JPH0481528B2 - - Google Patents

Info

Publication number
JPH0481528B2
JPH0481528B2 JP60231325A JP23132585A JPH0481528B2 JP H0481528 B2 JPH0481528 B2 JP H0481528B2 JP 60231325 A JP60231325 A JP 60231325A JP 23132585 A JP23132585 A JP 23132585A JP H0481528 B2 JPH0481528 B2 JP H0481528B2
Authority
JP
Japan
Prior art keywords
precipitate
added
component
solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60231325A
Other languages
Japanese (ja)
Other versions
JPS6291420A (en
Inventor
Kyoji Oodan
Takenobu Matsumura
Shinichi Shirasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP60231325A priority Critical patent/JPS6291420A/en
Publication of JPS6291420A publication Critical patent/JPS6291420A/en
Publication of JPH0481528B2 publication Critical patent/JPH0481528B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ペロブスカイト型構造化合物(以
下、ペロブスカイトという)およびその固溶体の
原料粉末の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a raw material powder of a perovskite structure compound (hereinafter referred to as perovskite) and a solid solution thereof.

ペロブスカイトおよびその固溶体は、圧電体、
誘電体、半導体、センサー、オプトエレクトロニ
クス材料等の機能性セラミツクスとして広範囲に
利用されている。最近はこの機能性セラミツクス
の高度化が進展し、その要請に対応できる易焼結
性、均一性、高嵩密度で、且つ低コストのペロブ
スカイトおよびその固溶体の原料粉末が多量に効
率的に製造できる技術の開発が要望されている。
Perovskites and their solid solutions are piezoelectric materials,
It is widely used as functional ceramics for dielectrics, semiconductors, sensors, optoelectronic materials, etc. Recently, the sophistication of functional ceramics has progressed, and raw material powders of perovskite and its solid solution that meet these demands can be produced efficiently in large quantities with easy sinterability, uniformity, high bulk density, and low cost. Development of technology is required.

従来、ペロブスカイトおよびその固溶体の原料
粉末の製造方法としては、乾式法と共沈法が知ら
れている。
Conventionally, dry methods and coprecipitation methods are known as methods for producing raw material powders of perovskites and solid solutions thereof.

乾式法は構成原料成分の化合物を乾式で混合
し、これを仮焼する方法である。しかし、この方
法では、均一組成の原料粉末が得難いため、優れ
た機能性を持つペロブスカイトおよびその固溶体
を得難いし、また焼結性も十分ではない。
The dry method is a method in which compounds of constituent raw materials are mixed in a dry method and then calcined. However, with this method, it is difficult to obtain a raw material powder with a uniform composition, so it is difficult to obtain a perovskite and its solid solution with excellent functionality, and the sinterability is also not sufficient.

共沈法はその構成成分のすべてを一緒にした混
合溶液を作り、これにアルカリ等の沈殿形成液を
添加して共沈させ、この共沈物を乾燥、仮焼させ
る方法である。
The coprecipitation method is a method in which a mixed solution is prepared by combining all of the constituent components, a precipitate-forming liquid such as an alkali is added to the mixed solution to cause coprecipitation, and this coprecipitate is dried and calcined.

この共沈法によると、均一性の優れた粉末が得
易いが、その均一性なるが故に、沈殿生成時、乾
燥時または仮焼時に粒子が凝結して二次粒子を形
成し、易焼結性になりにくい欠点があつた。
According to this coprecipitation method, it is easy to obtain powder with excellent uniformity, but because of its uniformity, the particles coagulate during precipitation, drying, or calcination to form secondary particles, making it easier to sinter. I had a flaw that made it difficult to become sexually sensitive.

また、共沈法では各成分の該沈殿形成液に対す
る沈殿形成能が同じでない場合は、例えば或成分
は100%沈殿を生成するが、他の成分は全部沈殿
を生成し得ないことが起り、所望組成となし難い
ことがあり、特に、Mg成分、Ni成分を100%沈
殿させるのは困難であつた。
In addition, in the coprecipitation method, if the precipitate forming ability of each component in the precipitate forming liquid is not the same, for example, a certain component may form 100% precipitate, but other components may not be able to form any precipitate. It was sometimes difficult to obtain the desired composition, and in particular, it was difficult to precipitate 100% of the Mg component and Ni component.

更に、ペロブスカイト機能材料には鉛とチタン
を同時に含むことが極めて多い。この様なものを
工業的に製造する場合、チタン原料として安価な
四塩化チタンを使用することが望ましい。しかし
これを共沈法に使用すると、四塩化チタン中の塩
素イオンが鉛と反応して白色沈殿を生成するた
め、使用し難い。この場合、四塩化チタンに代
え、オキシ硝酸チタン〔TiO(NO32〕を使用す
ればこの白色沈殿の生成を防ぐことができるが、
オキシ硝酸チタンは高価であるため工業生産とし
ては実用的でない。
Furthermore, perovskite functional materials very often contain lead and titanium at the same time. When producing such materials industrially, it is desirable to use inexpensive titanium tetrachloride as the titanium raw material. However, when this is used in the coprecipitation method, the chlorine ions in titanium tetrachloride react with lead to produce a white precipitate, making it difficult to use. In this case, the formation of this white precipitate can be prevented by using titanium oxynitrate [TiO(NO 3 ) 2 ] instead of titanium tetrachloride.
Titanium oxynitrate is expensive and therefore not practical for industrial production.

〔発明の目的〕[Purpose of the invention]

本発明は従来の共沈法における欠点をなくすこ
とができる方法、さらには、湿式法によつて、易
焼結性、均一性、低コスト、高嵩密度の四つの要
件を満足したペロブスカイトおよびその固溶体原
料粉末を効率よく製造することができる方法を提
供するにある。
The present invention uses a method that can eliminate the drawbacks of conventional coprecipitation methods, and furthermore, a perovskite that satisfies the four requirements of easy sinterability, uniformity, low cost, and high bulk density, and its perovskite. An object of the present invention is to provide a method for efficiently producing solid solution raw material powder.

〔発明の構成〕[Structure of the invention]

本発明者らは前記目的を達成すべく鋭意研究の
結果、本発明に到つた。
The present inventors have conducted extensive research to achieve the above object, and as a result, have arrived at the present invention.

本発明は、一般式x〔Pb(A1/3Nb2/3)O3〕−y
〔PbTiO3〕−z〔PbZrO3〕(ただし、AはMgおよ
び/またはNiを示し、x,yおよびzはモル%
を示し、x+y+z=100である。)で表わされる
ペロブスカイト型構造化合物(以下ペロブスカイ
トという)およびその固溶体の原料粉末の製造に
際し、Nb化合物を溶解または分散させた水溶液
と、沈殿形成液とを接触させてNb成分の沈殿を
生成させた後、 (1) PbおよびZrの化合物の水溶液を添加してPb
およびZr成分の沈殿を生成させ、次いでTi化
合物の水溶液を添加してTi成分の沈殿を生成
させ、または、 (2) TiおよびZrの化合物の水溶液を添加してTi
およびZr成分の沈殿を生成させ、次いでPb化
合物の水溶液を添加してPb成分の沈殿を生成
させ、 次いで、アルキルアミンの溶液とA成分の金属
元素を含む化合物の水溶液を添加してA成分の沈
殿を生成させ、得られた沈殿物を仮焼することを
特徴とする易焼結性ペロブスカイトおよびその固
溶体の原料粉末の製造方法に関するものである。
The present invention is based on the general formula x[Pb(A 1/3 Nb 2/3 )O 3 ]-y
[PbTiO 3 ]-z [PbZrO 3 ] (where A represents Mg and/or Ni, x, y and z are mol%
and x+y+z=100. ) When producing a raw material powder for a perovskite-type structural compound (hereinafter referred to as perovskite) and its solid solution, an aqueous solution in which an Nb compound is dissolved or dispersed is brought into contact with a precipitate forming solution to form a precipitate of the Nb component. After that, (1) add an aqueous solution of Pb and Zr compounds to
(2) Adding an aqueous solution of Ti and Zr compounds to form a precipitate of Ti component;
Then, an aqueous solution of a Pb compound is added to form a precipitate of the Pb component, and then a solution of an alkylamine and an aqueous solution of a compound containing a metal element of the A component are added to form a precipitate of the A component. The present invention relates to a method for producing raw material powder of easily sinterable perovskite and its solid solution, which is characterized by forming a precipitate and calcining the obtained precipitate.

本発明によると、従来の共沈法における欠点を
解消することができる。
According to the present invention, the drawbacks of conventional coprecipitation methods can be overcome.

本発明における一般式x〔Pb(A1/3Nb2/3)O3
−y〔PbTiO3〕−z〔PbZrO3〕で表わされるペロ
ブスカイトおよびその固溶体のA成分は、Mgお
よび/またはNiであり、Pb(A1/3Nb2/3)O3にお
けるPbと(A1/3Nb2/3)の成分の原子比〔Pb/
(A1/3Nb2/3)〕,PbTiO3におけるPbとTiの原子比
(Pb/Ti)、およびPbZrO3におけるPbとZrの原
子比(Pb/Zr)は通常1.0であるが、この原子比
を1.0より高い値、もしくは低い値にずらした不
定比性ペロブスカイトも含まれる。
General formula x in the present invention [Pb(A 1/3 Nb 2/3 ) O 3 ]
The A component of the perovskite and its solid solution represented by -y[PbTiO 3 ]-z [ PbZrO 3 ] is Mg and/or Ni , and the Pb and (A 1/3 Nb 2/3 ) component atomic ratio [Pb/
(A 1/3 Nb 2/3 )], the atomic ratio of Pb and Ti in PbTiO 3 (Pb/Ti) and the atomic ratio of Pb and Zr in PbZrO 3 (Pb/Zr) are usually 1.0, but this Nonstoichiometric perovskites with atomic ratios shifted to values higher or lower than 1.0 are also included.

また前記一般式のx,yおよびzはモル%を示
し、任意の数を表わし、用途に応じ種々の数値を
とりうるが、通常、xは5〜90、yは5〜80、z
は5〜80モル%が好適である。
Furthermore, x, y and z in the above general formula represent mol%, represent arbitrary numbers, and can take various values depending on the application, but usually x is 5 to 90, y is 5 to 80, and z
is preferably 5 to 80 mol%.

ペロブスカイトおよびその固溶体の構成成分で
あるA成分の金属元素を含む化合物やPb成分、
Nb成分、Ti成分およびZr成分の化合物の水溶液
を調製するための各成分化合物としては、特に限
定されないがそれらの水酸化物、炭酸塩、オキシ
塩、硫酸塩、硝酸塩、塩化物等の無機塩、酢酸
塩、しゆう酸塩等の有機酸塩、酸化物などがあ
る。これらは一般に水溶液として使用される。水
に可溶でない場合には酸を添加して可溶させれば
よい。
A compound containing a metal element of A component, which is a component of perovskite and its solid solution, and a Pb component,
The component compounds for preparing an aqueous solution of Nb component, Ti component, and Zr component compounds include, but are not particularly limited to, their inorganic salts such as hydroxides, carbonates, oxysalts, sulfates, nitrates, and chlorides. , organic acid salts such as acetates and oxalates, and oxides. These are generally used as aqueous solutions. If it is not soluble in water, an acid may be added to make it soluble.

沈殿形成液としては、アンモニア、炭酸アンモ
ニウム、苛性アルカリ等が挙げられる。
Examples of the precipitation forming liquid include ammonia, ammonium carbonate, caustic alkali, and the like.

構成成分の沈殿を生成するには沈殿形成液を撹
拌しながら、沈殿形成液に、各構成成分の水溶液
を添加してもよく、その反対に添加してもよい。
添加に際しては液を十分に撹拌しながら行うこと
が好ましい。
To generate a precipitate of the constituent components, an aqueous solution of each constituent component may be added to the precipitate forming liquid while stirring the precipitate forming liquid, or vice versa.
The addition is preferably carried out while sufficiently stirring the liquid.

本発明に使用するアルキルアミンとしては、例
えばメチルアミン、エチルアミン、プロピルアミ
ン、ブチルアミンなどの低級アルキル基を有する
第一アミン、シクロヘキシルアミンの如き第一ア
ミン、ジメチルアミン、ジエチルアミンなどの低
級アルキル基を有する第二アミン、トリエチルア
ミンの如き低級アルキル基を有する第三アミンの
ようなA成分を完全に沈殿させることができる
pKaが10〜11のアルキルアミンを挙げることがで
きる。
Examples of the alkylamine used in the present invention include primary amines having a lower alkyl group such as methylamine, ethylamine, propylamine, and butylamine; primary amines having a lower alkyl group such as cyclohexylamine; and primary amines having a lower alkyl group such as dimethylamine and diethylamine. Component A such as secondary amines and tertiary amines with lower alkyl groups such as triethylamine can be completely precipitated.
Mention may be made of alkylamines with a pKa of 10-11.

アルキルアミンの使用量は、A成分化合物の全
モル数に対して、0.5〜20倍モルが好適である。
アルキルアミンを添加するにあたつては、NH+ 4
の濃度が過度に高いと各構成成分を完全に沈殿さ
せない場合も起こるので、沈殿含有溶液の上澄液
を除去した後、新たに水を加えるという操作を数
回行うなどしてNH+ 4の濃度を0.3モル/以下に
することが好ましい。
The amount of alkylamine used is preferably 0.5 to 20 times the total number of moles of the component A compound.
When adding alkylamine, NH + 4
If the concentration of NH + 4 is too high, it may not be possible to completely precipitate each constituent component . Preferably, the concentration is 0.3 mol/or less.

アルキルアミンの溶液とA成分の金属元素を含
む化合物の水溶液を加えるにあたつては、アルキ
ルアミンの水および/またはアルコール溶液を先
に加えても、A成分化合物の水溶液を先に加えて
ても、あるいは同時に加えてもよく、また多段に
加えてもよい。またNH+ 4イオンがない場合には
最初から添加しておいてもよい。
When adding a solution of an alkylamine and an aqueous solution of a compound containing a metal element as component A, even if the aqueous and/or alcohol solution of the alkylamine is added first, the aqueous solution of the compound as component A must be added first. They may be added simultaneously, or in multiple stages. Further, if NH + 4 ions are not present, they may be added from the beginning.

また沈殿の生成に際し、例えばNb,Pb,Tiま
たはZr成分の沈殿を生成した後、以後の工程を
妨害する陰イオンを除去するために水洗した後、
沈殿物を新しい水またはアルコール中に分散し
て、次の工程に進めることが望ましい。
In addition, when forming a precipitate, for example, after forming a precipitate of Nb, Pb, Ti or Zr components, after washing with water to remove anions that interfere with subsequent steps,
It is desirable to disperse the precipitate in fresh water or alcohol before proceeding to the next step.

更にまた、Nb成分とPbおよびZr成分の沈殿、
あるいはNb成分とTiおよびZr成分の沈殿を生成
させるにあたり、沈殿形成液の種類と濃度、また
沈殿形成時の温度を適宜調節することにより得ら
れる粒子形状をコントロールすることができる。
Furthermore, precipitation of Nb component and Pb and Zr components,
Alternatively, when forming a precipitate of the Nb component and Ti and Zr components, the shape of the resulting particles can be controlled by appropriately adjusting the type and concentration of the precipitate forming liquid and the temperature during precipitate formation.

Pb,Ti,Zr,NbおよびA成分のほかに、ペロ
ブスカイトの焼結性や特性を制御するための微量
成分を添加する場合は、前記各成分の溶液を調製
する際、それらの微量成分を添加させてもよい。
In addition to Pb, Ti, Zr, Nb, and A components, if trace components are added to control the sinterability and properties of perovskite, these trace components are added when preparing a solution of each of the above components. You may let them.

また前記したようにA成分およびNb成分の沈
殿の生成を必要に応じ、多段にしてもよく、更に
交互に沈殿させてもよい。
Further, as described above, the A component and the Nb component may be precipitated in multiple stages, or may be precipitated alternately, if necessary.

前記方法により得られた沈殿物は通常の方法に
より洗浄、ろ別、乾燥した後、仮焼する。乾燥
は、大気圧下で行なつても減圧下で行なつてもよ
い。
The precipitate obtained by the above method is washed, filtered, dried, and then calcined by a conventional method. Drying may be carried out under atmospheric pressure or under reduced pressure.

仮焼温度としては、過度に低いと沈殿物の脱
水、熱分解が不十分であり、また過度に高いと粉
末が粗大化するので、通常、仮焼温度は500〜
1200℃の範囲が好適である。
If the calcination temperature is too low, dehydration and thermal decomposition of the precipitate will be insufficient, and if it is too high, the powder will become coarse.
A range of 1200°C is preferred.

〔実施例〕〔Example〕

以下に実施例および比較例を示し、さらに詳し
く本発明について説明する。
EXAMPLES The present invention will be explained in more detail by showing Examples and Comparative Examples below.

実施例 1 50〔Pb(Mg1/3Nb2/3)O3〕−36.5〔PbTiO3〕 −13.5〔PbZrO3〕 酸化ニオブ(Nb2O5)粉末4.430gを水100ml中
に分散し、さらに6N−アンモニア水1000mlを添
加した。これに、硝酸鉛〔Pb(NO32〕33.12gと
オキシ硝酸ジルコニウム〔ZrO(NO32〕3.063g
を1000mlの水に溶解した溶液を加えて沈殿を生成
した。さらに四塩化チタン(TiCl4)6.925gを水
350mlに溶解した溶液を加えて沈殿を生成させた。
沈殿物含有の液を静置し、上澄液を除去し、新た
に水を加えて十分撹拌した後、再度静置して上澄
液を除去するという傾瀉操作を4回繰り返した溶
液に、ジエチルアミン25gを水50mlに加えた水溶
液を加えた。この液に硝酸マグネシウム〔Mg
(NO32・6H2O〕4.273gを水300mlに溶解した溶
液を徐々に加えて沈殿を生成させた。この沈殿物
を洗浄、ろ別、乾燥した後、組成分析したとこ
ろ、仕込みの元素組成と同一であつた。さらにこ
の沈殿物を750℃で2時間仮焼した。この粉末を
エタノール存在下、ボールミル処理し、その一部
分を透過型電子顕微鏡により粒子を観察したとこ
ろ、粒径は0.2μm程度で均一であつた。
Example 1 50 [Pb (Mg 1/3 Nb 2/3 ) O 3 ] −36.5 [PbTiO 3 ] −13.5 [PbZrO 3 ] 4.430 g of niobium oxide (Nb 2 O 5 ) powder was dispersed in 100 ml of water, Furthermore, 1000 ml of 6N ammonia water was added. In addition, 33.12 g of lead nitrate [Pb(NO 3 ) 2 ] and 3.063 g of zirconium oxynitrate [ZrO(NO 3 ) 2 ]
A solution prepared by dissolving this in 1000 ml of water was added to form a precipitate. Furthermore, add 6.925 g of titanium tetrachloride (TiCl 4 ) to water.
A solution dissolved in 350 ml was added to form a precipitate.
The solution was decanted four times by allowing the precipitate-containing liquid to stand still, removing the supernatant liquid, adding fresh water and stirring thoroughly, and then allowing it to stand again and removing the supernatant liquid. An aqueous solution of 25 g of diethylamine in 50 ml of water was added. Add magnesium nitrate [Mg
A solution of 4.273 g of (NO 3 ) 2 ·6H 2 O] dissolved in 300 ml of water was gradually added to form a precipitate. After washing, filtering, and drying this precipitate, the composition was analyzed and found to be the same as the original elemental composition. Further, this precipitate was calcined at 750°C for 2 hours. This powder was subjected to a ball mill treatment in the presence of ethanol, and a portion of the powder was observed using a transmission electron microscope to find that the particle size was uniform at about 0.2 μm.

上記粉末にポリビニルアルコール(以下、
PVAと略記)を0.8wt%添加して1t/cm2で成型
し、鉛雰囲気下、1150℃で2時間焼結した結果、
その密度は7.98g/c.c.であつた。
Add polyvinyl alcohol (hereinafter referred to as
As a result of adding 0.8wt% of PVA (abbreviated as PVA) and molding at 1t/ cm2 , and sintering at 1150℃ for 2 hours in a lead atmosphere,
Its density was 7.98 g/cc.

実施例 2 15〔Pb(Ni1/3Nb2/3)O3〕−45〔PbTiO3〕 −40〔PbZrO3〕 酸化ニオブ粉末13.300gを3Nのアンモニア水
500mlに分散させた。これに硝酸鉛33.123gとオ
キシ硝酸ジルコニウム9.24gを水200mlに溶解し
た溶液を加えて沈殿を生成させた。さらに、四塩
化チタン8.538gを水100mlに溶解した溶液を加え
て沈殿を生成させた。この沈殿物を4回傾瀉操作
を繰り返して溶解NH+ 4イオンを除去した後、ジ
エチルアミン25gに水を加えて50mlにした溶液を
加えた。この液に硝酸ニツケル〔Ni(NO32
6H2O〕1.454gを水100mlに溶解した溶液を加え
て沈殿を生成した。この沈殿物を洗浄、ろ別、乾
燥した後、組成分析したところ、仕込みの元素組
成と同一であつた。この沈殿物を750℃で2時間
仮焼した。この粉末にエタノールを加えてボール
ミル処理し、その一部分を透過型電子顕微鏡によ
り粒子を観察したところ、粒径約は0.18μmで揃
つた粒子であつた。
Example 2 15 [Pb (Ni 1/3 Nb 2/3 ) O 3 ] −45 [PbTiO 3 ] −40 [PbZrO 3 ] 13.300 g of niobium oxide powder was added to 3N ammonia water.
Dispersed in 500ml. A solution of 33.123 g of lead nitrate and 9.24 g of zirconium oxynitrate dissolved in 200 ml of water was added to form a precipitate. Furthermore, a solution of 8.538 g of titanium tetrachloride dissolved in 100 ml of water was added to form a precipitate. This precipitate was decanted four times to remove dissolved NH + 4 ions, and then a solution prepared by adding water to 25 g of diethylamine to make 50 ml was added. Add nickel nitrate [Ni(NO 3 ) 2 .
A solution of 1.454 g of 6H 2 O] dissolved in 100 ml of water was added to form a precipitate. After washing, filtering, and drying this precipitate, the composition was analyzed and found to be the same as the original elemental composition. This precipitate was calcined at 750°C for 2 hours. Ethanol was added to this powder and it was subjected to ball milling, and a portion of the powder was observed using a transmission electron microscope to find that the particles had a uniform particle size of approximately 0.18 μm.

この粉末にPVAを0.8wt%添加して、1t/cm2
成型し、鉛雰囲気下、1150℃で2時間焼結した結
果、その密度は7.99g/c.c.であつた。
0.8 wt% of PVA was added to this powder, molded at 1 t/cm 2 and sintered at 1150° C. for 2 hours in a lead atmosphere, resulting in a density of 7.99 g/cc.

実施例 3 15〔Pb(Mg1/3Nb2/3)O3〕−45〔PbTiO3〕 −40〔PbZrO3〕 実施例2において硝酸ニツケル1.454gを硝酸
マグネシウム1.282gに代えたほかは、実施例2
と同様な方法、操作を行ない仮焼粉末焼結体を得
た。
Example 3 15 [Pb (Mg 1/3 Nb 2/3 ) O 3 ] −45 [PbTiO 3 ] −40 [PbZrO 3 ] In Example 2, except that 1.454 g of nickel nitrate was replaced with 1.282 g of magnesium nitrate, Example 2
A calcined powder sintered body was obtained using the same method and operation as above.

沈殿物の組成元素分析は仕込みの元素組成と同
一であり、また焼結体の密度は7.98g/c.c.であつ
た。
Elemental analysis of the composition of the precipitate revealed that the elemental composition was the same as that of the charged material, and the density of the sintered body was 7.98 g/cc.

実施例 4 50〔Pb(Mg1/6Ni2/3)O3〕−36.5〔PbTiO3〕 −13.5〔PbZrO3〕 実施例1において硝酸マグネシウム4.273gを
硝酸マグネシウム〔Mg(NO32・6H2O〕2.136g
と硝酸ニツケル〔Ni(NO32・6H2O〕2.423gに
代えたほかは、実施例1と同様な操作を行ない仮
焼粉末を得た。この粉末にエタノールを加えてボ
ールミル処理し、その一部分を透過型電子顕微鏡
により粒子を観察したところ、粒径は約0.19μm
で揃つた粒子であつた。
Example 4 50 [Pb (Mg 1/6 Ni 2/3 ) O 3 ] -36.5 [PbTiO 3 ] -13.5 [PbZrO 3 ] In Example 1, 4.273 g of magnesium nitrate was replaced with magnesium nitrate [Mg (NO 3 ) 2 . 6H 2 O〕2.136g
A calcined powder was obtained by carrying out the same operation as in Example 1, except that 2.423 g of nickel nitrate [Ni(NO 3 ) 2.6H 2 O] was used. This powder was ball milled with ethanol added, and a portion of it was observed using a transmission electron microscope, and the particle size was approximately 0.19 μm.
It was a particle that was aligned.

この粉末にPVAを0.8wt%添加して、1t/cm2
成型し、鉛雰囲気下、1150℃で2時間焼結した結
果、その密度は7.97g/c.c.であつた。
0.8 wt% of PVA was added to this powder, molded at 1 t/cm 2 , and sintered at 1150° C. for 2 hours in a lead atmosphere, resulting in a density of 7.97 g/cc.

比較例 1 実施例1において、ジエチルアミンを共存させ
なかつた以外は、実施例1と同様な方法、操作を
行ない沈殿物を生成させた。この沈殿物の組成を
調べたところ、Mgは仕込みの2/3の程度しか含
有されていかつた。
Comparative Example 1 A precipitate was produced in the same manner as in Example 1, except that diethylamine was not present. When the composition of this precipitate was investigated, it was found that it contained only about two-thirds of the amount of Mg.

比較例 2 実施例2において、ジエチルアミンの溶液を
6N−アンモニア水500mlに代えたほかは、実施例
2と同様な方法、操作を行ない沈殿物を生成させ
た。この沈殿物の組成を調べたところ、Niはほ
とんど含有されていなかつた。
Comparative Example 2 In Example 2, the diethylamine solution was
A precipitate was produced by the same method and operation as in Example 2, except that 500 ml of 6N ammonia water was used. When the composition of this precipitate was investigated, it was found that it contained almost no Ni.

実施例 5 50〔Pb(Mg1/3Nb2/3)O3〕−36.5〔PbTiO3〕 −13.5〔PbZrO3〕 塩化ニオブ(NbCl5)9.003gを水100ml中に溶
解し、さらに6N−アンモニア水1000mlを添加し
た。これに、硝酸鉛〔Pb(NO32〕33.12gとオキ
シ硝酸ジルコニウム〔ZrO(NO32〕3.063gを
1000mlの水に溶解した溶液を加えて沈殿を生成さ
せた。さらに四塩化チタン6.925gを水350mlに溶
解した溶液を加えて沈殿を生成させた。沈殿物含
有の液を静置し、上澄液を除去し、新たに水を加
えて十分撹拌した後、再度静置して上澄液を除去
するという傾瀉操作を4回繰り返した溶液に、ジ
エチルアミン25gを水50mlに加えた水溶液を加え
た。この液硝酸マグネシウム〔Mg(NO32
6H2O〕4.273gを水300mlに溶解した溶液を徐々
に加えて沈殿を生成させた。この沈殿物を洗浄、
ろ別、乾燥した後、組成分析したところ、仕込み
の元素組成と同一であつた。さらにこの沈殿物を
750℃で2時間仮焼した。この粉末をエタノール
存在下、ボールミル処理し、その一部分を透過型
電子顕微鏡により粒子を観察したところ、粒径は
0.2μm程度で均一であつた。
Example 5 50 [Pb (Mg 1/3 Nb 2/3 ) O 3 ] −36.5 [PbTiO 3 ] −13.5 [PbZrO 3 ] 9.003 g of niobium chloride (NbCl 5 ) was dissolved in 100 ml of water, and further 6N− 1000ml of aqueous ammonia was added. To this, 33.12 g of lead nitrate [Pb(NO 3 ) 2 ] and 3.063 g of zirconium oxynitrate [ZrO(NO 3 ) 2 ] were added.
A solution dissolved in 1000 ml of water was added to form a precipitate. Further, a solution of 6.925 g of titanium tetrachloride dissolved in 350 ml of water was added to form a precipitate. The solution was decanted four times by allowing the precipitate-containing liquid to stand still, removing the supernatant liquid, adding fresh water and stirring thoroughly, and then allowing it to stand again and removing the supernatant liquid. An aqueous solution of 25 g of diethylamine in 50 ml of water was added. This liquid magnesium nitrate [Mg(NO 3 ) 2 .
A solution of 4.273 g of 6H 2 O] dissolved in 300 ml of water was gradually added to form a precipitate. Wash this precipitate,
After filtering and drying, the composition was analyzed and found to be the same as the original elemental composition. Furthermore, this precipitate
It was calcined at 750°C for 2 hours. This powder was ball-milled in the presence of ethanol, and a portion of it was observed using a transmission electron microscope, and the particle size was found to be
It was uniform at about 0.2 μm.

上記粉末にポリビニールアルコール(以下、
PVAと略記)を0.8wt%添加して1t/cm2で成型
し、鉛雰囲気下、1130℃で2時間焼結した結果、
その密度7.99g/c.c.であつた。
Add polyvinyl alcohol (hereinafter referred to as
As a result of adding 0.8wt% of PVA (abbreviated as PVA) and molding at 1t/ cm2 , and sintering at 1130℃ for 2 hours in a lead atmosphere,
Its density was 7.99 g/cc.

実施例 6 50〔Pb(Mg1/3Nb2/3)O3〕−36.5〔PbTiO3〕 −13.5〔PbZrO3〕 酸化ニオブ(Nb2O5)粉末4.430gを水100ml中
に分散し、さらに6N−アンモニア水1000mlを添
加した。これに四塩化チタン6.925gとオキシ硝
酸ジルコニウム3.063gを水500mlに溶解した溶液
を加えて沈殿を生成させた。沈殿物含有の液を静
置し、上澄液を除去し、新たに6N−アンモニア
水500mlを添加した。これに硝酸塩33.12gを水
300mlに溶塩した溶液を加えて沈殿を生成させた。
沈殿物含有の液を静置し、上澄液を除去し、新た
に水を加えて十分撹拌した後、再度静置して上澄
液を除去するという傾瀉操作を4回繰り返した溶
液に、ジエチルアミン25gを水50mlに加えた水溶
液を加えた。この液に硝酸マグネシウム〔Mg
(NO32・6H2O〕4.273gを水300mlに溶解した溶
液を徐々に加えて沈殿を生成させた。この沈殿物
を洗浄、ろ別、乾燥した後、組成分析したとこ
ろ、仕込みの元素組成と同一であつた。さらにこ
の沈殿物を750℃で2時間仮焼した。この粉末を
エタノール存在下、ボールミル処理し、その一部
分を透過型電子顕微鏡により粒子を観察したとこ
ろ、粒径は0.2μm程度で均一であつた。
Example 6 50 [Pb (Mg 1/3 Nb 2/3 ) O 3 ] −36.5 [PbTiO 3 ] −13.5 [PbZrO 3 ] 4.430 g of niobium oxide (Nb 2 O 5 ) powder was dispersed in 100 ml of water, Furthermore, 1000 ml of 6N ammonia water was added. A solution of 6.925 g of titanium tetrachloride and 3.063 g of zirconium oxynitrate dissolved in 500 ml of water was added to form a precipitate. The precipitate-containing liquid was allowed to stand, the supernatant liquid was removed, and 500 ml of 6N aqueous ammonia was added. Add 33.12g of nitrate to this and water.
A solution containing 300 ml of dissolved salt was added to form a precipitate.
The solution was decanted four times by allowing the precipitate-containing liquid to stand still, removing the supernatant liquid, adding fresh water and stirring thoroughly, and then allowing it to stand again and removing the supernatant liquid. An aqueous solution of 25 g of diethylamine in 50 ml of water was added. Add magnesium nitrate [Mg
A solution of 4.273 g of (NO 3 ) 2 ·6H 2 O] dissolved in 300 ml of water was gradually added to form a precipitate. After washing, filtering, and drying this precipitate, the composition was analyzed and found to be the same as the original elemental composition. Further, this precipitate was calcined at 750°C for 2 hours. This powder was subjected to a ball mill treatment in the presence of ethanol, and a portion of the powder was observed using a transmission electron microscope to find that the particle size was uniform at about 0.2 μm.

上記粉末にポリビニルアルコール(以下、
PVAと略記)を0.8wt%添加して1t/cm2で成型
し、鉛雰囲気下、1150℃で2時間焼結した結果、
その密度は7.95g/c.c.であつた。
The above powder is mixed with polyvinyl alcohol (hereinafter referred to as
As a result of adding 0.8wt% of PVA (abbreviated as PVA) and molding at 1t/ cm2 , and sintering at 1150℃ for 2 hours in a lead atmosphere,
Its density was 7.95 g/cc.

〔発明の効果〕〔Effect of the invention〕

一般式x〔Pb(A1/3Nb2/3)O3〕−y〔PbTiO3〕−
z〔PbZrO3〕で表わされるペロブスカイトおよび
その固溶体の原料粉末の製造に際し、従来の共沈
法における全成分を同時に共沈させる方法とは異
なり、Nb,Pb,TiおよびZr成分の沈殿を逐次に
生成させ、次いでアルキルアミンの存在下にA成
分を沈殿させるため、従来法では100%沈殿させ
ることが困難であつたA成分やその他の全成分を
完全に沈殿させることができ、また二相以上の相
が高度に相互分散した状態の沈殿物が得られる結
果、沈殿生成時に凝集、もしくは乾燥、仮焼時に
凝結を起こしにくく、高嵩密度の易焼結性の粉末
を再現性良く製造することができる。
General formula x [Pb (A 1/3 Nb 2/3 ) O 3 ]-y [PbTiO 3 ]-
When producing raw material powder of perovskite and its solid solution represented by z[PbZrO 3 ], unlike the conventional coprecipitation method in which all components are coprecipitated at the same time, Nb, Pb, Ti, and Zr components are precipitated sequentially. Since component A is then precipitated in the presence of an alkylamine, component A and all other components, which were difficult to precipitate 100% with conventional methods, can be completely precipitated. As a result of obtaining a precipitate in which the phases are highly interdispersed, it is difficult to cause agglomeration during precipitate formation, drying, or agglomeration during calcination, and it is possible to produce easily sinterable powder with high bulk density with good reproducibility. I can do it.

また本プロセスでは各相が高度に相互分散して
おり、従つてこのものを仮焼したものは十分な均
一性が達成される。さらにプロセスが簡単である
ことに由来して、再現性良く低コストで易焼結性
の粉末が得られる等の優れた効果を有する。
In addition, in this process, each phase is highly mutually dispersed, so that the calcined material achieves sufficient uniformity. Further, since the process is simple, it has excellent effects such as being able to obtain easily sinterable powder with good reproducibility and at low cost.

Claims (1)

【特許請求の範囲】 1 一般式x〔Pb(A1/3Nb2/3)O3〕−y〔PbTiO3
−z〔PbZrO3〕(ただし、AはMgおよび/または
Niを示し、x,yおよびzはモル%を示し、x
+y+z=100である。)で表わされるペロブスカ
イト型構造化合物(以下ペロブスカイトという)
およびその固溶体の原料粉末の製造に際し、Nb
化合物を溶解または分散させた水溶液と、沈殿形
成液とを接触させてNb成分の沈殿を生成させた
後、 (1) PbおよびZrの化合物の水溶液を添加してPb
およびZr成分の沈殿を生成させ、次いでTi化
合物の水溶液を添加してTi成分の沈殿を生成
させるか、あるいは (2) TiおよびZrの化合物の水溶液を添加してTi
およびZr成分の沈殿を生成させ、次いでPb化
合物の水溶液を添加してPb成分の沈殿を生成
させ、 次いで、アルキルアミンの溶液とA成分の金属
元素を含む化合物の水溶液を添加してA成分の沈
殿を生成させ、得られた沈殿物を仮焼することを
特徴とする易焼結性ペロブスカイトおよびその固
溶体の原料粉末の製造方法。
[Claims] 1 General formula x [Pb (A 1/3 Nb 2/3 ) O 3 ]-y [PbTiO 3 ]
−z[PbZrO 3 ] (A is Mg and/or
Ni is shown, x, y and z are mol%, x
+y+z=100. ) (hereinafter referred to as perovskite)
When producing raw material powder for Nb and its solid solution, Nb
After the aqueous solution in which the compound is dissolved or dispersed is brought into contact with the precipitate forming solution to form a precipitate of the Nb component, (1) an aqueous solution of Pb and Zr compounds is added to form a Pb
or (2) adding an aqueous solution of Ti and Zr compounds to form a precipitate of the Ti component.
Then, an aqueous solution of a Pb compound is added to form a precipitate of the Pb component, and then a solution of an alkylamine and an aqueous solution of a compound containing a metal element of the A component are added to form a precipitate of the A component. 1. A method for producing raw material powder of easily sinterable perovskite and its solid solution, which comprises generating a precipitate and calcining the obtained precipitate.
JP60231325A 1985-10-18 1985-10-18 Production of raw powder for easy-to-sinter composite perovskite by multistage wet method Granted JPS6291420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60231325A JPS6291420A (en) 1985-10-18 1985-10-18 Production of raw powder for easy-to-sinter composite perovskite by multistage wet method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60231325A JPS6291420A (en) 1985-10-18 1985-10-18 Production of raw powder for easy-to-sinter composite perovskite by multistage wet method

Publications (2)

Publication Number Publication Date
JPS6291420A JPS6291420A (en) 1987-04-25
JPH0481528B2 true JPH0481528B2 (en) 1992-12-24

Family

ID=16921864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60231325A Granted JPS6291420A (en) 1985-10-18 1985-10-18 Production of raw powder for easy-to-sinter composite perovskite by multistage wet method

Country Status (1)

Country Link
JP (1) JPS6291420A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013810A1 (en) * 1991-01-31 1992-08-20 Nippon Soda Co., Ltd. Dielectric ceramic composition

Also Published As

Publication number Publication date
JPS6291420A (en) 1987-04-25

Similar Documents

Publication Publication Date Title
JPS6214489B2 (en)
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPH0159967B2 (en)
JPH0367964B2 (en)
JPH0481528B2 (en)
JP2767584B2 (en) Method for producing fine perovskite ceramic powder
JPS623004A (en) Production of easily sintering perovskite raw material powder by wet method
JPH0210089B2 (en)
JPS6363511B2 (en)
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
JPH0159205B2 (en)
JPH0193419A (en) Production of piezoelectric ceramics raw material powder
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPH0556287B2 (en)
JPS62202821A (en) Production of powdery raw material of easily sintering composite perovskite by multi-stage wet process
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPH0456777B2 (en)
JPS6265907A (en) Production of easy-to-sinter perovskite powder
JPH013019A (en) Method for producing perovskite ceramic fine powder
JPS62226812A (en) Production of easy-to-sinter perovskite powder
JPH0367965B2 (en)
JPS6325223A (en) Production of ceramic raw material powder
JPH0457614B2 (en)
JPH01122907A (en) Production of perovskite oxide powder
JPH032818B2 (en)