JPS62148322A - Production of raw material powder of perovskite and its solid solution - Google Patents

Production of raw material powder of perovskite and its solid solution

Info

Publication number
JPS62148322A
JPS62148322A JP28970285A JP28970285A JPS62148322A JP S62148322 A JPS62148322 A JP S62148322A JP 28970285 A JP28970285 A JP 28970285A JP 28970285 A JP28970285 A JP 28970285A JP S62148322 A JPS62148322 A JP S62148322A
Authority
JP
Japan
Prior art keywords
component
raw material
material powder
perovskite
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28970285A
Other languages
Japanese (ja)
Inventor
Shinichi Shirasaki
信一 白崎
Kenji Hiratsuka
健二 平塚
Yutaka Umetsu
梅津 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
National Institute for Research in Inorganic Material
Original Assignee
Dai Nippon Toryo KK
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, National Institute for Research in Inorganic Material filed Critical Dai Nippon Toryo KK
Priority to JP28970285A priority Critical patent/JPS62148322A/en
Publication of JPS62148322A publication Critical patent/JPS62148322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain the titled low-cost raw material powder which has easily sinterable properties, uniformity and high bulk density by removing at least one component of two kinds of the specified oxygen coordination metallic elements and forming a suspension thereof and thereafter adding the removed component, drying and calcinating the precipitate. CONSTITUTION:A raw material powder of perovskite shown in ABO3 and its solid solution is produced by the following treatment. In other words, a precipitate is firstly formed by precipitate forming liquid in an aq. soln. or an alcoholic soln. of the residual component compd. wherein at least one component of the component A and the component B is removed. Then after mixing the above-mentioned removed component compd. to a suspension thereof, the aimed raw material powder is obtained by drying and calcinating the obtained precipitate at 120-1,200 deg.C. In the formula, A shows oxygen 12 coordination metallic element and B shows oxygen 6 coordination metallic element and the sum of the number of the component A and the component B is >=3 kinds.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は湿式法による易焼結性ペロブスカイト及びその
固溶体原料粉末の製造方法に関し、特に誘電体、圧電体
、オプトエレクトロニクス材、半導体、センサー等の機
能性セラミックスとして利用出来るペロブスカイト及び
その固溶体原料粉末の製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing easily sinterable perovskite and its solid solution raw material powder by a wet method, and in particular to dielectrics, piezoelectrics, optoelectronic materials, semiconductors, sensors, etc. The present invention relates to a method for producing perovskite and its solid solution raw material powder that can be used as functional ceramics.

〈従来の技術〉 従来、ペロブスカイト及びその固溶体(以下両者を便宜
上ペロブスカイト固溶体という)の原料粉末の製造方法
として乾式法と湿式法が知られている。乾式法は、構成
原料成分の全ての化合物を乾式で混合し、これを仮焼す
る方法である。
<Prior Art> Conventionally, dry methods and wet methods have been known as methods for producing raw material powders of perovskites and solid solutions thereof (hereinafter both will be referred to as perovskite solid solutions for convenience). The dry method is a method in which all the compounds of the constituent raw materials are mixed in a dry method and then calcined.

一方、湿式法は構成原料成分の全ての化合物の混合溶液
を作り、これを沈澱形成液に添加して共沈させ、この共
沈物を乾燥、仮焼させる方法(以下共沈法という)であ
る。
On the other hand, the wet method is a method in which a mixed solution of all the compounds of the constituent raw materials is prepared, this is added to the precipitate forming solution to cause coprecipitation, and this coprecipitate is dried and calcined (hereinafter referred to as the coprecipitation method). be.

〈発明が解決しようとする問題点〉 前述の通りペロブスカイト固溶体原料粉末の製造方法と
して乾式法と共沈法とが知られているが、前者は均一組
成の原料粉末が得難く、また焼結性も十分でないため優
れた機能性を持つペロブスカイト固溶体が得られないと
いう欠点があった。
<Problems to be Solved by the Invention> As mentioned above, the dry method and coprecipitation method are known as methods for producing perovskite solid solution raw material powder, but the former makes it difficult to obtain raw material powder with a uniform composition, and also has poor sinterability. However, there was a drawback that perovskite solid solutions with excellent functionality could not be obtained because the perovskite solid solution was insufficient.

また、後者は均一性の優れた原料粉末が得られるものの
粒子同志が凝結して二次粒子を形成し、易焼結性になり
難いという欠点があった。さらに共沈法は沈澱形成液の
濃度が一定であるため各成分の沈澱形成能の相違により
所望組成の原料粉末となし難いという欠点もあった。
In addition, although the latter method can provide raw material powder with excellent uniformity, it has the disadvantage that the particles coagulate together to form secondary particles, making it difficult to easily sinter. Furthermore, since the concentration of the precipitate forming liquid is constant in the coprecipitation method, there is a drawback that it is difficult to obtain a raw material powder with a desired composition due to differences in the precipitate forming ability of each component.

本発明は、このような現状に鑑みなされたものであり、
前記従来技術の諸欠点を解消した易焼結性、均一性、高
嵩密度、低コストの四つの要件を全て満足したペロブス
カイト固溶体の原料粉末の製造方法を提供するものであ
る。
The present invention was made in view of the current situation,
The object of the present invention is to provide a method for producing a raw material powder for a perovskite solid solution that satisfies all four requirements of ease of sintering, uniformity, high bulk density, and low cost and eliminates the drawbacks of the prior art.

く問題点を解決するための手段〉 すなわち本発明は、 一般式ABO3 (ただしAは酸素12配位金属元素の1種または2種以
上、Bは酸素6配位金属元素の1種または2種以上を表
わし、かつA成分とB成分の数の和が3種以上である。
In other words, the present invention has the general formula ABO3 (where A is one or more kinds of oxygen 12-coordinated metal elements, and B is one or two kinds of oxygen 6-coordinated metal elements). The above is expressed, and the sum of the numbers of A components and B components is 3 or more types.

) で示されるペロブスカイト及びその固溶体の原料粉末の
製造方法において、 A成分およびB成分中の少なくとも一成分を除いた、残
りの成分化合物の水溶液またはアルコール溶液を沈澱形
成液により沈澱を生成させ、次いでその懸濁液に前記除
いた成分(以下便宜上X成分という)化合物を混合した
後、得られた沈澱物を120〜1200℃で乾燥、仮焼
することを特徴とする易焼結性ペロブスカイト及びその
固溶体原料粉末の製造方法に関するものである。
) In the method for producing a raw material powder of perovskite and a solid solution thereof, an aqueous solution or an alcohol solution of the remaining component compounds after removing at least one of the components A and B is used to form a precipitate using a precipitate-forming liquid, and then An easily sinterable perovskite characterized by mixing the above-mentioned removed component (hereinafter referred to as component The present invention relates to a method for producing solid solution raw material powder.

本発明において前記一般式のA成分である酸素12配位
金属元素としては、例えばPb% Ba  、Ca、 
Sr及びLa等の希土類元素が挙げられる。
In the present invention, the oxygen 12-coordinated metal element which is the component A in the general formula includes, for example, Pb% Ba, Ca,
Examples include rare earth elements such as Sr and La.

またB成分である酸素6配位金属元素としては、例えば
T+ 、、ZrXMg、SC% llfXW% Nb、
、Tas Cr。
Further, as the oxygen hexacoordination metal element which is the B component, for example, T+, ZrXMg, SC%llfXW% Nb,
, Tas Cr.

Mo、Mn、Fe、Co、Ni、Zr+、Cd、八!、
5n1AS% B1等が挙げられる。
Mo, Mn, Fe, Co, Ni, Zr+, Cd, 8! ,
Examples include 5n1AS% B1.

ペロブスカイト固溶体の構成成分であるA成分及びB成
分の化合物の水またはアルコール溶液を作製するための
化合物としては、前記A成分、B成分の酸化物、水酸化
物、炭酸塩、硝酸塩、酢酸塩、蟻酸塩、蓚酸塩、及び金
属等が挙げられるが、これらに限定されるものではない
Compounds for preparing an aqueous or alcoholic solution of components A and B, which are constituent components of the perovskite solid solution, include oxides, hydroxides, carbonates, nitrates, acetates, Examples include, but are not limited to, formates, oxalates, metals, and the like.

またX成分の化合物としては、残りの構成成分の化合物
と沈澱形成能が太き(相違するもの、水溶液またはアル
コール溶液とし難いもの、残りの構成成分化合物の水溶
液あるいはアルコール溶液と混合した場合、反応し沈澱
を生じるものもしくは沈澱を生じさせるものを選定する
ことが望ましい。
In addition, the compound of component It is desirable to select a material that causes precipitation or a material that causes precipitation.

X成分の化合物は酸化物であることが好ましい場合が多
いが、前記塩類であってもよく、またX成分が2種以上
の場合は、これらの共沈物及びその仮焼物であってもよ
い。尚、X成分の化合物は残りの成分化合物の沈澱物と
均一混合させるため、平均粒径1μ以下のものを使用す
ることが望ましい。
The compound of component X is preferably an oxide in many cases, but it may also be the above-mentioned salts, and if there are two or more types of component X, it may be a coprecipitate of these and a calcined product thereof. . In order to uniformly mix the compound of component X with the precipitate of the remaining component compounds, it is desirable to use a compound having an average particle size of 1 μm or less.

本発明において、沈澱形成液としてはアンモニア、炭酸
アンモニウム、苛性アルカリ、蓚酸、蓚酸アンモニウム
あるいはアミン類等の水溶液もしくはアルコール溶液が
挙げられる。
In the present invention, examples of the precipitation forming liquid include aqueous or alcoholic solutions of ammonia, ammonium carbonate, caustic alkali, oxalic acid, ammonium oxalate, or amines.

次に、本発明のペロブスカイト固溶体の原料粉末の製造
方法につき説明する。
Next, a method for producing the raw material powder of the perovskite solid solution of the present invention will be explained.

まずX成分を除く残りのA成分及びB成分化合物の水溶
液またはアルコール溶液を攪拌しながら沈澱形成液中に
添加して、あるいはその反対に沈澱形成液を上記溶液中
に添加して沈澱を生成させる。尚、沈澱生成に際しX成
分を除く、全成分化合物の水溶液またはアルコール溶液
を同時に沈澱形成液中に添加してもよいが、場合により
、順次各溶液を添加してもよいことは勿論である。
First, an aqueous solution or alcohol solution of the remaining A component and B component compound excluding component X is added to the precipitate forming solution while stirring, or vice versa, the precipitate forming solution is added to the above solution to form a precipitate. . Incidentally, when forming a precipitate, an aqueous solution or an alcoholic solution of all component compounds except component X may be added to the precipitate forming solution at the same time, but it goes without saying that each solution may be added sequentially depending on the case.

さらにA成分、B成分の他にペロブスカイトの焼結性や
その他特性を制御するため微量成分を添加する場合は、
A成分、B成分の各溶液を調製する際添加してもよい。
Furthermore, in addition to components A and B, when adding trace components to control the sinterability and other properties of perovskite,
It may be added when preparing each solution of component A and component B.

次いで、得られた沈澱物を攪拌して懸濁させなからX成
分化合物の粉末を添加させ超音波等の手段により十分分
散させる。
Next, the obtained precipitate is stirred to suspend it, and then the powder of the X component compound is added and sufficiently dispersed by means such as ultrasonic waves.

かくして得られた混合沈澱物を濾過、洗浄後、120〜
1200℃で乾燥、仮焼すると均一かつ易焼結性のペロ
ブスカイト固溶体の原料粉末が得られる。
After filtering and washing the mixed precipitate thus obtained,
By drying and calcining at 1200° C., a uniform and easily sinterable perovskite solid solution raw material powder is obtained.

本発明は以上の通りにしてペロブスカイト固溶体の原料
粉末を製造するのであるが、A成分、B成分の選択は、
用途に応じて適宜なし得る。例えば、積層セラミックコ
ンデンサー誘電体用として使用する場合は、X成分とし
てニオブ、タンタルまたはタングステンを選択し、残り
の成分として鉛(A成分)、鉄または亜鉛(B成分)を
選択すればよい。
In the present invention, the raw material powder of perovskite solid solution is produced as described above, and the selection of the A component and the B component is as follows:
It can be done as appropriate depending on the purpose. For example, when used as a multilayer ceramic capacitor dielectric, niobium, tantalum, or tungsten may be selected as the X component, and lead (component A), iron, or zinc (component B) may be selected as the remaining components.

ところで前記積層セラミックコンデンサー誘電体用とし
て従来からチタン酸バリウムが主として利用されている
が、このチタン酸バリウムは焼結温度が1300〜14
00℃と高いため内部電極として高価な白金、パラジウ
ム等を使用する必要があったが、本発明の方法で得られ
る前記成分を使用したペロブスカイト固溶体の原料粉末
は1200℃以下の低温度焼結性を有しているため、内
部電極として銀等の安価なものに置換出来る。
By the way, barium titanate has been mainly used as the dielectric material of the multilayer ceramic capacitor, but this barium titanate has a sintering temperature of 1300 to 14
00℃, it was necessary to use expensive platinum, palladium, etc. for internal electrodes, but the raw material powder of perovskite solid solution using the above components obtained by the method of the present invention can be sintered at a low temperature of 1200℃ or less. Because it has , it can be replaced with an inexpensive material such as silver as the internal electrode.

〈発明の効果さ 本発明の方法によれば、共沈過程と共沈物とX成分化合
物との混合物の仮焼過程の両過程に於いて二次粒子の形
成が少なく、その結果均一で高嵩密度の易焼結性微粒子
が得られる。また他の構成成分化合物と沈澱形成能が相
違する化合物、水溶液あるいはアルコール溶液とし難い
化合物はX成分化合物として、共沈した残りの構成成分
と単に混合、仮焼するだけなので目的とするペロブスカ
イト組成を完全なものとなし得、さらにX成分化合物の
選択幅が広くなるので、例えば安価な原料を選択使用出
来る等の特徴を有している。
<Effects of the Invention> According to the method of the present invention, the formation of secondary particles is small in both the coprecipitation process and the calcination process of the mixture of the coprecipitate and the X component compound, resulting in a uniform and high Easily sinterable fine particles with bulk density are obtained. Compounds that have different precipitate-forming ability from other constituent compounds, or compounds that are difficult to dissolve in water or alcohol, are treated as X-component compounds and are simply mixed and calcined with the rest of the co-precipitated constituents to achieve the desired perovskite composition. It can be made completely, and furthermore, since the selection range of the X component compound is widened, it has the characteristics that, for example, inexpensive raw materials can be selectively used.

以下、本発明を実施例により、さらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 試薬特級(Pb(No:+)z 99.5%以上〕の硝
酸鉛(A成分化合物)33.12gと試薬特級(Fe(
NO3)+・9)1z099.0%以上〕の硝酸第二鉄
(B成分化合物)20.20gを純水に溶解し、120
0Th1の薄幅色の水溶液とした。この水溶液を攪拌し
ながら4Nのアンモニア水800uに徐々に滴下して共
沈物を形成させた。
Example 1 33.12 g of lead nitrate (A component compound) of reagent special grade (Pb(No:+)z 99.5% or more) and reagent special grade (Fe(
NO3)+・9)1z099.0% or more] of ferric nitrate (B component compound) 20.20g was dissolved in pure water,
It was made into a light color aqueous solution of 0Th1. This aqueous solution was gradually dropped into 800 u of 4N ammonia water while stirring to form a coprecipitate.

更に攪拌を続けながら、平均粒径0.65μの五酸化ニ
オブ粉末(B成分化合物で、かつX成分化合物)、6.
64gを徐々に添加した後、沈澱物を濾過し、純水にて
洗浄した。
While continuing to stir further, add niobium pentoxide powder (component B compound and component X compound) having an average particle size of 0.65 μ; 6.
After gradually adding 64 g, the precipitate was filtered and washed with pure water.

次いで120℃で1時間乾燥後、750℃で2時間仮焼
してPb(Feo4  ・Nbo、s )03組成の原
料粉末を得、ボールミルで粉砕した。
Next, after drying at 120°C for 1 hour, it was calcined at 750°C for 2 hours to obtain a raw material powder having a composition of Pb(Feo4·Nbo,s)03, which was pulverized in a ball mill.

この粉末を走査型電子顕微鏡により観察した結果、約0
.3μの均一粒径を有し、X線回折法によるβcos 
θ〜sinθ(ただしβは回折線の半価幅、θはブラッ
ク角を表わす)の関係をプロットした結果、横軸(si
nθ軸)に、はぼ平行で殆ど組成変動を含まない均一組
成のものであることが確認された。
As a result of observing this powder with a scanning electron microscope, it was found that approximately 0
.. It has a uniform particle size of 3 μ and β cos by X-ray diffraction method.
As a result of plotting the relationship between θ and sin θ (where β represents the half width of the diffraction line and θ represents the Black angle), the horizontal axis (si
It was confirmed that the crystals were almost parallel to the nθ axis) and had a uniform composition with almost no compositional fluctuations.

またこの粉末を1,5t/c++!で成型し、鉛蒸気と
酸素雰囲気下、1050″Cで2時間焼結した結果、そ
の密度は7.1であり、殆ど理論密度(7,3)と等し
いPEN固溶体が得られた。
Also, 1.5t/c++ of this powder! As a result, a PEN solid solution having a density of 7.1, which is almost equal to the theoretical density (7,3), was obtained as a result of sintering at 1050''C for 2 hours in a lead vapor and oxygen atmosphere.

比較例1 市販の試薬特級のpbo、FezO:+及びNb205
の粉末をPb(Feo、5・Nbo、s )(hの組成
になるように配合し、ボールミルで混合後750°Cで
2時間仮焼し、冷却後再びボールミルで粉砕した。得ら
れた粉末につきXvA回折法によるβcos θ〜si
nθの関係をプロットした結果顕著な組成変動が認めら
れた。またこの粉末を実施例1と同様にして成型、焼結
した結果、その密度は6.2であり、理論密度と大きく
相違していた。
Comparative Example 1 Commercially available reagent grade pbo, FezO:+ and Nb205
Pb (Feo, 5・Nbo, s ) (h) powder was mixed in a ball mill, calcined at 750°C for 2 hours, cooled, and ground again in a ball mill.The obtained powder βcos θ~si by XvA diffraction method per
As a result of plotting the nθ relationship, significant compositional variations were observed. Furthermore, when this powder was molded and sintered in the same manner as in Example 1, the density was 6.2, which was significantly different from the theoretical density.

実施例2 前記試薬特級の硝酸鉛33.12 gと試薬特級の硝酸
第二鉄40.40 gを純水に溶解し、1200寂の薄
褐色の水溶液とした。この水溶液を攪拌しながら4Nの
アンモニア水800だに徐々に滴下して共沈物を形成さ
せた。
Example 2 33.12 g of the above reagent grade lead nitrate and 40.40 g of reagent grade ferric nitrate were dissolved in pure water to form a light brown aqueous solution of 1200 g. This aqueous solution was gradually added dropwise to 800 g of 4N ammonia water while stirring to form a coprecipitate.

更に攪拌を続けながら平均粒径0.9μの三酸化タング
ステン粉末、7.70 gを徐々に添加した後、沈澱物
を濾過し、純水にて洗浄した。
Further, while stirring was continued, 7.70 g of tungsten trioxide powder having an average particle size of 0.9 μm was gradually added, and the precipitate was filtered and washed with pure water.

次いで1)0°Cで1時間乾燥後、700°C12時間
仮焼してPb(Fezz:+ ’ ”#+/l)O:+
組成の原料粉末を得、ボールミルで粉砕した。
Next, 1) After drying at 0°C for 1 hour, calcining at 700°C for 12 hours to produce Pb(Fezz:+'”#+/l)O:+
A raw material powder of the following composition was obtained and ground in a ball mill.

この粉末は約0.5μの均一粒径を有し、X線回折法に
よれば殆ど組成変動を含まない均一組成のものであるこ
とが確認された。
This powder had a uniform particle size of about 0.5 μm, and was confirmed by X-ray diffraction to have a uniform composition with almost no compositional fluctuations.

またこの粉末をl、 5 t / cnlで成型し、鉛
蒸気と酸素雰囲気下、880℃で2時間焼結した結果、
その密度は7.5であり、殆ど理論密度(7,6)と等
しいPFW固溶体が得られた。
In addition, this powder was molded at 1,5t/cnl and sintered at 880℃ for 2 hours in a lead vapor and oxygen atmosphere.
The density was 7.5, and a PFW solid solution almost equal to the theoretical density (7,6) was obtained.

比較例2 市販の試薬特級のPbO,FezO:+及びWoe、の
粉末をPb(Fezzz HW+、z+)Osの組成に
なるように配合し、ボールミルで混合後700℃で2時
間仮焼し、冷却後再びボールミルで粉砕した。この粉末
はX線回折法によれば顕著な組成変動が認められた。
Comparative Example 2 Commercially available reagent grade PbO, FezO:+, and Woe powders were blended to have a composition of Pb(Fezzz HW+, z+)Os, mixed in a ball mill, calcined at 700°C for 2 hours, and cooled. After that, it was ground again in a ball mill. According to the X-ray diffraction method, this powder showed significant compositional fluctuations.

またこの粉末を実施例2と同様にして成型、焼結した結
果、その密度は6.4であり、理論密度と大きく相違し
ていた。
Furthermore, when this powder was molded and sintered in the same manner as in Example 2, the density was 6.4, which was significantly different from the theoretical density.

手続補正書 特許庁長官  黒 1)明 雄  殿 1、事件の表示   昭和60年特許願第289702
号3、7i正をする者 事件との関係  出願人 氏 名 科学技術庁無機材質研究所長 後藤 優同  
(332)大日本塗料株式会社 4、代理人 5、補正命令の日付  自  発 6浦正の対象    明細書の発明の詳細な説明の一一
。補正の内容 明細書中、下記箇所の誤記をそれぞれ訂正する。
Procedural amendments Commissioner of the Patent Office Black 1) Akio Yu 1, Indication of the case 1985 Patent Application No. 289702
Relationship with No. 3 and 7i Correction Cases Applicant Name Yudo Goto Director, Institute of Inorganic Materials, Science and Technology Agency
(332) Dainippon Toyo Co., Ltd. 4. Agent 5. Date of amendment order. 6. Subject of Uramasa. Detailed explanation of the invention in the specification. In the detailed description of the amendments, the errors in the following places will be corrected.

Claims (4)

【特許請求の範囲】[Claims] (1)一般式ABO_3 (ただしAは酸素12配位金属元素の1種または2種以
上、Bは酸素6配位金属元素の1種または2種以上を表
わし、かつA成分とB成分の数の和が3種以上である。 ) で示されるペロブスカイト及びその固溶体の原料粉末の
製造方法において、 A成分およびB成分中の少なくとも一成分を除いた、残
りの成分化合物の水溶液またはアルコール溶液を沈澱形
成液により沈澱を生成させ、次いでその懸濁液に前記除
いた成分化合物を混合した後、得られた沈澱物を120
〜1200℃で乾燥、仮焼することを特徴とする易焼結
性ペロブスカイト及びその固溶体原料粉末の製造方法。
(1) General formula ABO_3 (where A represents one or more types of oxygen 12-coordinated metal elements, B represents one or more types of oxygen 6-coordinated metal elements, and the number of A components and B components The sum of 3 or more types of perovskites is 3 or more.) In the method for producing raw material powders of perovskites and solid solutions thereof shown in After forming a precipitate using a forming solution and then mixing the removed component compounds with the suspension, the obtained precipitate was heated to 120
A method for producing easily sinterable perovskite and its solid solution raw material powder, characterized by drying and calcining at ~1200°C.
(2)前記A成分が鉛、B成分が鉄または亜鉛であり、
かつ前記除いた成分がニオブ、タンタルまたはタングス
テンであることを特徴とする特許請求の範囲第(1)頂
記載の易焼結性ペロブスカイト及びその固溶体原料粉末
の製造方法。
(2) the A component is lead, the B component is iron or zinc,
The method for producing easily sinterable perovskite and its solid solution raw material powder according to claim 1, wherein the removed component is niobium, tantalum, or tungsten.
(3)前記除いた成分化合物がニオブ、タンタルまたは
タングステンの酸化物であることを特徴とする特許請求
の範囲第(2)項記載の易焼結性ペロブスカイト及びそ
の固溶体原料粉末の製造方法。
(3) The method for producing easily sinterable perovskite and its solid solution raw material powder according to claim (2), wherein the removed component compound is an oxide of niobium, tantalum, or tungsten.
(4)前記原料粉末がセラミックコンデンサー誘電体用
であることを特徴とする特許請求の範囲第(2)項また
は第(3)項記載の易焼結性ペロブスカイト及びその固
溶体原料粉末の製造方法。
(4) A method for producing an easily sinterable perovskite and its solid solution raw material powder according to claim (2) or (3), wherein the raw material powder is used for a ceramic capacitor dielectric.
JP28970285A 1985-12-23 1985-12-23 Production of raw material powder of perovskite and its solid solution Pending JPS62148322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28970285A JPS62148322A (en) 1985-12-23 1985-12-23 Production of raw material powder of perovskite and its solid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28970285A JPS62148322A (en) 1985-12-23 1985-12-23 Production of raw material powder of perovskite and its solid solution

Publications (1)

Publication Number Publication Date
JPS62148322A true JPS62148322A (en) 1987-07-02

Family

ID=17746642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28970285A Pending JPS62148322A (en) 1985-12-23 1985-12-23 Production of raw material powder of perovskite and its solid solution

Country Status (1)

Country Link
JP (1) JPS62148322A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623004A (en) * 1985-06-28 1987-01-09 Ube Ind Ltd Production of easily sintering perovskite raw material powder by wet method
JPS6236023A (en) * 1985-08-06 1987-02-17 Ube Ind Ltd Production of calcined powder of easily sinterable perovskite

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623004A (en) * 1985-06-28 1987-01-09 Ube Ind Ltd Production of easily sintering perovskite raw material powder by wet method
JPS6236023A (en) * 1985-08-06 1987-02-17 Ube Ind Ltd Production of calcined powder of easily sinterable perovskite

Similar Documents

Publication Publication Date Title
JPH0345025B2 (en)
JPS6153114A (en) Production of powdery raw material of easily sintering perovskite solid solution
JPS6153115A (en) Production of powdery raw material of easily sintering perovskite solid solution by multiple wet process
JPS6214488B2 (en)
JPH0159967B2 (en)
JPS62148322A (en) Production of raw material powder of perovskite and its solid solution
JPS6363511B2 (en)
JPH0159205B2 (en)
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPH013019A (en) Method for producing perovskite ceramic fine powder
JPS62230622A (en) Production of perovskite-type compound
JPS6265907A (en) Production of easy-to-sinter perovskite powder
JPH0367965B2 (en)
JPS6325261A (en) Manufacture of high density pmn base ferroelectric ceramic
JPS6395119A (en) Production of perovskite raw material powder
JPS6325263A (en) Manufacture of high density bzt base ferroelectric ceramic
JPS62162623A (en) Production of fine powder of lead titanate zirconate
JPS6221759A (en) Manufacture of ferroelectric ceramic by multi-stage wet process
JPS6325265A (en) Manufacture of high density bznt base ferroelectric ceramic
JPS62226812A (en) Production of easy-to-sinter perovskite powder
JPH06651B2 (en) Method for producing piezoelectric ceramic powder
JPH02188427A (en) Inorganic composition
JPS6325264A (en) Manufacture of high density bzn base ferroelectric ceramic