JPH02188427A - Inorganic composition - Google Patents

Inorganic composition

Info

Publication number
JPH02188427A
JPH02188427A JP1035489A JP1035489A JPH02188427A JP H02188427 A JPH02188427 A JP H02188427A JP 1035489 A JP1035489 A JP 1035489A JP 1035489 A JP1035489 A JP 1035489A JP H02188427 A JPH02188427 A JP H02188427A
Authority
JP
Japan
Prior art keywords
compd
inorganic composition
alkaline earth
inorganic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1035489A
Other languages
Japanese (ja)
Inventor
Takashi Hoshino
孝 星野
Hideta Kajiwara
梶原 秀太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP1035489A priority Critical patent/JPH02188427A/en
Publication of JPH02188427A publication Critical patent/JPH02188427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain an inorg. compsn. having a small particle size and suitable for a ceramic dielectric material in the form of titanate type perovskite contg. at least two kinds of alkaline earth metals by calcining a specified compd. and a Ti compd. CONSTITUTION:A compd. represented by formula I (where M is Sr and/or Ca and X is 0-1) is wet-mixed with a Ti compd. such as TiO2 and water. This mixture is dried and calcined at 900-1,030 deg.C for about 2hr to obtain an inorg. compsn. in the form of titanate type perovskite contg. at least two kinds of alkaline earth metals represented by formula II.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、広い分野で利用されている誘電体材料の一種
である、少なくとも二種のアルカリ土類金属を含むチタ
ン酸系ペロブスカイトである無機組成物に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to an inorganic titanate perovskite containing at least two types of alkaline earth metals, which is a type of dielectric material used in a wide range of fields. Regarding the composition.

〈従来の技術〉 一般に、ペロブスカイト構造を有する無機組成物とは、
チタン酸カルシウム鉱(ペロブスカイト)と同様な結晶
構造を有する組成物をいい、このような組成物を成形し
、焼結することにより、誘電性、圧電性、半導体性、絶
縁性、焦電性といった電気的機能をもった電子セラミッ
クスが得られる。
<Prior art> In general, an inorganic composition having a perovskite structure is
A composition having a crystal structure similar to calcium titanate ore (perovskite), and by molding and sintering such a composition, it has properties such as dielectric, piezoelectric, semiconducting, insulating, and pyroelectric properties. Electronic ceramics with electrical functions can be obtained.

近年、コンデンサ、サーミスタ等として、電子機器等に
大量に使用されているものである。
In recent years, they have been used in large quantities in electronic devices, such as capacitors and thermistors.

従来、ペロブスカイト構造を有する無機組成物は、−膜
内には、−1CaSSrs Ba5Pb等の炭酸塩また
は酸化物と、’1SZr、 Sn等の酸化物を混合し、
1000℃程度の温度で仮焼した後、湿式粉砕し、濾過
、乾燥して製造されている。
Conventionally, inorganic compositions having a perovskite structure are made by mixing carbonates or oxides such as -1CaSSrsBa5Pb and oxides such as '1SZr and Sn in the film;
It is manufactured by calcining at a temperature of about 1000°C, followed by wet pulverization, filtration, and drying.

〈発明が解決しようとする課題〉 仮焼法によってペロブスカイト構造を有する無機組成物
を製造する場合、上記数種類のアルカリ土類金属等の炭
酸塩または酸化物の粉末原料とTi等の酸化物の粉末原
料とを、乾式または湿式法で混合する。しかし、均一組
成の原料粉末は得難い。
<Problems to be Solved by the Invention> When producing an inorganic composition having a perovskite structure by a calcination method, powder raw materials of carbonates or oxides of the above several types of alkaline earth metals and powders of oxides such as Ti are used. The raw materials are mixed using a dry or wet method. However, it is difficult to obtain raw material powder with a uniform composition.

【δて、混合物の化学反応を完了させるためには、どう
しても仮焼時の焼成温度を高く設定する必要があり、こ
のため仮焼物の粒径が粗大化してしまうという問題があ
る。
[δ] In order to complete the chemical reaction of the mixture, it is necessary to set the firing temperature during calcination high, which causes the problem that the particle size of the calcined product becomes coarse.

本発明者等は、仮焼法によってペロブスカイト構造を有
する無機組成物を製造する場合における上記問題を解決
するために、アルカリ土類金属のうち、Ba SSr 
s Caの中から選ばれた少なくとも二種を含む炭酸塩
に関し、特願昭62−1131841号等に開示される
、二種または三種のアルカリ土類金属炭酸化合物の混合
物とは異なる新規なアルカリ土類金属炭酸化合物と、チ
タン化合物とを混合して焼成することによりペロブスカ
イトを製造すると、仮焼時の化学反応は、相当するそれ
ぞれの粉末原料を使用した混合物を焼成する場合に比べ
て約50℃程度低温で完了するという知見を得た。
In order to solve the above-mentioned problems when producing an inorganic composition having a perovskite structure by a calcination method, the present inventors have developed a method using Ba SSr among alkaline earth metals.
Concerning carbonates containing at least two selected from s Ca, a novel alkaline earth metal carbonate compound different from the mixture of two or three types of alkaline earth metal carbonate compounds disclosed in Japanese Patent Application No. 1131841/1984 etc. When perovskite is produced by mixing and firing a similar metal carbonate compound and a titanium compound, the chemical reaction during calcination is approximately 50°C compared to when firing a mixture using the corresponding powder raw materials. We obtained the knowledge that the process can be completed at a relatively low temperature.

本発明は、上記知見に基きなされたものであって、その
目的とするところは、低温で仮焼し得るため、例えばセ
ラミック誘電体材料として用いて好適な微細な粒径を有
する無機組成物を提供することにある。
The present invention has been made based on the above findings, and an object of the present invention is to create an inorganic composition having a fine particle size suitable for use as a ceramic dielectric material because it can be calcined at a low temperature. It is about providing.

く課題を解決するための手段〉 上記目的を達成するための本発明に係る無機組成物は、
下記一般式(1)で表される化合物とチタン化合物とを
仮焼することにより得られる下記一般式(2)で表され
るペロブスカイト構造を有するものである。
Means for Solving the Problems> The inorganic composition according to the present invention for achieving the above objects includes:
It has a perovskite structure represented by the following general formula (2) obtained by calcining a compound represented by the following general formula (1) and a titanium compound.

Ba  M   CO3・”(1)   1−x Ba  M   Tie3=42)   l−x 但し、上記一般式(1) (2)中、Mはストロンチウ
ム(Sr )および/またはカルシウム(Ca)、Xは
0以上1未満である。
Ba M CO3・''(1) 1-x Ba M Tie3=42) l-x However, in the above general formulas (1) and (2), M is strontium (Sr) and/or calcium (Ca), and X is 0 or more and less than 1.

上記チタン化合物としては、酸化チタンの他、加熱する
ことにより酸化チタンを生成する各種チタン酸、四塩化
チタン、硫酸チタン、硫酸チタニル(TL OS O&
 )等が挙げられる。
In addition to titanium oxide, the above titanium compounds include various titanic acids that produce titanium oxide when heated, titanium tetrachloride, titanium sulfate, and titanyl sulfate (TLOS O&
) etc.

また、四塩化チタン、硫酸チタン等の水溶液にアンモニ
ア水、苛性アルカリ、炭酸アルカリ等を添加して中和し
、沈澱を生成せしめ、それを加熱分解することによって
得られる酸化チタンも本発明に係る無機組成物の製造に
おいて好適に用い得るものである。
The present invention also relates to titanium oxide obtained by adding aqueous ammonia, caustic alkali, alkali carbonate, etc. to an aqueous solution of titanium tetrachloride, titanium sulfate, etc. to neutralize it to form a precipitate, and then thermally decomposing the precipitate. It can be suitably used in the production of inorganic compositions.

〈実施例〉 以下、本発明を実施例に基づいてより詳細に説明する。<Example> Hereinafter, the present invention will be explained in more detail based on examples.

なお、本発明は下記実施例により同等限定されるもので
はない。
It should be noted that the present invention is not limited to the same extent by the following examples.

(実施例1) 特願昭62−161841号等でいう、高純度炭酸バリ
ウム・ストロンチウム、Ba   Sr   CO30
,500,50 17,25g’ (強熱減量引き換算重量、以下におい
ても、同様)、高純度酸化チタン(堺化学工業社製)7
.99gおよび純水15011を、酸化ジルコニウムボ
ールを備えたポリエチレン製のボールミルにて湿式混合
した。その後、この混合物スラリーを濾過、乾燥した後
、温度1030℃で2時間仮焼した。この焼成物を前記
ボールミル中で再度湿式粉砕した後、濾過、乾燥して微
粒子粉末を得た。
(Example 1) High purity barium strontium carbonate, Ba Sr CO30, as referred to in Japanese Patent Application No. 161841/1984, etc.
,500,50 17,25g' (Ignition loss equivalent weight, same applies below), High purity titanium oxide (manufactured by Sakai Chemical Industry Co., Ltd.) 7
.. 99 g and 15,011 g of pure water were wet mixed in a polyethylene ball mill equipped with zirconium oxide balls. Thereafter, this mixture slurry was filtered, dried, and then calcined at a temperature of 1030° C. for 2 hours. This calcined product was wet-pulverized again in the ball mill, filtered, and dried to obtain a fine powder.

上記操作により得られた微粒子粉末をX線回折(銅ター
ゲツト、ニッケルフィルタ)により分析した結果を第1
図に示す。第1図は、縦軸にCPS (Count P
er 5econd)を、また横軸に2θ(度)をとっ
て示したものである(以下の第2図〜第6図においても
同様である)。同図に示すX線回折パターンより、この
微粒子は、立方晶系ペロブスカイト相の単相Ba   
Sr   TcOxであることが確0.50 0.50 認できた(X−0,50は化学分析結果による)。
The results of analyzing the fine particle powder obtained by the above operation by X-ray diffraction (copper target, nickel filter) are
As shown in the figure. In Figure 1, the vertical axis shows CPS (Count P
er 5econd), and 2θ (degrees) is plotted on the horizontal axis (the same applies to FIGS. 2 to 6 below). From the X-ray diffraction pattern shown in the same figure, this fine particle is a single-phase Ba of the cubic perovskite phase.
It was confirmed that it was SrTcOx (X-0,50 is based on the chemical analysis results).

また、上記微粒子の透過型電子顕微鏡写真(倍率: 1
000倍)を第7図に示す。同図に示す顕微鏡写真から
、上記微粉末は粒径が0.7μ山前後で、かなり均一な
微粒子からなることが分かった。
In addition, a transmission electron micrograph of the above-mentioned fine particles (magnification: 1
000 times) is shown in FIG. From the micrograph shown in the same figure, it was found that the fine powder was composed of fairly uniform fine particles with a particle size of around 0.7 μm.

さらに、仮焼前の混合粉末を用いて、重量減と温度との
関係を求め、第9図に実線で示した。
Furthermore, the relationship between weight loss and temperature was determined using the mixed powder before calcination, and is shown as a solid line in FIG.

(実施例2) 実施例1と同様の方法で、高純度炭酸ストロンチウム・
カルシウムSr   Ca   CO314,050,
850,15 gと高純度酸化チタン7.99gおよび純水15011
を用いて仮焼物の微粒子粉末を得た。
(Example 2) High purity strontium carbonate was prepared in the same manner as in Example 1.
Calcium Sr Ca CO314,050,
850.15 g, high purity titanium oxide 7.99 g and pure water 15011
A calcined fine particle powder was obtained using the following method.

仮焼は900℃の温度で2時間行った。Calcining was performed at a temperature of 900° C. for 2 hours.

上記操作により得られた微粒子粉末は、第3図に示すX
線回折分析結果から立方晶系ペロブスカイト相の単相S
r   Ca   TL 03であることが確認011
5 0.15 できた。その粒子径は、約0.5μmであった。
The fine particle powder obtained by the above operation is
From the results of line diffraction analysis, a single phase S of cubic perovskite phase was detected.
Confirmed that it is r Ca TL 03 011
5 0.15 I was able to do it. The particle size was approximately 0.5 μm.

さらに、仮焼前の混合粉末を用いて重量減と温度との関
係を求め、第10図に実線で示した。
Furthermore, the relationship between weight loss and temperature was determined using the mixed powder before calcination, and is shown as a solid line in FIG.

(実施例3) 実施例1と同様の方法で、高純度炭酸バリウム・ストロ
ンチウム・カルシウム Ba   Sr   Ca   CO316,80gと
高純度酸0.60  0.20  0.20 化チタン7.99gおよび純水150 IIを用いて仮
焼物の微粒子粉末を得た。
(Example 3) In the same manner as in Example 1, 16,80 g of high-purity barium/strontium/calcium carbonate Ba Sr Ca CO, 7.99 g of high-purity titanium chloride, and 150 g of pure water were added. A calcined fine particle powder was obtained using II.

仮焼は1000℃の温度で2時間行った。Calcining was performed at a temperature of 1000° C. for 2 hours.

上記操作により得られた微粒子粉末は、第5図に示すX
線回折分析結果からペロブスカイト構造のBa   S
r   Ca   Ti 03であることが確認でき0
.60 0.20 0.20 た。その粒子径は、約0.7μ履であった。
The fine particle powder obtained by the above operation is
Based on the results of line diffraction analysis, BaS with perovskite structure
It can be confirmed that r Ca Ti 03 is 0
.. 60 0.20 0.20. The particle size was approximately 0.7 μm.

さらに、仮焼前の混合粉末を用いて重量減と温度との関
係を求め、第11図に実線で示した。
Furthermore, the relationship between weight loss and temperature was determined using the mixed powder before calcination, and is shown as a solid line in FIG.

(比較例1) 実施例1において用いたBa   Sr   CXJs
に対0.50  0.50 応する単一の炭酸化合物すなわち高純度炭酸バリウム(
堺化学工業社製)9.87gと高純度炭酸ストロンチウ
ム(堺化学工業社製)7.38gと高純度酸化チタン7
.99gおよび純水15011を用いて実施例1と同様
にして、比較試験を行った。仮焼は第9図に破線で示す
加熱減量測定結果より、1100℃の温度で2時間行っ
た。
(Comparative Example 1) Ba Sr CXJs used in Example 1
0.50 0.50 A single carbonate compound, namely high purity barium carbonate (
(manufactured by Sakai Chemical Industry Co., Ltd.) 9.87 g, high purity strontium carbonate (manufactured by Sakai Chemical Industry Co., Ltd.) 7.38 g, and high purity titanium oxide 7
.. A comparative test was conducted in the same manner as in Example 1 using 99 g and 15,011 g of pure water. Calcination was performed at a temperature of 1100° C. for 2 hours, based on the heating loss measurement results shown by the broken line in FIG. 9.

また、第2図に示すX線回折分析結果から、実施例1と
同じく立方晶系ペロブスカイト相であることが確認でき
た。
Further, from the X-ray diffraction analysis results shown in FIG. 2, it was confirmed that the sample had a cubic perovskite phase as in Example 1.

さらに、′s8図に示す電子顕微鏡写真(倍率:100
0倍)より、粒子径は約1.1μlで実施例1と比較し
て若干粗大化していることが分かった。
Furthermore, an electron micrograph (magnification: 100
It was found that the particle size was approximately 1.1 μl, which was slightly larger than that of Example 1.

(比較例2) 比較例1と同様にして、実施例2に対する比較試験を行
った。
(Comparative Example 2) In the same manner as Comparative Example 1, a comparative test for Example 2 was conducted.

原料として、高純度炭酸ストロンチウム12.55g、
高純度炭酸カルシウム(日本石灰工業所社製)1.50
g、高純度酸化チタン7.99gおよび純水150 x
lを用いた。
As a raw material, 12.55g of high-purity strontium carbonate,
High purity calcium carbonate (manufactured by Nippon Lime Kogyo Co., Ltd.) 1.50
g, 7.99 g of high purity titanium oxide and 150 x pure water
l was used.

仮焼は、第10図に破線で示す加熱減量測定結果より、
950℃の温度で2時間行った。
Based on the heating loss measurement results shown by the broken line in Figure 10, calcination is as follows.
The test was carried out at a temperature of 950° C. for 2 hours.

第4図に示すX線回折分析結果は、実施例2で得られた
第3図に示す結果と同一であることが確認できた。また
、その粒子径は、約1.0μmであった。
It was confirmed that the X-ray diffraction analysis results shown in FIG. 4 were the same as the results shown in FIG. 3 obtained in Example 2. Moreover, the particle size was about 1.0 μm.

(比較例3) 比較例1と同様にして、実施例3に対する比較試験を行
った。
(Comparative Example 3) A comparative test for Example 3 was conducted in the same manner as Comparative Example 1.

原料として、BaCO311、84g 5SrCO32
,95g5CaCO32,00g1丁、827.99g
および純水15011を用いた。
As a raw material, BaCO311, 84g 5SrCO32
,95g5CaCO32,00g1 piece,827.99g
and pure water 15011 were used.

仮焼は、第11図に示す加熱域ff1i9J定結果より
、1070℃の温度で2時間行った。
Calcination was performed at a temperature of 1070° C. for 2 hours based on the heating area ff1i9J results shown in FIG. 11.

第6図に示すX線回折分析結果は、実施例3で得られた
第5図に示す結果と同一であることが確認できた。また
、その粒子径は、約1.5μmであった。
It was confirmed that the X-ray diffraction analysis results shown in FIG. 6 were the same as the results shown in FIG. 5 obtained in Example 3. Moreover, the particle size was about 1.5 μm.

以上の実施例1〜3および比較例1〜3より、本発明に
係る、上記特願昭82−1[11B41等による二種ま
たは三種のアルカリ土類金属を含むチタン酸塩であるペ
ロブスカイト構造の無機組成物は、予期し得ないことに
、対応するアルカリ土類金属の単一の炭酸化合物の二種
または三種の混合物を用いて同様に製造する無機組成物
よりも約50℃低温で焼成することにより得られ、粒径
の小さい緻密な焼結体が得られることが分かった。
From the above Examples 1 to 3 and Comparative Examples 1 to 3, it is clear that the perovskite structure which is a titanate containing two or three types of alkaline earth metals according to the above patent application No. 82-1 [11B41 etc. The inorganic compositions unexpectedly calcinate at about 50° C. lower than similarly prepared inorganic compositions using mixtures of two or three single carbonate compounds of the corresponding alkaline earth metals. It was found that a dense sintered body with small grain size could be obtained by this method.

従って、本発明に係る無機組成物を用いることによって
、セラミックHalt体の製造において、優れた電気特
性が期待される上に、熱エネルギーの節減により製造費
用を低廉化することが可能になる。
Therefore, by using the inorganic composition according to the present invention, excellent electrical properties are expected in the production of ceramic halt bodies, and it is possible to reduce production costs by saving thermal energy.

また、本発明に係る無機組成物に他の成分を加えも良い
。例えば、陽、Y等をドープすることにより半導体化さ
せることができる。また、101St 02等のいわゆ
る鉱化剤を加えても良い。
Further, other components may be added to the inorganic composition according to the present invention. For example, it can be made into a semiconductor by doping with positive, Y, etc. Also, a so-called mineralizing agent such as 101St 02 may be added.

さらに、上記一般式口(Ba  M   TLOx)中
の  1−x Mを一1円等の21aliの元素で置換することができ
、またT、の全部または一部をZr s ST1等の4
価の元素で置換し得ることは、周知の通りである。
Furthermore, 1-x M in the above general formula (Ba M TLOx) can be replaced with an element of 21 ali such as 11 yen, and all or part of T can be replaced with 4 such as Zr s ST1.
It is well known that it can be replaced with a valent element.

〈発明の効果〉 以上詳述したように、本発明に係る無機組成物は、従来
の無機組成物に比べ低温で仮焼して得られるため、例え
ばセラミック誘電体材料として好適に用いられるべき微
細な粒径を有する等、本発明は優れた特有の効果を奏す
る。
<Effects of the Invention> As detailed above, the inorganic composition according to the present invention can be obtained by calcining at a lower temperature than conventional inorganic compositions, so it can be used as a fine material suitable for use as a ceramic dielectric material, for example. The present invention exhibits excellent and unique effects such as having a particle size of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図および第5図は本発明に係る無機組成物
のX線回折図、また第2図、第4図および第6図は各々
対応する比較試験生成組成物のX線回折図、第7図は本
発明に係る無機組成物の透過型電子顕微鏡写真、第8図
は対応する比較試験生成組成物の透過型電子顕微鏡写真
、第9図〜第11図は本発明に係る無機組成物および対
応する比較試験生成組成物についての温度と重量減との
関係を示すグラフである。 特許出願人  堺化学工業株式会社 X 7QOg。 第 図 x+0,000 第 図 温度(”C) 第10図 第 11図 書(方式)(2版記号なし 6゜ 補正の対象 平成1年5月24日 明細書中、発明の詳細な説明 および図面の簡単な説明の各欄 2、発明の名称 平成1年 第10354号 7゜ 補正の内容 (1)明細書中筒6頁第7行〜第8行の「上記微粒子・
・・・・・・・・1000倍)を」の記載を「上記微粒
子の粒子構造を示す透過型電子顕微鏡写真(倍率: 1
000倍)を」と訂正する。 (2同書第8頁第10行〜第11行の「示す・・・・・
・・・・1000倍)より」の記載を「示す粒子構造の
電子顕微鏡写真(倍率:1000倍)より」と訂正する
。 (3)同書第11頁第10行〜第12行の[無機組成物
の・・・・・・・・・電子顕36補正をする者 事件との関係
Figures 1, 3 and 5 are X-ray diffraction diagrams of inorganic compositions according to the present invention, and Figures 2, 4 and 6 are X-ray diffraction diagrams of corresponding comparative test compositions, respectively. 7 is a transmission electron micrograph of an inorganic composition according to the present invention, FIG. 8 is a transmission electron micrograph of a corresponding comparative test product composition, and FIGS. 9 to 11 are transmission electron micrographs of an inorganic composition according to the present invention. 1 is a graph showing the relationship between temperature and weight loss for an inorganic composition and a corresponding comparative test product composition. Patent applicant: Sakai Chemical Industry Co., Ltd. Fig. Each column 2 of the brief explanation, title of the invention, No. 10354, 1999, 7゜ Contents of amendment (1) "The above-mentioned fine particles
......1000x)" was replaced with "Transmission electron micrograph showing the particle structure of the above-mentioned fine particles (magnification: 1
000 times),” he corrected. (2 Ibid., page 8, lines 10-11, “Show...
...from an electron micrograph (magnification: 1000 times)" is corrected to "From an electron micrograph (magnification: 1000 times) of the particle structure shown." (3) The relationship between the same book, page 11, lines 10 to 12 of the [Inorganic composition...... Electron microscopy 36 correction person case]

Claims (1)

【特許請求の範囲】[Claims] 1. 下記一般式(1)で表される化合物とチタン化合
物とを仮焼することにより得られ る下記一般式(2)で表されるペロブスカイト構造を有
する無機組成物。 Ba_XM_1_−_XCO_3・・・(1)Ba_X
M_1_−_XTiO_3・・・(2)但し、上記一般
式(1)(2)中、Mはストロンチウム(Sr)および
/またはカルシウ ム(Ca)、Xは0以上1未満である。
1. An inorganic composition having a perovskite structure represented by the following general formula (2) obtained by calcining a compound represented by the following general formula (1) and a titanium compound. Ba_XM_1_-_XCO_3...(1) Ba_X
M_1_-_XTiO_3...(2) However, in the above general formulas (1) and (2), M is strontium (Sr) and/or calcium (Ca), and X is 0 or more and less than 1.
JP1035489A 1989-01-18 1989-01-18 Inorganic composition Pending JPH02188427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1035489A JPH02188427A (en) 1989-01-18 1989-01-18 Inorganic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1035489A JPH02188427A (en) 1989-01-18 1989-01-18 Inorganic composition

Publications (1)

Publication Number Publication Date
JPH02188427A true JPH02188427A (en) 1990-07-24

Family

ID=11747844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1035489A Pending JPH02188427A (en) 1989-01-18 1989-01-18 Inorganic composition

Country Status (1)

Country Link
JP (1) JPH02188427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314651A (en) * 1992-05-29 1994-05-24 Texas Instruments Incorporated Fine-grain pyroelectric detector material and method
US5566046A (en) * 1994-02-18 1996-10-15 Texas Instruments Incorporated Microelectronic device with capacitors having fine-grain dielectric material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167227A (en) * 1987-12-23 1989-06-30 Nippon Chem Ind Co Ltd Production of titanium-based perovskite-type ceramic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167227A (en) * 1987-12-23 1989-06-30 Nippon Chem Ind Co Ltd Production of titanium-based perovskite-type ceramic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314651A (en) * 1992-05-29 1994-05-24 Texas Instruments Incorporated Fine-grain pyroelectric detector material and method
US5566046A (en) * 1994-02-18 1996-10-15 Texas Instruments Incorporated Microelectronic device with capacitors having fine-grain dielectric material

Similar Documents

Publication Publication Date Title
GB2163142A (en) A process for producing a composition which includes perovskite compound
JPS61275108A (en) Preparation of powder of dielectric substance
Takahashi et al. Occurrence of Dielectric 1: 1: 4 Compound in the Ternary System BaO—Ln2O3—TiO2 (Ln= La, Nd, and Sm): I, An Improved Coprecipitation Method for Preparing a Single‐Phase Powder of Ternary Compound in the BaO—La2O3—TiO2 System
JPS6153114A (en) Production of powdery raw material of easily sintering perovskite solid solution
JPS6153115A (en) Production of powdery raw material of easily sintering perovskite solid solution by multiple wet process
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPH02188427A (en) Inorganic composition
JPH0210089B2 (en)
JPS63248719A (en) Production of powder as starting material for multicomponent ceramic
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JP2767584B2 (en) Method for producing fine perovskite ceramic powder
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPH0527571B2 (en)
JPH0210091B2 (en)
JPS6363511B2 (en)
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
JPH0159205B2 (en)
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPH0210090B2 (en)
JPS63285146A (en) Production of perovskite ceramic
JPS63285147A (en) Production of niobium-containing perovskite ceramic
JPH0193419A (en) Production of piezoelectric ceramics raw material powder
JPS6325223A (en) Production of ceramic raw material powder
JPH0367965B2 (en)
JPH0457615B2 (en)