JPH0193419A - Production of piezoelectric ceramics raw material powder - Google Patents

Production of piezoelectric ceramics raw material powder

Info

Publication number
JPH0193419A
JPH0193419A JP62247906A JP24790687A JPH0193419A JP H0193419 A JPH0193419 A JP H0193419A JP 62247906 A JP62247906 A JP 62247906A JP 24790687 A JP24790687 A JP 24790687A JP H0193419 A JPH0193419 A JP H0193419A
Authority
JP
Japan
Prior art keywords
precipitate
raw material
material powder
solution
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62247906A
Other languages
Japanese (ja)
Other versions
JPH0651570B2 (en
Inventor
Kyoji Odan
恭二 大段
Tokuo Matsuzaki
徳雄 松崎
Masaru Kurahashi
優 倉橋
Tokuaki Arimura
有村 徳晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62247906A priority Critical patent/JPH0651570B2/en
Publication of JPH0193419A publication Critical patent/JPH0193419A/en
Publication of JPH0651570B2 publication Critical patent/JPH0651570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To completely precipitate all the components and enable production of a raw material powder having a desired composition, by improving a multistage wet method in producing a raw material powder of perovskite expressed by a specific general formula and a solid solution thereof by the multistage wet method. CONSTITUTION:A raw material powder of a compound, having a composite perovskite type structure and expressed by the formula and a solid solution thereof is prepared. In the formula, A is one or more of Mg, Zn, Ni and Co; B is Nb and/or Ta; x, y and z are expressed in terms of mol.% and x+y+z=100. In the production, solutions of A, B and Zr components are brought into contact with a precipitate-forming solution or an A-B-O based compound oxide and solutions of Pb and Zr compounds are brought into contact with a precipitate-forming solution. Furthermore, anatase type TiO2 is dispersed in the liquid phase in any stage of forming precipitates to form mixed precipitates of the above-mentioned respective components, which are then calcined at 500-1,200 deg.C to provide the aimed piezoelectric ceramics raw material powder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ペロブスカイトおよびその固溶体の原料粉末
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing raw material powders of perovskites and solid solutions thereof.

ペロブスカイトおよびその固溶体は、圧電体、誘電体、
半導体、センサー、オプトエレクトロニクス材料等の機
能性セラミックスとして広範囲に利用されている。最近
はこの機能性をより高度にすることが望まれており、そ
の要請に対応できる易焼結性、均一性、高嵩密度で、且
つ低コストのペロブスカイトおよびその固溶体の原料粉
末が多量に効率的に製造できる技術の開発が要望されて
いる。
Perovskites and their solid solutions are piezoelectrics, dielectrics,
It is widely used as functional ceramics for semiconductors, sensors, optoelectronic materials, etc. Recently, there has been a desire to further improve this functionality, and raw material powders of perovskite and its solid solution that are easy to sinter, have uniformity, have high bulk density, and are low cost are available in large quantities to meet this demand. There is a need for the development of technology that allows for efficient manufacturing.

(従来技術およびその問題点) 従来、ペロブスカイトおよびその固溶体の原料粉末の製
造方法としては、乾式法、共沈法および多段湿式法が知
られている。
(Prior Art and its Problems) Conventionally, dry methods, coprecipitation methods, and multistage wet methods are known as methods for producing raw material powders of perovskites and solid solutions thereof.

乾式法は、構成原料成分の化合物を乾式で混合し、これ
を仮焼する方法である。しかし、この方法では、均一組
成の原料粉末が得難いため、優れた機能性を持つペロブ
スカイトを得難いし、また焼結性も十分でない。
The dry method is a method in which compounds of constituent raw materials are mixed in a dry method and then calcined. However, with this method, it is difficult to obtain a raw material powder with a uniform composition, so it is difficult to obtain a perovskite with excellent functionality, and the sinterability is also insufficient.

共沈法はその構成成分のすべてを一緒にした混合溶液を
調製し、これにアルカリ等の沈澱形成液を添加して共沈
させ、共沈物を乾燥、仮焼する方法である。
The coprecipitation method is a method in which a mixed solution is prepared by combining all of the constituent components, a precipitate forming liquid such as an alkali is added to the mixed solution to cause coprecipitation, and the coprecipitate is dried and calcined.

この共沈法によると、均一性の優れた粉末が得易いが、
その均一性なるが故に、沈澱生成時、乾燥時または仮焼
時に粒子が凝結して二次粒子を形成し、焼結しにくい欠
点があった。
According to this coprecipitation method, it is easy to obtain powder with excellent uniformity, but
Because of their uniformity, the particles tend to coagulate to form secondary particles during precipitate formation, drying, or calcination, making it difficult to sinter.

また、共沈法では各成分の該沈澱形成液に対する沈澱形
成能が同じでない場合は、例えば成る成分は実質的に1
00%沈澱を生成するが、他の成分は部分的にしか沈澱
を生成し得ないことがあり、所望組成のものを得ること
が困難であった。
In addition, in the coprecipitation method, if the precipitate forming ability of each component with respect to the precipitate forming solution is not the same, for example, the components consisting of substantially 1
However, other components may only partially produce precipitates, making it difficult to obtain a desired composition.

多段湿式法は特開昭61−53113号公報、特開昭6
1−53115号公報等に記載されているように、各成
分を段階的に沈澱させることにより、共沈法における前
記欠点を解決したものである。しかしながら、前記多段
湿式法においてもMg成分、Zn成分、Ni成分および
Co成分を実質的に100%沈澱させるのは困難であっ
た。
The multi-stage wet method is disclosed in JP-A-61-53113 and JP-A-6
As described in Publication No. 1-53115, etc., the above-mentioned drawbacks of the coprecipitation method are solved by precipitating each component in stages. However, even in the multi-stage wet method, it was difficult to precipitate substantially 100% of the Mg component, Zn component, Ni component, and Co component.

(発明の目的) 本発明の目的は、前記多段湿式法を改良し、すべての成
分を完全に沈澱させて所望組成のペロブスカイトおよび
その固溶体の原料粉末を製造することができる方法を提
供することである。
(Objective of the Invention) An object of the present invention is to provide a method that improves the multi-stage wet method and can completely precipitate all the components to produce a raw material powder of perovskite and its solid solution having a desired composition. be.

本発明の他の目的は、圧電特性が優れ、易焼結性、均一
性、低コスト、高嵩密度の要件を満足したペロブスカイ
トおよびその固溶体の原料粉末を効率よく製造すること
ができる方法を提供することである。
Another object of the present invention is to provide a method for efficiently producing raw material powder of perovskite and its solid solution, which has excellent piezoelectric properties and satisfies the requirements of easy sinterability, uniformity, low cost, and high bulk density. It is to be.

(問題点を解決するための手段) 本発明は一般式 %式%) (ただし、AはMg、 Zn、 NiおよびCoの少な
くとも一種を示し、BはNbおよびTaの少なくとも一
種を示し、x、yおよび2はモル%を示し、x+y+z
=100である。)で表されるペロブスカイトおよびそ
の固溶体の原料粉末の製造に際し、(1)Pb、 A、
 BおよびZr成分の溶液を沈澱形成液と接触させるか
、あるいは (2)A−B−0系複合酸化物およびPb、 Zr成分
の溶液を沈澱形成液と接触させ、 かつ、アナターゼ型Ti(hを沈澱形成のいずれかの段
階で液相に分散させることにより、前記各成分の混合沈
澱物を形成させ、これを500〜1200℃で仮焼する
ことを特徴とする圧電セラミックス原料粉末の製造方法
に関するものである。
(Means for solving the problem) The present invention has the general formula %) (where A represents at least one of Mg, Zn, Ni and Co, B represents at least one of Nb and Ta, y and 2 indicate mol%, x+y+z
=100. ) When producing the raw material powder of perovskite and its solid solution represented by (1) Pb, A,
A solution of B and Zr components is brought into contact with a precipitate forming solution, or (2) a solution of A-B-0 complex oxide and Pb, Zr components is brought into contact with a precipitate forming solution, and anatase type Ti (h A method for producing a piezoelectric ceramic raw material powder, characterized in that a mixed precipitate of each of the above components is formed by dispersing it in a liquid phase at any stage of precipitate formation, and this is calcined at 500 to 1200°C. It is related to.

本発明において、「溶液」とは可溶物を溶解させた溶液
または不溶物を分散させた懸濁液を意味する。
In the present invention, the term "solution" refers to a solution in which soluble substances are dissolved or a suspension in which insoluble substances are dispersed.

本発明における一般式 %式%) で表されるペロブスカイトおよびその固溶体のA成分は
Mg、 Zn、 NiおよびCOの少な(とも一種であ
り、B成分はNbおよびTaの少なくとも一種であり、
Pb(A+z+Bxz+)Osにおけるpbと(AI/
3B!/3)の成分の原子比(Pb/ (A+zJz/
3) ) 、PbTi0zにおけるpbとTiの原子比
(Pb/Ti)およびPbZr01におけるpbとZr
の原子比(Pb/Zr)は通常1.0であるが、この原
子比を1.0より高い値、もしくは低い値にずらした不
定比性ペロブスカイトも含まれる。
In the present invention, the A component of the perovskite and its solid solution represented by the general formula (%) is Mg, Zn, Ni and CO (all of which are one type of the perovskite), and the B component is at least one of Nb and Ta,
Pb(A+z+Bxz+) pb and (AI/
3B! /3) component atomic ratio (Pb/ (A+zJz/
3) ), the atomic ratio of pb and Ti in PbTi0z (Pb/Ti) and pb and Zr in PbZr01
The atomic ratio (Pb/Zr) is usually 1.0, but non-stoichiometric perovskites in which this atomic ratio is shifted to a value higher or lower than 1.0 are also included.

また前記一般式中のx、yおよび2はモル%を示し、用
途に応じ種々の数値をとりうるが、通常、Xは5〜90
、yは5〜80Szは5〜80モル%の範囲から選択す
るのが好適である。この範囲をはずれると特性的に問題
となるので好ましくない。
In addition, x, y and 2 in the above general formula represent mol% and can take various values depending on the use, but usually X is 5 to 90.
, y is preferably selected from the range of 5 to 80 Sz and 5 to 80 mol%. If it is outside this range, it is not preferable because it will cause problems in terms of characteristics.

ペロブスカイトおよびその固溶体の構成成分であるA、
B、PbおよびZr成分の化合物の溶液を調製するため
の各成分化合物としては、特に限定されないが、それら
の水酸化物、炭酸塩、オキシ塩、硫酸塩、硝酸塩、塩化
物等の無機塩、酢酸塩、しゅう酸塩等の有機酸塩、酸化
物等から適宜選択される。Tl源としてはアナターゼ型
のTi01を用いるが、その粒径は小さい方が好ましく
、0.1〜2μm程度がよい。
A, which is a component of perovskite and its solid solution;
The component compounds for preparing a solution of B, Pb and Zr component compounds include, but are not particularly limited to, inorganic salts such as their hydroxides, carbonates, oxysalts, sulfates, nitrates, and chlorides; It is appropriately selected from organic acid salts such as acetates and oxalates, oxides, and the like. As the Tl source, anatase type Ti01 is used, and the particle size thereof is preferably small, and is preferably about 0.1 to 2 μm.

本発明におけるA−B−0系複合酸化物は、■A酸成分
よびB成分の酸化物または炭酸塩を混合し、これを仮焼
する乾式法、 ■A酸成分よびB成分のどちらか一方の不溶性原料を液
相に懸濁させ、他方の成分の可溶性原料の溶液と沈澱形
成液を接触させて混合沈澱物を形成させ、これを仮焼す
る半湿式法、 ■A酸成分よびB成分の可溶性原料の溶液を沈澱形成液
と接触させて混合沈澱物を形成させ、これを仮焼する湿
式法により調製される。仮焼温度はいずれの場合も50
0〜1300℃が適当である。
The A-B-0-based composite oxide in the present invention can be produced by: (1) a dry method in which oxides or carbonates of the A acid component and B component are mixed and calcined; (2) either one of the A acid component and the B component; A semi-wet method in which the insoluble raw material of the other component is suspended in a liquid phase, the solution of the soluble raw material of the other component is brought into contact with the precipitate forming liquid to form a mixed precipitate, and this is calcined; ■A acid component and B component It is prepared by a wet method in which a solution of soluble raw materials is brought into contact with a precipitate-forming liquid to form a mixed precipitate, which is then calcined. The calcination temperature is 50 in both cases.
A temperature of 0 to 1300°C is suitable.

本発明における沈澱形成液としては、アンモニア、炭酸
アンモニウム、苛性アルカリ、アミン、しゅう酸、アル
キルアミン等の溶液が挙げられる。
Examples of the precipitate forming liquid in the present invention include solutions of ammonia, ammonium carbonate, caustic alkali, amine, oxalic acid, alkylamine, and the like.

アルキルアミンとしては、メチルアミン、エチルアミン
、プロピルアミン、ブチルアミン等の低級アルキル基を
有する第一アミン、ジメチルアミン、ジエチルアミン等
の低級アルキル基を有する第三アミン、トリエチルアミ
ン等の低級アルキル基を有する第三アミンを挙げること
ができる。
Examples of the alkylamine include primary amines having a lower alkyl group such as methylamine, ethylamine, propylamine, and butylamine, tertiary amines having a lower alkyl group such as dimethylamine and diethylamine, and tertiary amines having a lower alkyl group such as triethylamine. Mention may be made of amines.

構成成分の沈澱を生成するには、沈澱形成液を撹拌しな
がら沈澱形成液に各構成成分の溶液を添加してもよく、
その反対に添加してもよい。添加に際しては、液を十分
に撹拌しながら行うことが好ましい。また沈澱生成は一
段で行っても、多段で行ってもよい。
In order to generate a precipitate of the constituent components, a solution of each constituent component may be added to the precipitate forming liquid while stirring the precipitate forming liquid,
On the contrary, it may be added. The addition is preferably carried out while sufficiently stirring the liquid. Further, the precipitation may be formed in one stage or in multiple stages.

本発明におけるアナターゼ型TiO□とPb、 A、 
BおよびZr成分の沈澱物の接触はTiO□を予め沈澱
形成液に懸濁させておいてもよく、また沈澱形成させた
後にTi0zを加えて混合してもよい。多段に沈澱形成
させる場合は途中でTiO2を加えてもよい。
Anatase type TiO□ and Pb in the present invention, A,
For contacting the precipitates of B and Zr components, TiO□ may be suspended in a precipitate forming solution in advance, or TiOz may be added and mixed after forming a precipitate. When forming a precipitate in multiple stages, TiO2 may be added in the middle.

また、A−B−0系複合酸化物を用いる場合も同様であ
る。
The same applies to the case where an A-B-0 based composite oxide is used.

前記方法により得られた混合沈澱物は、水等で洗浄する
ことが好ましいが、出発原料によっては洗浄しなくても
よい。混合沈澱物は乾燥後、仮焼する。乾燥は大気中で
行っても、減圧下で行ってもよい。仮焼温度としては、
過度に低いと沈R物の脱水、熱分解が不十分であり、ま
た過度に高いと粉末が粗大化するので、通常500〜1
200℃の範囲が好適である。
The mixed precipitate obtained by the above method is preferably washed with water or the like, but may not be washed depending on the starting materials. The mixed precipitate is dried and then calcined. Drying may be performed in the air or under reduced pressure. As for the calcination temperature,
If it is too low, the dehydration and thermal decomposition of the precipitate will be insufficient, and if it is too high, the powder will become coarse.
A range of 200°C is preferred.

(実施例) 以下に実施例および比較例を示し、さらに詳しく本発明
について説明する。
(Example) The present invention will be explained in more detail by showing Examples and Comparative Examples below.

実施例1 37、5[Pb (Mg 、z+Nbzz:+) 03
]−37,5PbTiO+−25,0PbZrOs五塩
化ニオブ(NbCj!5)13.509gをエタノール
300戚に溶解し、さらに6N−アンモニア水溶液10
00dを添加した。これに硝酸鉛[Pb(NOx) z
コロ6.242gを500mNの水に溶解した溶液を添
加した。さらに塩化ジルコニル(ZrOCfz−8Hz
O) 16. l1gを500−の水に溶解した溶液を
加えて沈澱を生成させた。次に粒径0.4μmのアナタ
ーゼ型のTiO□粉末5.99gを加え充分撹拌した。
Example 1 37,5[Pb (Mg, z+Nbzz:+) 03
]-37,5PbTiO+-25,0PbZrOs 13.509 g of niobium pentachloride (NbCj!5) was dissolved in 300% of ethanol, and further 10% of 6N-ammonia aqueous solution was dissolved.
00d was added. To this, lead nitrate [Pb(NOx) z
A solution of 6.242 g of colo dissolved in 500 mN water was added. Furthermore, zirconyl chloride (ZrOCfz-8Hz
O) 16. A solution of 11g dissolved in 500ml of water was added to form a precipitate. Next, 5.99 g of anatase-type TiO□ powder with a particle size of 0.4 μm was added and thoroughly stirred.

この混合沈澱物を水で4回傾瀉を繰り返し、洗浄し、ア
ンモニウムイオン濃度を0゜11モル/lとした後、1
5N−アンモニア水10dを含む水溶液50m1を加え
、pHを12.1とした。この液に水酸化マグネシウム
[Mg (OH) z]5.141gを水350dに分
散した溶液を徐々に加えて沈澱物を形成させた。
This mixed precipitate was repeatedly decanted and washed with water four times, and the ammonium ion concentration was adjusted to 0.11 mol/l.
50 ml of an aqueous solution containing 10 d of 5N ammonia water was added to adjust the pH to 12.1. A solution of 5.141 g of magnesium hydroxide [Mg (OH) z] dispersed in 350 d of water was gradually added to this liquid to form a precipitate.

この沈澱物を洗浄することなく濾別、乾燥した後、組成
分析したところ、仕込みの元素組成と同一であった。さ
らにこの沈澱物を750℃で2時間仮焼した。この粉末
にエタノールを加えボールミル処理し、その一部を透過
型電子顕微鏡により粒子を観察したところ、粒径は0.
5μm程度で均一であった。
This precipitate was filtered without washing, dried, and then analyzed for composition, which revealed that the elemental composition was the same as that of the initial precipitate. Further, this precipitate was calcined at 750°C for 2 hours. Ethanol was added to this powder and it was ball milled, and part of the powder was observed using a transmission electron microscope, and the particle size was found to be 0.
It was uniform at about 5 μm.

この仮焼粉にポリビニルアルコールを0.8wtχ添加
してit/cdで成型し、鉛雰囲気下、1150℃で2
時間焼結した。得られた焼結体の密度は7.97g/c
Taであった。この焼結体をl0gmφX 1 trm
 tのサイズに研磨した後、銀ペーストを塗布し、60
0″Cで焼付けし、電極を形成した。このサンプルを1
00℃のシリコンオイル中で20KV/cmの電界をか
け、分極処理した。インピーダンスアナライザーを用い
て室温で圧電特性を測定したところ、電気機械結合係数
(Kp)’70%、圧電定数(d2+)  210X1
0−”m/V、比誘電率(ε、3/ε。)2100であ
った。
0.8wtχ of polyvinyl alcohol was added to this calcined powder, and it was molded at it/cd and heated at 1150℃ for 2 hours in a lead atmosphere.
Sintered for hours. The density of the obtained sintered body is 7.97 g/c
It was Ta. This sintered body is 10gmφX 1 trm
After polishing to the size of t, apply silver paste and
An electrode was formed by baking at 0''C.This sample was
An electric field of 20 KV/cm was applied to conduct polarization treatment in silicone oil at 00°C. When the piezoelectric properties were measured at room temperature using an impedance analyzer, the electromechanical coupling coefficient (Kp) was 70%, and the piezoelectric constant (d2+) was 210X1.
0-''m/V and relative permittivity (ε, 3/ε.) of 2,100.

比較例1 37、5[Pb (Mg 1zsNb zy3) Ox
 ]−37、5PbT 1os−25,0PbZr03
酸化ニオブ(Nbzo3)33.5g、酸化鉛(PbO
)223.2g、アナターゼ型酸化チタン(TiOz)
30.0g−酸化ジルコニウム(ZrO□)30.8g
および酸化マグネシウム(MgO)5.1gを秤量し、
播潰混合した後、乾燥した。
Comparative Example 1 37,5[Pb (Mg 1zsNb zy3) Ox
]-37,5PbT 1os-25,0PbZr03
Niobium oxide (Nbzo3) 33.5g, lead oxide (PbO
) 223.2g, anatase type titanium oxide (TiOz)
30.0g - 30.8g of zirconium oxide (ZrO□)
and 5.1 g of magnesium oxide (MgO),
After sowing and mixing, it was dried.

このものを750℃で2時間仮焼した。得られた粉末の
粒径は1〜2μmであり、不揃いであった。
This product was calcined at 750°C for 2 hours. The particle size of the obtained powder was 1 to 2 μm and was irregular.

また、この粉末を実施例1と同様にして焼結したところ
、得られた焼結体の密度は7.30g/cfflであっ
た。圧電特性は、Kp45%、d3IIIOXIO−”
m/V、ε1./ε。950であった。
Further, when this powder was sintered in the same manner as in Example 1, the density of the obtained sintered body was 7.30 g/cffl. Piezoelectric properties are Kp45%, d3IIIOXIO-”
m/V, ε1. /ε. It was 950.

比較例2 実施例1においてアナターゼ型酸化チタンのかわりにル
チル型酸化チタンを用いたほかは実施例1と同様にして
仮焼粉末を得た。得られた粉末の粒径は1.5μmであ
った。またこの粉末を実施例1と同様にして焼結したと
ころ、得られた焼結体の密度は7.90g/cfflで
あった。圧電特性は、K153%、dH140XlO−
”m/V、 εss/εo 1300テあった。
Comparative Example 2 A calcined powder was obtained in the same manner as in Example 1 except that rutile titanium oxide was used instead of anatase titanium oxide. The particle size of the obtained powder was 1.5 μm. When this powder was sintered in the same manner as in Example 1, the density of the obtained sintered body was 7.90 g/cffl. Piezoelectric properties are K153%, dH140XlO-
”m/V, εss/εo was 1300 te.

実施例2 12 [Pb (Mg I /9N i zzJb z
ys> Os ]−44PbT 1oz−44PbZr
Os酸化マグネシウム(MgO)1.07g、酸化ニッ
ケル(NiO)3.98g−、五酸化ニオブ(NbzO
3)21.26gを秤量し、水を少量加え、充分措潰混
合した後、乾燥した。このものを1000℃で3時間仮
焼し、Mg−Ni−Nb−0系複合酸化物の粉末を得た
。この複合酸化物2.63gとアナターゼ型酸化チタン
(TiO□)7.03gを4Nアンモニア水300IR
1に加え、分散、懸濁させた。
Example 2 12 [Pb (Mg I /9N i zzJb z
ys>Os]-44PbT 1oz-44PbZr
Os magnesium oxide (MgO) 1.07g, nickel oxide (NiO) 3.98g-, niobium pentoxide (NbzO)
3) 21.26 g was weighed, a small amount of water was added, the mixture was thoroughly mixed, and then dried. This product was calcined at 1000°C for 3 hours to obtain a powder of Mg-Ni-Nb-0 based composite oxide. 2.63g of this composite oxide and 7.03g of anatase type titanium oxide (TiO□) were mixed in 300IR of 4N ammonia water.
1 and dispersed and suspended.

この中に硝酸鉛[Pb(NO3) z]66.24g、
硝酸ジルコニル[Zr0(NO3) t・2HtO]2
3.52gを300dの水に溶解した溶液を加えて沈澱
を生成させた。この混合沈澱物を水1000dで3回傾
瀉を繰り返し、洗浄した後、乾燥して800℃で2時間
仮焼した。得られた粉末の粒径は0.6μmであった。
In this, 66.24 g of lead nitrate [Pb(NO3) z],
Zirconyl nitrate [Zr0(NO3) t・2HtO]2
A solution of 3.52 g dissolved in 300 d of water was added to form a precipitate. This mixed precipitate was repeatedly decanted three times with 1000 d of water, washed, dried, and calcined at 800° C. for 2 hours. The particle size of the obtained powder was 0.6 μm.

またこの粉末を1100℃で焼結したところ、得られた
焼結体の密度は7.92g/cjであった。圧電特性は
、Kp60%、d31290X10−1gm/V、 ε
+s/εo 3200テあった。
Further, when this powder was sintered at 1100°C, the density of the obtained sintered body was 7.92 g/cj. The piezoelectric properties are Kp60%, d31290X10-1gm/V, ε
There was +s/εo 3200te.

(発明の効果) 一般式x[Pb(A+z、Bz/+)O+]−y(Pb
TiO3)−z(PbZrO3)(ただし、AはMg5
Zn−、NsおよびCoの少なくとも一種を示し、Bは
NbおよびTaの少なくとも一種を示し、x、yおよび
2はモル%を示し、x+y+z=100である。)で表
されるペロブスカイトおよびその固溶体の原料粉末の製
造に際し、公知の共沈法における全成分を同時に共沈さ
せる方法とは異なり、アナターゼ型Tie、またはアナ
ターゼ型TiO2およびA−B−0系複合酸化物を他の
成分の沈澱物と接触させた後、乾燥、仮焼することによ
り、圧電特性が優れ、高嵩密度の易焼結性の圧電セラミ
ックス原料粉末を再現性よく製造することができる。
(Effect of the invention) General formula x[Pb(A+z,Bz/+)O+]-y(Pb
TiO3)-z(PbZrO3) (where A is Mg5
At least one of Zn-, Ns and Co is shown, B is at least one of Nb and Ta, x, y and 2 are mol%, and x+y+z=100. ) When producing the raw material powder of perovskite and its solid solution represented by By bringing the oxide into contact with precipitates of other components, followed by drying and calcining, it is possible to produce piezoelectric ceramic raw material powder with excellent piezoelectric properties, high bulk density, and easy sinterability with good reproducibility. .

また本プロセスでは各相が高度に相互分散して−おり、
従ってこのものを仮焼したものは十分な均一性が達成さ
れる。さらにプロセスが簡単であることに由来して、再
現性よく低コストで易焼結性の粉末が得られる等の優れ
た効果を有する。
In addition, in this process, each phase is highly mutually dispersed,
Therefore, a calcined product of this material achieves sufficient uniformity. Further, since the process is simple, it has excellent effects such as being able to obtain easily sinterable powder with good reproducibility and at low cost.

特許出願人  宇部興産株式会社Patent applicant: Ube Industries Co., Ltd.

Claims (1)

【特許請求の範囲】  一般式x[Pb(A_1_/_3B_2_/_3)O
_3]−y(PbTiO_3)−z(PbZrO_3)
(ただし、AはMg、Zn、NiおよびCoの少なくと
も一種を示し、BはNbおよびTaの少なくとも一種を
示し、x、yおよびzはモル%を示し、x+y+z=1
00である。)で表される複合ペロブスカイト型構造化
合物(以下ペロブスカイトという)およびその固溶体の
原料粉末の製造に際し、(1)Pb、A、BおよびZr
成分の溶液を沈澱形成液と接触させるか、あるいは (2)A−B−O系複合酸化物およびPb、Zr成分の
溶液を沈澱形成液と接触させ、 かつ、アナターゼ型TiO_2を沈澱形成のいずれかの
段階で液相に分散させることにより、前記各成分の混合
沈澱物を形成させ、これを500〜1200℃で仮焼す
ることを特徴とする圧電セラミックス原料粉末の製造方
法。
[Claims] General formula x[Pb(A_1_/_3B_2_/_3)O
_3]-y(PbTiO_3)-z(PbZrO_3)
(However, A represents at least one of Mg, Zn, Ni, and Co, B represents at least one of Nb and Ta, x, y, and z represent mol%, and x+y+z=1
It is 00. ) When producing the raw material powder of the composite perovskite structure compound (hereinafter referred to as perovskite) and its solid solution, (1) Pb, A, B and Zr
Either a solution of the components is brought into contact with a precipitate-forming solution, or (2) a solution of the A-B-O complex oxide and Pb, Zr components is brought into contact with a precipitate-forming solution, and anatase-type TiO_2 is brought into contact with a precipitate-forming solution. A method for producing a piezoelectric ceramic raw material powder, which comprises dispersing the components in a liquid phase in the above step to form a mixed precipitate of the components, and calcining the precipitate at 500 to 1200°C.
JP62247906A 1987-10-02 1987-10-02 Method for manufacturing piezoelectric ceramic raw material powder Expired - Lifetime JPH0651570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62247906A JPH0651570B2 (en) 1987-10-02 1987-10-02 Method for manufacturing piezoelectric ceramic raw material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62247906A JPH0651570B2 (en) 1987-10-02 1987-10-02 Method for manufacturing piezoelectric ceramic raw material powder

Publications (2)

Publication Number Publication Date
JPH0193419A true JPH0193419A (en) 1989-04-12
JPH0651570B2 JPH0651570B2 (en) 1994-07-06

Family

ID=17170317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62247906A Expired - Lifetime JPH0651570B2 (en) 1987-10-02 1987-10-02 Method for manufacturing piezoelectric ceramic raw material powder

Country Status (1)

Country Link
JP (1) JPH0651570B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133152A (en) * 1993-11-04 1995-05-23 Nec Corp Production of piezoelectric porcelain composition
US7056443B2 (en) 2002-05-30 2006-06-06 Tdk Corporation Piezoelectric ceramic production method and piezoelectric element production method
CN114956814A (en) * 2022-05-16 2022-08-30 昆明理工大学 High-entropy tantalum/niobium ceramic with high sintering resistance, high CMAS corrosion resistance and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133152A (en) * 1993-11-04 1995-05-23 Nec Corp Production of piezoelectric porcelain composition
US7056443B2 (en) 2002-05-30 2006-06-06 Tdk Corporation Piezoelectric ceramic production method and piezoelectric element production method
CN114956814A (en) * 2022-05-16 2022-08-30 昆明理工大学 High-entropy tantalum/niobium ceramic with high sintering resistance, high CMAS corrosion resistance and preparation method thereof
CN114956814B (en) * 2022-05-16 2023-08-18 昆明理工大学 Sintering-resistant high-CMAS corrosion-resistant high-entropy tantalum/niobium ceramic and preparation method thereof

Also Published As

Publication number Publication date
JPH0651570B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
JPS6214490B2 (en)
JPH0193419A (en) Production of piezoelectric ceramics raw material powder
JPS6363511B2 (en)
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPS63218514A (en) Production of perovskite ceramic powder containing zirconium
JPH0798663B2 (en) Manufacturing method of pyroelectric porcelain for infrared sensor
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPS61174116A (en) Production of perovskite type oxide
JPH0159205B2 (en)
JP3319795B2 (en) Perovskite-type compound fine particle powder
JPH0481528B2 (en)
JPS63265811A (en) Manufacture of feedstock powder of easily sinterable perovskite composite oxide
JPH0456777B2 (en)
JPH01153533A (en) Production of raw material powder for piezoelectric ceramic
JPS62202821A (en) Production of powdery raw material of easily sintering composite perovskite by multi-stage wet process
JPS6265907A (en) Production of easy-to-sinter perovskite powder
JP2694851B2 (en) PLZT ceramic raw material powder manufacturing method
JPS62158117A (en) Production of calcinated powder of plzt
JPH0753579B2 (en) Method for manufacturing piezoelectric ceramic raw material powder
JPS62241826A (en) Production of fine powder of lead titanate zirconate-lead niobate manganate type
JPS63285146A (en) Production of perovskite ceramic
JPS62162623A (en) Production of fine powder of lead titanate zirconate
JPH02188427A (en) Inorganic composition
JPH0367965B2 (en)