize the compound at a low temperature in a shorter time than the solid phase method. In addition, the compound powder can be sufficiently finely divided.
 すなわち、固相法による合成では、その反応速度が遅いため、最低でも数時間以上、通常は12時間以上の加熱、焼成が必要となる。これに対して、液相法による合成では、反応速度が速いために短時間での合成が可能である。 That is, in the synthesis by the solid phase method, since the reaction rate is slow, heating and baking for several hours or more, usually 12 hours or more are required at least. In contrast, in the synthesis by the liquid phase method, since the reaction rate is fast, the synthesis can be performed in a short time.
 図2は、液相法及び固相法を用いて得られた誘電体化合物の粉末のX線回折パターンを示すグラフであり、図2(a)は、焼成温度900℃で1時間の焼成を行って得られた化合物粉末のX線回折結果を示し、図2(b)は、焼成温度1200℃で1時間の焼成を行って得られた化合物粉末のX線回折結果を示している。ここでは、X線回折装置としてリガクRINT2000を用い、Cu-Kα線(出力40kV、200mA)による粉末X線回折法によって測定を行っている。 FIG. 2 is a graph showing an X-ray diffraction pattern of a dielectric compound powder obtained by using a liquid phase method and a solid phase method. FIG. 2 (a) shows a case where baking is performed at 900 ° C. for 1 hour. FIG. 2B shows the X-ray diffraction result of the compound powder obtained by firing for 1 hour at a firing temperature of 1200 ° C. Here, Rigaku RINT2000 is used as an X-ray diffractometer, and measurement is performed by a powder X-ray diffraction method using Cu—Kα rays (output: 40 kV, 200 mA).
 また、図2(a)、(b)のそれぞれにおいて、グラフA1、A3は液相法による化合物の合成結果を示し、グラフA2、A4は従来の固相法による合成結果を示している。これらのグラフに示すように、900℃焼成、1200℃焼成のいずれにおいても、固相法と比較して液相法の方が、短時間の焼成でLuFe相がほぼ単相で得られていることがわかる。 2A and 2B, graphs A1 and A3 show the results of compound synthesis by the liquid phase method, and graphs A2 and A4 show the results of synthesis by the conventional solid phase method. As shown in these graphs, in both 900 ° C. firing and 1200 ° C. firing, the liquid phase method obtained the LuFe 2 O 4 phase in a substantially single phase in a short time firing as compared with the solid phase method. You can see that
 また、これらのX線回折結果からLuFeの粉末の結晶子サイズを求めると、900℃、1時間の焼成条件では、液相法で49.7nm、固相法で63.3nm、1200℃、1時間の焼成条件では、液相法で73.5nm、固相法で72.9nmであった。 Further, the crystallite size of the LuFe 2 O 4 powder was determined from these X-ray diffraction results. Under the firing conditions of 900 ° C. for 1 hour, the liquid phase method was 49.7 nm, the solid phase method was 63.3 nm, and 1200 Under baking conditions of 1 ° C. for 1 hour, the liquid phase method was 73.5 nm and the solid phase method was 72.9 nm.
 また、図3は、液相法及び固相法を用いて得られた誘電体化合物の粉末のSEM画像を示す図であり、図3(a)は、液相法による合成粉末を焼成温度900℃で1時間焼成して得られた化合物粉末のSEM写真を示し、図3(b)は、固相法による合成粉末を焼成温度900℃で1時間焼成して得られた化合物粉末のSEM写真を示している。 FIG. 3 is a view showing an SEM image of a dielectric compound powder obtained by using the liquid phase method and the solid phase method, and FIG. FIG. 3 (b) shows an SEM photograph of the compound powder obtained by firing the synthesized powder by the solid phase method at a firing temperature of 900 ° C. for 1 hour. Is shown.
 これらの結果に示すように、最終的に得られる化合物粉末については、焼成温度1200℃では固相法と液相法とでほぼ同等の結果が得られているが、焼成温度900℃の低温合成では、固相法よりも液相法の方が得られるLuFeが微粒子化していることがわかる。 As shown in these results, for the finally obtained compound powder, almost the same results were obtained in the solid phase method and the liquid phase method at a firing temperature of 1200 ° C., but the low temperature synthesis at a firing temperature of 900 ° C. Then, it can be seen that LuFe 2 O 4 obtained by the liquid phase method is finer than the solid phase method.
 次に、図1に示した共沈法による誘電体化合物RFeの粉末の合成における具体的な合成方法、合成条件について対応する測定データとともに説明する。 Next, a specific synthesis method and synthesis conditions in the synthesis of the dielectric compound RFe 2 O 4 powder by the coprecipitation method shown in FIG. 1 will be described together with corresponding measurement data.
 図4は、共沈法を用いて得られた誘電体化合物の粉末のX線回折パターンの一例を示すグラフである。ここでは、共沈法による化合物LuFeの前駆体の沈殿物の生成方法として、塩基溶液であるNH水中に原料溶液である混合溶液を滴下して沈殿物を生成する方法を用い、得られた沈殿物を所定の焼成温度で1時間、真空中で加熱して合成された化合物粉末のX線回折結果を示している。 FIG. 4 is a graph showing an example of an X-ray diffraction pattern of a dielectric compound powder obtained using a coprecipitation method. Here, as a method for generating a precipitate of the precursor of the compound LuFe 2 O 4 by a coprecipitation method, a method of generating a precipitate by dropping a mixed solution that is a raw material solution into NH 3 water that is a base solution, The X-ray-diffraction result of the compound powder synthesize | combined by heating the obtained deposit at the predetermined baking temperature for 1 hour in a vacuum is shown.
 また、図4において、グラフB1、B2、B3は、それぞれ焼成温度を900℃、800℃、700℃とした場合の合成結果を示している。これらのグラフに示すように、共沈法を用いた化合物の合成では、焼成温度700℃でもある程度、LuFe相が生成されており、さらに、焼成温度800℃、900℃では、LuFe相が大量に生成されていることがわかる。 In FIG. 4, graphs B1, B2, and B3 show the synthesis results when the firing temperatures are 900 ° C., 800 ° C., and 700 ° C., respectively. As shown in these graphs, in the synthesis of the compound using the coprecipitation method, a LuFe 2 O 4 phase is generated to some extent even at a firing temperature of 700 ° C., and further, at a firing temperature of 800 ° C. and 900 ° C., LuFe 2 it can be seen that the O 4 phase are mass produced.
 図5は、共沈法を用いて得られた誘電体化合物の粉末のX線回折パターンの他の例を示すグラフである。ここでは、共沈法による化合物LuFeの前駆体の沈殿物の生成方法として、上記の方法とは異なり、混合溶液中にNH水を滴下して沈殿物を生成する方法を用い、得られた沈殿物を所定の焼成温度で1時間、真空中で加熱して合成された化合物粉末のX線回折結果を示している。 FIG. 5 is a graph showing another example of an X-ray diffraction pattern of a dielectric compound powder obtained by using a coprecipitation method. Here, as a method of generating a precipitate of the precursor of the compound LuFe 2 O 4 by the coprecipitation method, unlike the above method, a method of generating a precipitate by dropping NH 3 water into the mixed solution is used. The X-ray-diffraction result of the compound powder synthesize | combined by heating the obtained deposit at the predetermined baking temperature for 1 hour in a vacuum is shown.
 また、図5において、グラフC1、C2、C3は、それぞれ焼成温度を900℃、800℃、700℃とした場合の合成結果を示している。これらのグラフに示すように、共沈法において原料溶液中に塩基溶液を滴下する方法では、LuFe相が生成されているものの、塩基溶液中に原料溶液を滴下する方法を用いた場合に比べると、焼成温度を900℃とした場合においてもLu、FeOなどの異相が多量に混入しており、1時間の焼成条件ではLuFeの単相化は難しいことがわかる。 In FIG. 5, graphs C1, C2, and C3 show the synthesis results when the firing temperatures are 900 ° C., 800 ° C., and 700 ° C., respectively. As shown in these graphs, in the method in which the base solution is dropped into the raw material solution in the coprecipitation method, the LuFe 2 O 4 phase is generated, but the method of dropping the raw material solution into the base solution is used. As compared with the above, even when the firing temperature is 900 ° C., a large amount of different phases such as Lu 2 O 3 and FeO are mixed, and it is difficult to make LuFe 2 O 4 into a single phase under the firing conditions for 1 hour. .
 このように、誘電体化合物の前駆体の生成に共沈法を用いる場合、その具体的な合成条件、合成方法については、共沈工程において、塩基溶液中に原料溶液を攪拌しながら滴下することによって、原料溶液と塩基溶液とを混合することが好ましい。 As described above, when the coprecipitation method is used for the generation of the precursor of the dielectric compound, the specific synthesis conditions and synthesis method are dropped while stirring the raw material solution in the base solution in the coprecipitation step. It is preferable to mix the raw material solution and the base solution.
 ここで、通常の共沈法では、原料溶液側に塩基溶液を滴下し、所定の値までpHを上昇させることで前駆体(水酸化物)の沈殿物を得る(図5参照)。この場合、一般的にイオンの溶解度はイオン種によって異なるため、例えばRFeの合成では、共沈反応による沈殿の初期と終期とで、R3+とFe2+,Fe3+とによる組成が変化してしまう可能性がある。 Here, in a normal coprecipitation method, a base solution is dropped onto the raw material solution side, and the pH is raised to a predetermined value to obtain a precursor (hydroxide) precipitate (see FIG. 5). In this case, since the solubility of ions generally varies depending on the ion species, for example, in the synthesis of RFe 2 O 4 , the composition of R 3+ , Fe 2+ , and Fe 3+ changes between the initial and final stages of precipitation by coprecipitation reaction There is a possibility that.
 これに対して、塩基溶液中に原料溶液を強攪拌しながら滴下することにより(図4参照)、沈殿の初期から終期まで均一な組成で前駆体の沈殿物を生成することが可能となる。 On the other hand, by dropping the raw material solution into the base solution while vigorously stirring (see FIG. 4), it becomes possible to generate a precursor precipitate with a uniform composition from the beginning to the end of the precipitation.
 また、共沈工程において用いられる塩基溶液としては、アンモニア溶液(NH溶液)を用いることが好ましい。また、NH溶液以外にも、例えばNaOH溶液などの様々な塩基溶液を用いることが可能である。ただし、NaOH溶液を用いた場合、得られる誘電体化合物の粉末にNaが不純物として入り、その物性に影響する可能性があるため、この点でもNH溶液の方がより好ましい。 Further, as the base solution used in the coprecipitation step, it is preferable to use an ammonia solution (NH 3 solution). In addition to the NH 3 solution, various base solutions such as a NaOH solution can be used. However, when an NaOH solution is used, Na may enter impurities in the resulting dielectric compound powder, which may affect the physical properties thereof. Therefore, the NH 3 solution is more preferable in this respect.
 また、原料溶液に用いる具体的な原料化合物については、上記の例では、合成対象の化合物LuFeに対して、Lu、硝酸、FeC・2HOを用いているが、具体的には上記に限らず、様々な原料を用いて良い。例えば、Luを含む化合物(Rを含む化合物)としては、上記したLuが安価で入手可能であるが、他の化合物を原料としても良い。また、Feを含む化合物についても、例えば塩化鉄、硫酸鉄など、他の鉄化合物を用いても良い。上記した例では、合成後の残留元素の影響を考慮して蓚酸鉄を用いている。 As for the specific starting material compounds used in the raw material solution, in the above example, for compounds LuFe 2 O 4 to be combined, Lu 2 O 3, nitric acid, are used FeC 2 O 4 · 2H 2 O However, not limited to the above, various raw materials may be used. For example, as a compound containing Lu (compound containing R), the above-described Lu 2 O 3 is available at a low price, but other compounds may be used as raw materials. In addition, for iron-containing compounds, other iron compounds such as iron chloride and iron sulfate may be used. In the above example, iron oxalate is used in consideration of the influence of the residual elements after synthesis.
 また、Luを水に溶かすための酸についても、上記した硝酸以外にも、例えば硫酸、塩酸など、他の酸を用いても良い。ただし、硫酸、塩酸などの場合、最終生成物であるLuFe結晶中にS、Clなどの元素が不純物として微量に残る可能性があると考えられるため、上記した例では硝酸を用いている。 In addition to the nitric acid described above, other acids such as sulfuric acid and hydrochloric acid may be used as the acid for dissolving Lu 2 O 3 in water. However, in the case of sulfuric acid, hydrochloric acid, etc., it is considered that trace amounts of elements such as S and Cl may remain as impurities in the final product, LuFe 2 O 4 crystal. Yes.
 また、共沈法などの液相法によって得られた前駆体の焼成条件については、焼成工程において、前駆体固体の加熱を900℃以下の焼成温度で行うことが好ましい。この場合、誘電体化合物の合成を充分に低温で実行することができる。 In addition, regarding the firing conditions of the precursor obtained by a liquid phase method such as a coprecipitation method, it is preferable to heat the precursor solid at a firing temperature of 900 ° C. or less in the firing step. In this case, the synthesis of the dielectric compound can be performed at a sufficiently low temperature.
 図4、図5では、700℃~900℃の焼成温度での化合物の合成結果が示されており、700℃以上で焼成することにより、前駆体を確実に焼結させることができる。また、図2に示したように、900℃よりも高い焼成温度においても合成は可能である。 4 and 5 show the synthesis results of the compounds at a firing temperature of 700 ° C. to 900 ° C. By firing at 700 ° C. or higher, the precursor can be reliably sintered. Further, as shown in FIG. 2, the synthesis is possible even at a firing temperature higher than 900.degree.
 さらに、焼成時間については、焼成工程において、前駆体固体の加熱を2時間以下の焼成時間で行うことが好ましい。この場合、誘電体化合物の合成を充分に短時間で実行することができる。 Furthermore, regarding the firing time, it is preferable that the precursor solid is heated for a firing time of 2 hours or less in the firing step. In this case, the synthesis of the dielectric compound can be performed in a sufficiently short time.
 特に、酸素分圧を10-12~1Paに調整した雰囲気下で焼成する場合には、700℃以上の状態を1分以上維持するだけで前駆体固体を焼結させることができ、焼成工程の処理時間を大きく短縮できるとともに、製造コストを大きく削減できる。 In particular, when firing in an atmosphere in which the oxygen partial pressure is adjusted to 10 −12 to 1 Pa, the precursor solid can be sintered only by maintaining the state of 700 ° C. or higher for 1 minute or longer. The processing time can be greatly reduced and the manufacturing cost can be greatly reduced.
 このような焼成を行うために、ロータリーキルン炉を用いることにより、前駆体固体を効果的に焼成することができる。特に、ロータリーキルン炉を用いる場合には、粉末状態の前駆体固体から直接的に誘電体化合物とすることができ、製造コストを低減させやすくすることができる。 In order to perform such firing, the precursor solid can be effectively fired by using a rotary kiln furnace. In particular, when a rotary kiln furnace is used, a dielectric compound can be obtained directly from a precursor solid in a powder state, and the manufacturing cost can be easily reduced.
 また、焼結された誘電体化合物は、急冷することにより粒成長や異なる結晶状態が出現することを抑制することが好ましく、700℃以上に加熱した状態から、30分以内で200℃以下にまで冷却することが好ましい。 Moreover, it is preferable to suppress the appearance of grain growth and different crystalline states by rapidly cooling the sintered dielectric compound. From the state heated to 700 ° C. or higher to 200 ° C. or lower within 30 minutes. It is preferable to cool.
 最も簡単には、700℃以上に加熱されて焼結された誘電体化合物を加熱炉の外に取り出すだけでもよく、適宜の排出手段で誘電体化合物を加熱炉の外に排出させて、自然冷却させるだけでもよい。 In the simplest case, the dielectric compound heated to 700 ° C. or higher and sintered can be simply taken out of the heating furnace, and the dielectric compound can be discharged out of the heating furnace with an appropriate discharging means to be naturally cooled. You can just let it.
 図6は、800℃に加熱して焼結した誘電体化合物を、異なる冷却条件で冷却した場合の誘電体化合物LuFeの粉末のX線回折パターンを示すグラフである。図6中のF1は、前駆体固体を800℃で1時間加熱して焼成した後に、加熱炉から取り出すことにより急冷した場合のグラフであり、図6中のF2は、前駆体固体を800℃で1時間加熱して焼成した後に、加熱炉の加熱条件を制御して、約3時間かけて200℃以下に冷却した場合のグラフである。 FIG. 6 is a graph showing an X-ray diffraction pattern of a powder of the dielectric compound LuFe 2 O 4 when the dielectric compound heated to 800 ° C. and sintered is cooled under different cooling conditions. F1 in FIG. 6 is a graph when the precursor solid is heated at 800 ° C. for 1 hour and calcined and then rapidly cooled by taking it out of the heating furnace. F2 in FIG. After heating for 1 hour and baking, the heating condition of the heating furnace is controlled and the temperature is cooled to 200 ° C. or less over about 3 hours.
 グラフに示すように、急冷することによりLuFe相が効果的に生成できることがわかる。 As shown in the graph, it can be seen that the LuFe 2 O 4 phase can be effectively generated by rapid cooling.
 図7は、共沈法を用いた上記方法によって合成されたLuFeの粉末の磁気特性(磁化-温度曲線)を示すグラフである。 FIG. 7 is a graph showing the magnetic properties (magnetization-temperature curve) of the LuFe 2 O 4 powder synthesized by the above method using the coprecipitation method.
 また、図8は、LuFeの粉末の室温メスバウアスペクトルを示すグラフである。ここでは、塩基溶液であるNH水中に混合溶液を滴下して得られた沈殿物を900℃で焼成して合成された化合物粉末についての測定結果を示している。 FIG. 8 is a graph showing the room temperature Mossbauer spectrum of the LuFe 2 O 4 powder. Here is shown the measurement results of the NH 3 compound powder mixed solution precipitate obtained was added dropwise to have been fired to synthesize at 900 ° C. in water is a base solution.
 これらのグラフに示すように、上記方法で得られたLuFeの結晶粉末では、固相法を用いて合成されたLuFe結晶と同様の特性が得られている(非特許文献6参照)。すなわち、このように共沈法を用いて合成されたRFe結晶についても、これまでに固相法を用いて合成されたRFe結晶と同様の興味深い物性を示すものと考えられる。 As shown in these graphs, the LuFe 2 O 4 crystal powder obtained by the above method has the same characteristics as the LuFe 2 O 4 crystal synthesized using the solid phase method (Non-patent Document). 6). That is, it is considered that the RFe 2 O 4 crystal synthesized using the coprecipitation method exhibits the same interesting physical properties as those of the RFe 2 O 4 crystal synthesized using the solid phase method so far. .
 次に、共沈法によって得られた誘電体化合物の前駆体固体の焼成における焼成時間について説明する。 Next, the firing time in firing the precursor solid of the dielectric compound obtained by the coprecipitation method will be described.
 図9は、上記の合成方法で得られた誘電体化合物LuFeの粉末のX線回折パターンを示すグラフである。ここでは、塩基溶液であるNH水中に混合溶液を滴下して得られた沈殿物を900℃で焼成して合成された化合物粉末についての測定結果を示している。 FIG. 9 is a graph showing an X-ray diffraction pattern of a powder of dielectric compound LuFe 2 O 4 obtained by the above synthesis method. Here is shown the measurement results of the NH 3 compound powder mixed solution precipitate obtained was added dropwise to have been fired to synthesize at 900 ° C. in water is a base solution.
 また、図9において、グラフD1、D2、D3、D4は、それぞれ焼成時間を2時間、1時間、0.5時間、0時間とした場合の合成結果を示している。なお、焼成時間が0時間とは、試料が入った石英管を室温から焼成温度900℃まで所定の昇温速度で昇温し、900℃に達したところで、試料を焼成温度に保持せずに直ちに加熱処理を終了した場合を示している。 In FIG. 9, graphs D1, D2, D3, and D4 show the synthesis results when the firing time is 2 hours, 1 hour, 0.5 hours, and 0 hours, respectively. The firing time of 0 hour means that the quartz tube containing the sample is heated from room temperature to a firing temperature of 900 ° C. at a predetermined rate of temperature rise, and when the temperature reaches 900 ° C., the sample is not held at the firing temperature. The case where the heat treatment is immediately finished is shown.
 これらのグラフに示すように、焼成時間(焼成温度900℃での保持時間)が0時間の場合においても、LuFe相はかなり生成されている。このことから、上記の合成方法によれば、非常に短時間の焼成でも化合物粉末の合成が可能となっていることがわかる。ただし、図9に示す合成例では、焼成が短時間の場合、Lu相がある程度存在している。一方、1時間以上で比較的長時間の焼成を行った場合には、LuFe相が出現している。 As shown in these graphs, even when the firing time (holding time at a firing temperature of 900 ° C.) is 0 hour, the LuFe 2 O 4 phase is considerably generated. From this, it can be seen that according to the synthesis method described above, the compound powder can be synthesized even in a very short time. However, in the synthesis example shown in FIG. 9, the Lu 2 O 3 phase exists to some extent when firing is performed for a short time. On the other hand, when firing for a relatively long time at 1 hour or longer, the Lu 2 Fe 3 O 7 phase appears.
 次に、共沈法における原料溶液の濃度、具体的には塩基溶液であるNH水中に滴下する混合溶液の濃度について説明する。 Next, the concentration of the raw material solution in the coprecipitation method, specifically, the concentration of the mixed solution dropped into the NH 3 water that is the base solution will be described.
 図10は、上記の合成方法で得られた誘電体化合物LuFeの粉末のX線回折パターンを示すグラフである。ここでは、NH水中にLu3+,Fe2+水溶液を滴下して得られた沈殿物を900℃、1時間で焼成して合成された化合物粉末についての測定結果を示している。 FIG. 10 is a graph showing an X-ray diffraction pattern of a powder of dielectric compound LuFe 2 O 4 obtained by the above synthesis method. Here, Lu 3+ to NH 3 in water, the precipitate obtained was added dropwise to Fe 2+ solution 900 ° C., shows the measurement results for compound powder fired to synthesized in 1 hour.
 また、図10において、グラフE1、E2、E3は、それぞれLuFe水溶液の濃度を0.05mol/l、0.1mol/l、0.2mol/lとした場合の合成結果を示している。 Further, in FIG. 10, graphs E1, E2, and E3 show the synthesis results when the concentration of the LuFe 2 aqueous solution is 0.05 mol / l, 0.1 mol / l, and 0.2 mol / l, respectively.
 これらのグラフでは、全ての濃度範囲においてLuFe相が生成されている。また、各濃度での合成結果を比較すると、LuFe水溶液の濃度が0.1mol/lの場合が最もLuFe相の単相に近く、それ以外の場合は異相であるLuFeO相が混入している。 In these graphs, the LuFe 2 O 4 phase is generated in the entire concentration range. In addition, when the synthesis results at each concentration are compared, the LuFe 2 aqueous solution concentration is 0.1 mol / l, which is closest to the single phase of the LuFe 2 O 4 phase, and in other cases, the LuFeO 3 phase, which is a different phase, is present. It is mixed.
 なお、焼成時間、及び原料溶液の濃度について図9、図10に示した結果については、例えば焼成時の酸素分圧等の他の合成条件を制御することで、さらに合成結果を向上することが可能と考えられる。 The results shown in FIGS. 9 and 10 for the firing time and the concentration of the raw material solution can be further improved by controlling other synthesis conditions such as oxygen partial pressure during firing. It seems possible.
 本発明による誘電体化合物の製造方法は、上記実施形態及び構成例に限られるものではなく、様々な変形が可能である。 The method for producing a dielectric compound according to the present invention is not limited to the above-described embodiment and configuration examples, and various modifications are possible.
 例えば、共沈法による誘電体化合物の前駆体固体の生成条件、及び前駆体固体の焼成条件等については、上記した条件に限らず、必要に応じて様々に条件を変更して良い。 For example, the conditions for generating the precursor solid of the dielectric compound by the coprecipitation method and the firing conditions of the precursor solid are not limited to the above-described conditions, and various conditions may be changed as necessary.
 また、誘電体化合物の前駆体固体の生成に用いられる液相法については、上述したように、具体的には共沈法以外にも様々な方法を用いて良い。そのような液相法としては、例えば金属アルコキシドを原料とするゾル・ゲル法や、有機金属錯体を原料とする錯体重合法がある。 Also, as described above, various methods other than the coprecipitation method may be used as the liquid phase method used for producing the precursor solid of the dielectric compound. Examples of such a liquid phase method include a sol-gel method using a metal alkoxide as a raw material and a complex polymerization method using an organometallic complex as a raw material.
 本発明は、RFeなどの誘電体化合物を好適に合成することが可能な誘電体化合物の製造方法として利用可能である。 The present invention can be used as a method for producing a dielectric compound capable of suitably synthesizing a dielectric compound such as RFe 2 O 4 .
 S101 準備工程
 S102 共沈工程(液相合成工程)
 S103 洗浄工程
 S104 焼成工程
 S105 評価工程
S101 Preparatory process S102 Coprecipitation process (liquid phase synthesis process)
S103 Cleaning step S104 Firing step S105 Evaluation step

Claims (10)

  1.  組成が(RMbO3-δ(MaO)(Rは、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma,Mbは、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nは1以上の整数、mは0以上の整数、δは0以上0.2以下の実数)で表され、層状三角格子構造を有する誘電体化合物の製造方法であって、
     誘電体化合物(RMbO3-δ(MaO)の原料となるRを含む化合物、Maを含む化合物、及びMbを含む化合物を混合して、R、Ma、Mbの各元素を含む原料溶液を準備する準備工程と、
     前記原料溶液から液相法で前記誘電体化合物の前駆体固体を得る液相合成工程と、
     前記液相合成工程で得られた前記前駆体固体を所定の焼成温度で加熱することで、前記誘電体化合物の粉末を得る焼成工程と
    を備えることを特徴とする誘電体化合物の製造方法。
    The composition is at least selected from (RMbO3 ) n (MaO) m (R is selected from In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, Hf. One element, Ma and Mb, is at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd, allowing overlap, n is an integer of 1 or more, m Is an integer greater than or equal to 0 and δ is a real number greater than or equal to 0 and less than or equal to 0.2, and is a method for producing a dielectric compound having a layered triangular lattice structure,
    Dielectric compound (RMbO 3-δ ) n (MaO) A raw material solution containing R, Ma, and Mb elements by mixing a compound containing R, a compound containing Ma, and a compound containing Mb as raw materials for m A preparation process to prepare,
    A liquid phase synthesis step of obtaining a precursor solid of the dielectric compound from the raw material solution by a liquid phase method;
    A method for producing a dielectric compound, comprising: a step of heating the precursor solid obtained in the liquid phase synthesis step at a predetermined firing temperature to obtain a powder of the dielectric compound.
  2.  前記焼成工程で得られた粉末の前記誘電体化合物の粒径を1~100nmとしていることを特徴とする請求項1に記載の誘電体化合物の製造方法。 The method for producing a dielectric compound according to claim 1, wherein the particle size of the dielectric compound in the powder obtained in the firing step is 1 to 100 nm.
  3.  前記焼成工程では、酸素分圧を10-12~1Paとした700℃以上の炉内で、前記前駆体固体を1分以上加熱していることを特徴とする請求項1または請求項2に記載の誘電体化合物の製造方法。 3. The firing process according to claim 1, wherein, in the firing step, the precursor solid is heated in a furnace at 700 ° C. or higher with an oxygen partial pressure of 10 −12 to 1 Pa for 1 minute or longer. A method for producing a dielectric compound.
  4.  前記焼成工程で700℃以上に加熱した状態から、30分以内で200℃以下にまで冷却していることを特徴とする請求項3に記載の誘電体化合物の製造方法。 The method for producing a dielectric compound according to claim 3, wherein the dielectric compound is cooled to 200 ° C. or less within 30 minutes after being heated to 700 ° C. or more in the firing step.
  5.  前記Ma及び前記MbはFeであって、前記原料溶液中のFe2+のFe3+に対する存在比率を0.5~1.5としていることを特徴とする請求項1~4のいずれか一項に記載の誘電体化合物の製造方法。 5. The Ma and the Mb are Fe, and an abundance ratio of Fe 2+ to Fe 3+ in the raw material solution is set to 0.5 to 1.5. A method for producing the dielectric compound as described.
  6.  組成が(RMbO3-δ(MaO)(Rは、In,Sc,Y,Dy,Ho,Er,Tm,Yb,Lu,Ti,Ca,Sr,Ce,Sn,Hfから選ばれる少なくとも1種類の元素、Ma,Mbは、Ti,Mn,Fe,Co,Cu,Ga,Zn,Al,Mg,Cdから重複を許して選ばれる少なくとも1種類の元素、nは1以上の整数、mは0以上の整数、δは0以上0.2以下の実数)で表され、層状三角格子構造を有する誘電体化合物であって、
     誘電体化合物(RMbO3-δ(MaO)の原料となるRを含む化合物、Maを含む化合物、及びMbを含む化合物を混合して生成したR、Ma、Mbの各元素を含む原料溶液を用いて、液相法により前記誘電体化合物の前駆体固体を生成し、この前駆体固体を所定の焼成温度に加熱して得た粉末であることを特徴とする誘電体化合物。
    The composition is at least selected from (RMbO3 ) n (MaO) m (R is selected from In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, Ti, Ca, Sr, Ce, Sn, Hf. One element, Ma and Mb, is at least one element selected from Ti, Mn, Fe, Co, Cu, Ga, Zn, Al, Mg, and Cd, allowing overlap, n is an integer of 1 or more, m Is an integer greater than or equal to 0, δ is a real number greater than or equal to 0 and less than or equal to 0.2, and is a dielectric compound having a layered triangular lattice structure,
    Dielectric Compound (RMbO 3-δ ) n (MaO) Raw material containing R, Ma, and Mb elements formed by mixing R-containing compound, Ma-containing compound, and Mb-containing compound as raw materials for m A dielectric compound characterized by being a powder obtained by producing a precursor solid of the dielectric compound by a liquid phase method using a solution and heating the precursor solid to a predetermined firing temperature.
  7.  前記粉末の粒径を1~100nmとしていることを特徴とする請求項6に記載の誘電体化合物。 The dielectric compound according to claim 6, wherein the powder has a particle size of 1 to 100 nm.
  8.  前記前駆体固体を、酸素分圧を10-12~1Paとした700℃以上の炉内で1分以上加熱して前記粉末としたことを特徴とする請求項6または請求項7に記載の誘電体化合物。 8. The dielectric according to claim 6, wherein the precursor solid is heated in a furnace at 700 ° C. or higher with an oxygen partial pressure of 10 −12 to 1 Pa for 1 minute or longer to obtain the powder. Body compounds.
  9.  前記粉末は、30分以内で700℃以上から200℃以下にまで冷却したことを特徴とする請求項8に記載の誘電体化合物。 The dielectric compound according to claim 8, wherein the powder is cooled from 700 ° C. to 200 ° C. within 30 minutes.
  10.  前記Ma及び前記MbはFeであって、前記原料溶液中のFe2+のFe3+に対する存在比率を0.5~1.5としたことを特徴とする請求項6~9のいずれか一項に記載の誘電体化合物。 10. The Ma and the Mb are Fe, and the existence ratio of Fe 2+ to Fe 3+ in the raw material solution is set to 0.5 to 1.5. The dielectric compound described.
PCT/JP2009/070323 2008-12-03 2009-12-03 Dielectric compound and manufacturing method thereof WO2010064686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010541352A JP5688733B2 (en) 2008-12-03 2009-12-03 Method for producing dielectric compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-308780 2008-12-03
JP2008308780 2008-12-03

Publications (1)

Publication Number Publication Date
WO2010064686A1 true WO2010064686A1 (en) 2010-06-10

Family

ID=42233333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070323 WO2010064686A1 (en) 2008-12-03 2009-12-03 Dielectric compound and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5688733B2 (en)
WO (1) WO2010064686A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988861B (en) * 2022-06-09 2023-04-07 江西理工大学 Hexagonal rare earth iron oxide single-phase multiferroic material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101499A (en) * 1976-02-21 1977-08-25 Kagaku Gijutsucho Mukizai Singleecrystal magnetic semiconductor of yttrium diferrous tetraoxigen compoun *yfe204* and method of manufacture thereof
JP2002352626A (en) * 2001-05-25 2002-12-06 Central Res Inst Of Electric Power Ind Dielectric material, its manufacturing method, capacitor utilizing the dielectric material, and power storage system
JP2007223886A (en) * 2005-11-22 2007-09-06 Japan Synchrotron Radiation Research Inst Method and material for implementing dielectric characteristic by distributing electron density in material to dipole type

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101499A (en) * 1976-02-21 1977-08-25 Kagaku Gijutsucho Mukizai Singleecrystal magnetic semiconductor of yttrium diferrous tetraoxigen compoun *yfe204* and method of manufacture thereof
JP2002352626A (en) * 2001-05-25 2002-12-06 Central Res Inst Of Electric Power Ind Dielectric material, its manufacturing method, capacitor utilizing the dielectric material, and power storage system
JP2007223886A (en) * 2005-11-22 2007-09-06 Japan Synchrotron Radiation Research Inst Method and material for implementing dielectric characteristic by distributing electron density in material to dipole type

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATANO S. ET AL.: "Crystal and magnetic structure of stoichiometric YFe204", PHYSICA B, vol. 213-214, 1995, pages 218 - 220 *

Also Published As

Publication number Publication date
JPWO2010064686A1 (en) 2012-05-10
JP5688733B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
Modeshia et al. Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions
JP5105503B2 (en) ε Iron oxide production method
Souza et al. Photoluminescence activity of Ba 1− x Ca x TiO 3: dependence on particle size and morphology
Oliveira et al. Synthesis and characterization of lead zirconate titanate (PZT) obtained by two chemical methods
Kumar et al. Enhanced magnetic and dielectric properties of Gd doped BiFeO3: Er nanoparticles synthesized by sol-gel technique
Zhang et al. Synthesis of tetragonal BaTiO3 nano-particle via a novel tartaric acid co-precipitation process
Cristobal et al. Mechanochemically assisted synthesis of nanocrystalline BiFeO3
JP5187654B2 (en) Method for producing composite metal sulfide and method for producing composite metal sulfide sintered body
JP4813507B2 (en) Magnetic material, magnetic memory using the same, and temperature sensor
JP5688733B2 (en) Method for producing dielectric compound
Caminata et al. Effect of microwave heating during evaporation solvent and polymeric precursor formation in synthesis of BaZr0. 08Ti0. 92O3 nanopowders
Hsiang et al. Polyethyleneimine surfactant effect on the formation of nano-sized BaTiO3 powder via a solid state reaction
CN113412238A (en) Iron oxide magnetic powder and method for producing same
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
Srisombat et al. Chemical synthesis of magnesium niobate powders
JP4729700B2 (en) Dy-doped nano ceria-based sintered body
Thomas et al. Structure and properties of nanocrystalline BaHfO3 synthesized by an auto-igniting single step combustion technique
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP7344503B2 (en) Unfired oxide particles for producing perovskite oxide particles, unfired oxide particles, and method for producing perovskite oxide particles
JP5142468B2 (en) Method for producing barium titanate powder
JP2006206364A (en) Ceramic powder and ceramic sintered compact
KR100504937B1 (en) A process for producing ceo2 nano particles having a controlled particle size
JP4671946B2 (en) Barium calcium titanate powder and production method thereof
Yoon et al. Synthesis, structural, and magnetic properties of Co-doped and Mn-doped ZnO nanocrystalline DMS prepared by the facile polyvinyl alcohol gel method
JP2006321723A (en) Method for producing barium titanyl oxalate and method for producing barium titanate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010541352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830452

Country of ref document: EP

Kind code of ref document: A1