JPH0457614B2 - - Google Patents

Info

Publication number
JPH0457614B2
JPH0457614B2 JP62021737A JP2173787A JPH0457614B2 JP H0457614 B2 JPH0457614 B2 JP H0457614B2 JP 62021737 A JP62021737 A JP 62021737A JP 2173787 A JP2173787 A JP 2173787A JP H0457614 B2 JPH0457614 B2 JP H0457614B2
Authority
JP
Japan
Prior art keywords
precipitate
solution
component
added
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62021737A
Other languages
Japanese (ja)
Other versions
JPS63190718A (en
Inventor
Kyoji Oodan
Kosuke Ito
Masaru Kurahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62021737A priority Critical patent/JPS63190718A/en
Publication of JPS63190718A publication Critical patent/JPS63190718A/en
Publication of JPH0457614B2 publication Critical patent/JPH0457614B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ペロブスカイトおよびその固溶体の
原料粉末の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing raw material powders of perovskites and solid solutions thereof.

ペロブスカイトおよびその固溶体は、圧電体、
誘電体、半導体、センサー、オプトエレクトロニ
クス材料等の機能性をセラミツクスとして広範囲
に利用されている。最近はこの機能性をより高度
にすることが望まれており、その要請に対応でき
る易焼結性、均一性、高嵩密度で、且つ低コスト
のペロブスカイトおよびその固溶体の原料粉末が
多量に効率的に製造できる技術の開発が要望され
ている。
Perovskites and their solid solutions are piezoelectric materials,
Ceramics are widely used for functionality such as dielectrics, semiconductors, sensors, and optoelectronic materials. Recently, there has been a desire to further improve this functionality, and raw material powders of perovskite and its solid solution that are easy to sinter, have uniformity, have high bulk density, and are low cost are available in large quantities to meet this demand. There is a need for the development of technology that allows for efficient manufacturing.

(従来技術およびその問題点) 従来、ペロブスカイトの原料粉末の製造方法と
しては、乾式法、共沈法および多段湿式法が知ら
れている。
(Prior Art and its Problems) Dry methods, coprecipitation methods, and multi-stage wet methods are conventionally known as methods for producing perovskite raw material powders.

乾式法は構成原料成分の化合物を乾式で混合
し、これを仮焼する方法である。しかし、この方
法では、均一組成の原料粉末が得難いため、優れ
た機能性を持つペロブスカイトを得難いし、また
焼結性も十分ではない。
The dry method is a method in which compounds of constituent raw materials are mixed in a dry method and then calcined. However, with this method, it is difficult to obtain a raw material powder with a uniform composition, so it is difficult to obtain a perovskite with excellent functionality, and the sinterability is also not sufficient.

共沈法はその構成成分のすべてを一緒にした混
合溶液を作り、これにアルカリ等の沈澱形成液を
添加して共沈させ、共沈物を乾燥、仮焼させる方
法である。
The coprecipitation method is a method in which a mixed solution is prepared by combining all of the constituent components, a precipitate-forming liquid such as an alkali is added to the mixed solution to cause coprecipitation, and the coprecipitate is dried and calcined.

この共沈法によると、均一性の優れた粉末が得
易いが、その均一性なるが故に、沈澱生成時、乾
燥時または仮焼時に粒子が凝結して二次粒子を形
成し、焼結しにくい欠点があつた。
According to this coprecipitation method, it is easy to obtain a powder with excellent uniformity, but because of its uniformity, the particles coagulate to form secondary particles during precipitate formation, drying, or calcination, and are susceptible to sintering. It had some serious flaws.

また、共沈法では各成分の該沈澱形成液に対す
る沈澱形成能が同じでない場合は、例えば或成分
は実質的に100%沈澱を生成するが、他の成分は
部分的にしか沈澱を生成し得ないことがあり、所
望組成のものを得ることが困難であつた。
In addition, in the coprecipitation method, if the precipitate forming ability of each component in the precipitate forming solution is not the same, for example, one component will form substantially 100% of the precipitate, while another component will only partially form a precipitate. Therefore, it was difficult to obtain a product with a desired composition.

多段湿式法は特開昭61−53113号公報、特開昭
61−53115号公報等に記載されているように、各
成分を段階的に沈澱させることにより、共沈法に
おける前記欠点を解決したものである。しかしな
がら、前記多段湿式法においてもMg成分、Zn成
分、Ni成分、Co成分を実質的に100%沈澱させる
のは困難であつた。
The multi-stage wet method is disclosed in JP-A No. 61-53113 and JP-A-Sho.
As described in Publication No. 61-53115, etc., the above-mentioned drawbacks of the coprecipitation method are solved by precipitating each component in stages. However, even in the multi-stage wet method, it was difficult to precipitate substantially 100% of the Mg component, Zn component, Ni component, and Co component.

(発明の目的) 本発明の目的は、前記多段湿式法を改良し、す
べての成分を完全に沈澱させて所望組成のペロブ
スカイトおよびその固溶体の原料粉末を製造する
ことができる方法を提供することである。
(Objective of the Invention) An object of the present invention is to provide a method that improves the multi-stage wet method and can completely precipitate all the components to produce a raw material powder of perovskite and its solid solution having a desired composition. be.

本発明の他の目的は、易焼結性、均一性、低コ
スト、高嵩密度の四つの要件を満足したペロブス
カイトおよびその固溶体の原料粉末を効率よく製
造することができる方法を提供することである。
Another object of the present invention is to provide a method for efficiently producing raw material powder of perovskite and its solid solution that satisfies the four requirements of easy sinterability, uniformity, low cost, and high bulk density. be.

(問題点を解決するための技術的手段) 本発明者らは前記目的を達成すべく鋭意研究の
結果、本発明に到つた。
(Technical Means for Solving the Problems) The present inventors have conducted intensive research to achieve the above object, and as a result, have arrived at the present invention.

本発明は一般式 X[Pb(A1/3B2/3)O3]−y(PbTiO3)−z
(PbZrO3)(ただし、AはMg、Zn、Ni、Coの少
なくとも一種を示し、BはNb、Taの少なくとも
一種を示し、x、yおよびzはモル%を示し、x
+y+z=100である。)で表されるペロブスカイ
トおよびその固溶体の原料粉末の製造に際し、
B、Pb、Ti、およびZrの各成分溶液を沈澱形成
液と接触させて各成分の沈澱を逐次段階的に生成
させた後、沈澱含有液中の沈澱形成剤から生成し
たイオンの濃度が0.2モル/l以下となるように
沈澱を洗浄し、次いで、沈澱形成液で沈澱含有液
のPHを11.5以上とした後、A成分の水酸化物の溶
液を添加し、A成分を含む沈澱物を形成させ、得
られた沈澱物を仮焼することを特徴とする易焼結
性の複合ペロブスカイトの原料粉末の製造方法に
関するものである。
The present invention is based on the general formula :
(PbZrO 3 ) (where A represents at least one of Mg, Zn, Ni, and Co; B represents at least one of Nb and Ta; x, y, and z represent mol%; x
+y+z=100. ) When producing the raw material powder of perovskite and its solid solution,
After contacting each component solution of B, Pb, Ti, and Zr with a precipitate-forming solution to generate precipitates of each component in a stepwise manner, the concentration of ions generated from the precipitate-forming agent in the precipitate-containing solution was 0.2. The precipitate is washed so that the concentration is mol/l or less, and then the pH of the precipitate-containing liquid is adjusted to 11.5 or higher with a precipitate-forming solution, and then a solution of the hydroxide of component A is added to remove the precipitate containing component A. The present invention relates to a method for producing an easily sinterable composite perovskite raw material powder, which comprises forming and calcining the obtained precipitate.

本発明において、「溶液」とは可溶物を溶解さ
せた溶液または不溶物を分散させた懸濁液を意味
する。
In the present invention, the term "solution" refers to a solution in which soluble substances are dissolved or a suspension in which insoluble substances are dispersed.

本発明における一般式 X[Pb(A1/3B2/3)O3]−y(PbTiO3)−z
(PbZrO3)で表されるペロブスカイトおよびその
固溶体のA成分はMg、Zn、Ni、Coの少なくと
も一種であり、B成分はNb、Taの少なくとも一
種であり、Pb(A1/3B2/3)O3におけるPbと(A1/3
B2/3)の成分の原子比[Pb/(A1/3B2/3)]、
PbTiO3におけるPbとTiの原子比(Pb/Ti)お
よびPbZrO3におけるPbとZrの原子比(Pb/Zr)
は通常1.0であるが、この原子比を1.0より高い
値、もしくは低い値にずらした不定比性ペロブス
カイトも含まれる。
General formula in the present invention X[Pb(A 1/3 B 2/3 )O 3 ]-y(PbTiO 3 )-z
The A component of perovskite and its solid solution represented by (PbZrO 3 ) is at least one of Mg, Zn, Ni, and Co, the B component is at least one of Nb and Ta, and Pb(A 1/3 B 2/ 3 ) Pb in O 3 and (A 1/3
B 2/3 ) component atomic ratio [Pb/(A 1/3 B 2/3 )],
Atomic ratio of Pb and Ti in PbTiO 3 (Pb/Ti) and atomic ratio of Pb and Zr in PbZrO 3 (Pb/Zr)
is usually 1.0, but nonstoichiometric perovskites in which this atomic ratio is shifted to a value higher or lower than 1.0 are also included.

また前記一般式中のx、yおよびzはモル%を
示し、用途に応じ種々の数値をとりうるが、通
常、xは5〜90、yは5〜80、zは5〜80モル%
の範囲から選択するのが好適である。この範囲を
はずれると特性的に問題となるので好ましくな
い。
In addition, x, y and z in the above general formula represent mol% and can take various values depending on the use, but usually x is 5 to 90, y is 5 to 80, and z is 5 to 80 mol%.
It is preferable to select from the range of . If it is outside this range, it is not preferable because it will cause problems in terms of characteristics.

ペロブスカイトおよびその固溶体の構成成分で
あるB成分の金属元素を含む化合物やPb成分、
Ti成分およびZr成分の化合物の溶液を調製する
ための各成分化合物としては、特に限定されない
が、それらの水酸化物、炭酸塩、オキシ塩、硫酸
塩、硝酸塩、塩化物等の無機塩、酢酸塩、しゆう
酸塩等の有機酸塩、酸化物等か適宜選択される。
チタン成分としては、アルコキシドを使用するこ
ともできる。またA成分の金属元素を含む化合物
としては、それらの水酸化物が用いられる。これ
らは一般に水溶液として使用されるが水に可溶で
ない場合には酸を添加して可溶させればよく、不
溶原料については懸濁溶液として使用してもよ
い。また水溶液のかわりにアルコール溶液を使用
してもよい。
A compound containing a metal element of B component, which is a component of perovskite and its solid solution, and a Pb component,
Component compounds for preparing a solution of Ti component and Zr component compounds include, but are not particularly limited to, their hydroxides, carbonates, oxysalts, sulfates, nitrates, inorganic salts such as chlorides, and acetic acid. Salts, organic acid salts such as oxalates, oxides, etc. are selected as appropriate.
Alkoxides can also be used as the titanium component. Further, as the compound containing a metal element as component A, hydroxides thereof are used. These are generally used as an aqueous solution, but if they are not soluble in water, they can be made soluble by adding an acid, and insoluble raw materials may be used as a suspension solution. Also, an alcohol solution may be used instead of an aqueous solution.

沈澱形成液としては、アンモニア、炭酸アンモ
ニウム、苛性アルカリ、アミン、しゆう酸、アル
キルアミン等の溶液が挙げられる。アルキルアミ
ンとしては、メチルアミン、エチルアミン、プロ
ピルアミン、ブチルアミンなどの低級アルキル基
を有する第一アミン、シクロヘキシルアミンの如
き第一アミン、ジメチルアミン、ジエチルアミン
などの低級アルキル基を有する第二アミン、トリ
エチルアミンの如き低級アルキル基を有する第三
アミンを挙げることができる。
Examples of the precipitate-forming liquid include solutions of ammonia, ammonium carbonate, caustic alkali, amine, oxalic acid, alkylamine, and the like. Examples of alkylamines include primary amines having a lower alkyl group such as methylamine, ethylamine, propylamine, and butylamine, primary amines having a lower alkyl group such as cyclohexylamine, secondary amines having a lower alkyl group such as dimethylamine and diethylamine, and triethylamine. Mention may be made of tertiary amines having lower alkyl groups such as

B、Pb、Ti、およびZrの各成分溶液を沈澱形
成液と接触させて各成分の沈澱を逐次段階的に生
成させるにあたつては、Pb成分とTi成分との沈
澱が同時に生成しないように、また塩化鉛の沈澱
が生成しないようにするのが好ましい。この具体
的な方法としては、(1)B成分の金属元素を含んだ
化合物の溶液と、PbおよびZrの化合物の溶液と
から、沈澱形成液を使用してB成分、Pb成分お
よびZr成分の沈澱を生成させ、次いでTiの化合
物の溶液を加えてTi成分の沈澱を生成させる方
法、または(2)B成分の金属元素を含んだ化合物の
溶液、Zrの化合物の溶液、およびTiの化合物の
溶液とから、沈澱形成液を使用してB成分、Zr
成分およびTi成分の沈澱を生成させ、次いでPb
の化合物の溶液を添加してPb成分の沈澱を生成
させる方法等を好適に挙げることができる。
When bringing a solution of each component of B, Pb, Ti, and Zr into contact with a precipitate-forming solution to form a precipitate of each component in a stepwise manner, care must be taken to prevent the Pb component and Ti component from forming precipitates at the same time. In addition, it is preferable to prevent the formation of lead chloride precipitates. The specific method is as follows: (1) From a solution of a compound containing the metal element of component B and a solution of compounds of Pb and Zr, a precipitate forming solution is used to separate the components B, Pb, and Zr. A method of forming a precipitate and then adding a solution of a Ti compound to form a precipitate of a Ti component, or (2) a method of forming a solution of a compound containing a metal element as component B, a solution of a Zr compound, and a Ti compound. From the solution, use the precipitate forming solution to remove component B, Zr.
component and Ti component, then Pb
Preferred examples include a method in which a solution of the compound is added to form a precipitate of the Pb component.

前記(1)または(2)の方法における、B成分、Pb
成分およびZr成分の沈澱、またはB成分、Zr成
分およびTi成分の沈澱を生成させるにあたつて
は、沈澱形成液を攪拌しながら、沈澱形成液に各
成分溶液を添加してもよく、その反対に添加して
もよい。また各成分溶液を必要に応じて多段に、
あるいは交互に沈澱形成液と接触させてもよい。
添加に際しては液を十分に攪拌しながら行うこと
が好ましい。
In the method (1) or (2) above, the B component, Pb
In order to form a precipitate of the component and Zr component, or a precipitate of the B component, Zr component and Ti component, each component solution may be added to the precipitate forming liquid while stirring the precipitate forming liquid. On the contrary, it may be added. In addition, each component solution can be prepared in multiple stages as necessary.
Alternatively, they may be brought into contact with the precipitate forming solution alternately.
It is preferable that the addition be carried out while sufficiently stirring the liquid.

前記方法により得られた沈澱物は、傾瀉法の如
き通常の洗浄方法により水等で洗浄して、沈澱含
有液中の沈澱形成剤から生成したイオンの濃度が
0.2モル/l以下となるように調整する。沈澱形
成剤から生成したイオンの濃度を0.2モル/l以
下とすることにより、好ましくない不純物である
溶液中のCl-、NO3 -イオンを除去することがで
きる。
The precipitate obtained by the above method is washed with water or the like by a normal washing method such as a decantation method to reduce the concentration of ions generated from the precipitate forming agent in the precipitate-containing liquid.
Adjust so that it is 0.2 mol/l or less. By controlling the concentration of ions generated from the precipitant to 0.2 mol/l or less, undesirable impurities such as Cl - and NO 3 - ions in the solution can be removed.

次いで沈澱形成液で沈澱含有液のPHを11.5以
上、好ましくは12.0〜12.5とし、A成分の水酸化
物の溶液を添加し、A成分を含む沈澱物を形成さ
せる。
Next, the pH of the precipitate-containing solution is adjusted to 11.5 or higher, preferably 12.0 to 12.5, using a precipitate-forming solution, and a solution of the hydroxide of component A is added to form a precipitate containing component A.

前記方法により得られた沈澱物は、何ら洗浄す
ることなく、ろ別、乾燥した後、仮焼することが
できる。この方法によれば、従来問題になつてい
た洗浄によるA成分の沈澱物の溶出を防止するこ
とができ、所望組成のペロブスカイトおよびその
固溶体の原料粉末を得ることができる。沈澱物の
乾燥は、大気圧下で行つても減圧下で行ってもよ
い。
The precipitate obtained by the above method can be filtered, dried, and then calcined without any washing. According to this method, it is possible to prevent the elution of the precipitate of component A due to washing, which has been a problem in the past, and it is possible to obtain a raw material powder of perovskite and its solid solution having a desired composition. The precipitate may be dried under atmospheric pressure or under reduced pressure.

仮焼温度としては、過度に低いと沈澱物の脱
水、熱分解が不十分であり、また過度に高いと粉
末が粗大化するので、通常、仮焼温度は500〜
1200℃の範囲が好適である。
If the calcination temperature is too low, the dehydration and thermal decomposition of the precipitate will be insufficient, and if it is too high, the powder will become coarse.
A range of 1200°C is preferred.

(実施例) 以下に実施例および比較例を示し、さらに詳し
く本発明について説明する。
(Example) The present invention will be explained in more detail by showing Examples and Comparative Examples below.

実施例 1 37.5[Pb(Mg1/3Nb2/3)O3]−37.5(PbTiO3)−
25.0(PbZrO3) 五塩化ニオブ(NbCl5)13.509gをエタノール
300mlに溶解し、さらに6N−アンモニア水溶液
1000mlを添加した。これに硝酸鉛[Pb(NO32
66.242gを500mlの水に溶解した溶液を添加した。
さらに塩化ジルコニル(ZrOCl2・8H2O)16.11g
を500mlの水に溶解した溶液を加えて沈澱を生成
させた。次に四塩化チタン(TiCl4)14.23gを水
500mlに溶解した溶液を加えて沈澱を生成させた。
この沈澱物を水で4回傾瀉を繰返し、洗浄し、ア
ンモニウムイオン濃度を0.11モル/lとした後、
15N−アンモニア水10mlを含む水溶液50mlを加
え、PHを12.1とした。この液に水酸化マグネシウ
ム[Mg(OH)2]5.141gを水350mlに分散した溶液
を徐々に加えて沈澱物を形成させた。この沈澱物
を洗浄することなく別、乾燥した後、組成分析
したところ、仕込みの元素組成と同一であつた。
さらにこの沈澱を750℃で2時間仮焼した。この
粉末にエタノールを加えボールミル処理し、その
一部を透過型電子顕微鏡により粒子を観察したと
ころ、粒径は0.2μm程度で均一であつた。
Example 1 37.5[Pb(Mg1 / 3Nb2/ 3 )O3]-37.5( PbTiO3 )-
25.0 (PbZrO 3 ) 13.509 g of niobium pentachloride (NbCl 5 ) in ethanol
Dissolve in 300ml and add 6N ammonia aqueous solution.
Added 1000ml. This is followed by lead nitrate [Pb(NO 3 ) 2 ]
A solution of 66.242g dissolved in 500ml water was added.
Additionally, 16.11g of zirconyl chloride (ZrOCl 2.8H 2 O)
A solution of 500 ml of water was added to form a precipitate. Next, add 14.23g of titanium tetrachloride (TiCl 4 ) to water.
A solution dissolved in 500 ml was added to form a precipitate.
After washing the precipitate by repeatedly decanting it with water four times and adjusting the ammonium ion concentration to 0.11 mol/l,
50 ml of an aqueous solution containing 10 ml of 15N ammonia water was added to adjust the pH to 12.1. A solution of 5.141 g of magnesium hydroxide [Mg(OH) 2 ] dispersed in 350 ml of water was gradually added to this solution to form a precipitate. This precipitate was separated and dried without washing, and the composition was analyzed, and the elemental composition was found to be the same as that of the initial precipitate.
Further, this precipitate was calcined at 750°C for 2 hours. Ethanol was added to this powder and it was ball milled, and part of the powder was observed using a transmission electron microscope, and the particle size was uniform at about 0.2 μm.

この仮焼粉にポリビニルアルコールを0.8wt%
添加して1t/cm2で成型し、鉛雰囲気下、1150℃で
2時間焼結した。得られた焼結体の密度は
7.99g/cm2であつた。
Add 0.8wt% polyvinyl alcohol to this calcined powder.
It was added, molded at 1 t/cm 2 , and sintered at 1150° C. for 2 hours in a lead atmosphere. The density of the obtained sintered body is
It was 7.99g/ cm2 .

実施例 2 12.5[Pb(Zn1/3Nb2/3)O3]−50.0(PbTiO3)−
37.5(PbZrO3) 五塩化ニオブ(NbCl5)4.503gをエタノール
100mlに溶解し、さらに6N−アンモニア水溶液
1000mlを添加した。これに硝酸鉛[Pb(NO32
66.242gを500mlの水に溶解した溶液を添加した。
さらに塩化ジルコニル(ZrOCl2・8H2O)24.17g
を500mlの水に溶解した溶液を加えて沈澱を生成
させた。次に四塩化チタン(TiCl4)18.97gを水
500mlに溶解した溶液を加えて沈澱を生成させた。
この沈澱物を水で4回傾瀉を繰返し、洗浄し、ア
ンモニウムイオン濃度を0.11モル/lとした後、
15N−アンモニア水10mlを含む水溶液50mlを加
え、PHを12.1とした。この液に水酸化亜鉛[Zn
(OH)2]2.92gを水350mlに分散した溶液を徐々に
加えて沈澱物を形成させた。この沈澱物を洗浄す
ることなく別、乾燥した後、組成分析したとこ
ろ、仕込みの元素組成と同一であつた。さらにこ
の沈澱を750℃で2時間仮焼した。この粉末にエ
タノールを加えボールミル処理し、その一部を透
過型電子顕微鏡により粒子を観察したところ、粒
径は0.3μm程度で均一であつた。
Example 2 12.5 [Pb (Zn 1/3 Nb 2/3 ) O 3 ] −50.0 (PbTiO 3 ) −
37.5 (PbZrO 3 ) 4.503 g of niobium pentachloride (NbCl 5 ) in ethanol
Dissolve in 100ml and add 6N ammonia aqueous solution.
Added 1000ml. This is followed by lead nitrate [Pb(NO 3 ) 2 ]
A solution of 66.242g dissolved in 500ml water was added.
Additionally, 24.17g of zirconyl chloride (ZrOCl 2.8H 2 O)
A solution of 500 ml of water was added to form a precipitate. Next, add 18.97g of titanium tetrachloride (TiCl 4 ) to water.
A solution dissolved in 500 ml was added to form a precipitate.
After washing the precipitate by repeatedly decanting it with water four times and adjusting the ammonium ion concentration to 0.11 mol/l,
50 ml of an aqueous solution containing 10 ml of 15N ammonia water was added to adjust the pH to 12.1. Add zinc hydroxide [Zn
A solution of 2.92 g of (OH) 2 ] dispersed in 350 ml of water was gradually added to form a precipitate. This precipitate was separated and dried without washing, and the composition was analyzed, and the elemental composition was found to be the same as that of the initial precipitate. Further, this precipitate was calcined at 750°C for 2 hours. Ethanol was added to this powder and it was ball-milled, and part of the powder was observed using a transmission electron microscope, and the particle size was found to be uniform at about 0.3 μm.

この仮焼粉にポリビニルアルコールを0.8wt%
添加して1t/cm2で成型し、鉛雰囲気下、1150℃で
2時間焼結した。得られた焼結体の密度は
7.85g/cm3であつた。
Add 0.8wt% polyvinyl alcohol to this calcined powder.
It was added, molded at 1 t/cm 2 , and sintered at 1150° C. for 2 hours in a lead atmosphere. The density of the obtained sintered body is
It was 7.85g/ cm3 .

比較例 1 37.5[Pb(Mg1/3Nb2/3)O3]−37.5(PbTiO3)−
25.0(PbZrO3) 酸化ニオブ(Nb2O5)33.3g、酸化鉛(PbO)
223.2g、酸化チタン(TiO2)30.0g、酸化ジルコ
ニウム(ZrO2)30.8gおよび酸化マグネシウム
(MgO)5.1gを秤量し、これらに少量の水を添加
して十分に擂漬混合した後、乾燥した。これを
750℃で2時間仮焼した。得られた仮焼粉末の組
成比は実施例1と同じであつたが、粒子のTEM
写真では1〜2μmの粒子径で不均一であつた。こ
の仮焼粉末を実施例1と同様にして焼成したとこ
ろ、焼結体の密度は7.30g/cm3であつた。
Comparative example 1 37.5 [Pb (Mg 1/3 Nb 2/3 ) O 3 ] −37.5 (PbTiO 3 ) −
25.0 (PbZrO 3 ) Niobium oxide (Nb 2 O 5 ) 33.3g, lead oxide (PbO)
223.2g, titanium oxide (TiO 2 ) 30.0g, zirconium oxide (ZrO 2 ) 30.8g, and magnesium oxide (MgO) 5.1g were weighed, a small amount of water was added to them, they were thoroughly mixed by stirring, and then dried. did. this
It was calcined at 750°C for 2 hours. The composition ratio of the obtained calcined powder was the same as in Example 1, but the TEM of the particles
In the photograph, the particle size was 1 to 2 μm and nonuniform. When this calcined powder was fired in the same manner as in Example 1, the density of the sintered body was 7.30 g/cm 3 .

比較例 2 実施例1において、水酸化マグネシウムにかえ
て粒径1〜3μmの酢酸マグネシウム(MgO)
3.55gを用いたほかは、実施例1と同様にして仮
焼粉末を得た。その粒径は数μmであり、不均一
であつた。この仮焼粉末を実施例1と同様にして
焼成したところ、焼結体の密度は7.50g/cm3であ
つた。
Comparative Example 2 In Example 1, magnesium acetate (MgO) with a particle size of 1 to 3 μm was used instead of magnesium hydroxide.
A calcined powder was obtained in the same manner as in Example 1 except that 3.55 g was used. The particle size was several μm and nonuniform. When this calcined powder was fired in the same manner as in Example 1, the density of the sintered body was 7.50 g/cm 3 .

(発明の効果) X[Pb(A1/3B2/3)O3]−y(PbTiO3)−z
(PbZrO3)(ただし、AはMg、Zn、Ni、Coの少
なくとも一種を示し、BはNb、Taの少なくとも
一種を示し、x、yおよびzはモル%を示し、x
+y+z=100である。)で表されるペロブスカイ
トおよびその固溶体の原料粉末の製造に際し、公
知の共沈法における全成分を同時に共沈させる方
法とは異なり、B、Pb、TiおよびZr成分の沈澱
を逐次段階的に生成させ、次いで前記沈澱物含有
液中の沈澱形成剤から生成したイオンの濃度およ
びPHを規制した後、A成分を沈澱させるため、共
沈法では100%沈澱させることが困難であつた成
分を完全に沈澱させることができ、また二相以上
の相が高度に相互分散した状態の沈澱物が得られ
る結果、沈澱生成時に凝集、もしくは乾燥、仮焼
時に凝結を起こしにくく、高嵩密度の易焼結性の
粉末を再現性よく製造することができる。
(Effect of the invention) X[Pb(A 1/3 B 2/3 )O 3 ]−y(PbTiO 3 )−z
(PbZrO 3 ) (where A represents at least one of Mg, Zn, Ni, and Co; B represents at least one of Nb and Ta; x, y, and z represent mol%; x
+y+z=100. ) When producing the raw material powder of perovskite and its solid solution represented by In order to precipitate component A after regulating the concentration and pH of ions generated from the precipitate forming agent in the precipitate-containing liquid, the components that were difficult to precipitate 100% using the coprecipitation method are completely removed. In addition, as a result of obtaining a precipitate in which two or more phases are highly interdispersed, it is difficult to cause agglomeration during precipitate formation or coagulation during drying and calcination, resulting in a high bulk density and easy-to-sintered precipitate. A solid powder can be produced with good reproducibility.

また本プロセスでは各相が高度に相互分散して
おり、従つてこのものを仮焼したものは十分な均
一性が達成される。さらにプロセスが簡単である
ことに由来して、再現性良く低コストで易焼結性
の粉末が得られる等の優れた効果を有する。
In addition, in this process, each phase is highly mutually dispersed, so that the calcined material achieves sufficient uniformity. Furthermore, since the process is simple, it has excellent effects such as being able to obtain easily sinterable powder with good reproducibility and at low cost.

Claims (1)

【特許請求の範囲】 1 一般式 X[Pb(A1/3B2/3)O3]−y(PbTiO3)−z
(PbZrO3)(ただし、AはMg、Zn、Ni、Coの少
なくとも一種を示し、BはNb、Taの少なくとも
一種を示し、x、yおよびzはモル%を示し、x
+y+z=100である。)で表される複合ペロブス
カイト型構造化合物(以下ペロブスカイトとい
う)およびその固溶体の原料粉末の製造に際し、
B、Pb、TiおよびZrの各成分溶液を沈澱形成液
と接触させて各成分の沈澱を逐次段階的に生成さ
せた後、沈澱含有液中の沈澱形成剤から生成した
イオンの濃度が0.2モル/l以下となるように沈
澱を洗浄し、次いで、沈澱形成液で沈澱含有液の
PHを11.5以上とした後、A成分の水酸化物の溶液
を添加し、A成分を含む沈澱物を形成させ、得ら
れた沈澱物を仮焼することを特徴とする易焼結性
の複合ペロブスカイトの原料粉末の製造方法。
[Claims] 1 General formula X[Pb(A 1/3 B 2/3 )O 3 ]-y(PbTiO 3 )-z
(PbZrO 3 ) (where A represents at least one of Mg, Zn, Ni, and Co; B represents at least one of Nb and Ta; x, y, and z represent mol%; x
+y+z=100. ) When producing the raw material powder of the composite perovskite structure compound (hereinafter referred to as perovskite) and its solid solution,
After contacting each component solution of B, Pb, Ti, and Zr with a precipitate-forming solution to form precipitates of each component in a stepwise manner, the concentration of ions generated from the precipitant-forming agent in the precipitate-containing solution was 0.2 mol. The precipitate is washed so that the concentration of
An easily sinterable composite characterized by adding a hydroxide solution of component A to form a precipitate containing component A after adjusting the pH to 11.5 or higher, and calcining the resulting precipitate. A method for producing perovskite raw material powder.
JP62021737A 1987-02-03 1987-02-03 Production of easily sinterable raw material powder of compound perovskite by multistage wet process Granted JPS63190718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62021737A JPS63190718A (en) 1987-02-03 1987-02-03 Production of easily sinterable raw material powder of compound perovskite by multistage wet process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62021737A JPS63190718A (en) 1987-02-03 1987-02-03 Production of easily sinterable raw material powder of compound perovskite by multistage wet process

Publications (2)

Publication Number Publication Date
JPS63190718A JPS63190718A (en) 1988-08-08
JPH0457614B2 true JPH0457614B2 (en) 1992-09-14

Family

ID=12063388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62021737A Granted JPS63190718A (en) 1987-02-03 1987-02-03 Production of easily sinterable raw material powder of compound perovskite by multistage wet process

Country Status (1)

Country Link
JP (1) JPS63190718A (en)

Also Published As

Publication number Publication date
JPS63190718A (en) 1988-08-08

Similar Documents

Publication Publication Date Title
US5096642A (en) Process for producing a high density ceramic of perovskite
JP2528043B2 (en) Sintered ceramic body and manufacturing method thereof
JPH0159967B2 (en)
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPH0457614B2 (en)
JPS6363511B2 (en)
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPH0159205B2 (en)
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPS62202821A (en) Production of powdery raw material of easily sintering composite perovskite by multi-stage wet process
JPS61174116A (en) Production of perovskite type oxide
JPH02184524A (en) Production of piezoelectric perovskite-type compound
JPH0481528B2 (en)
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPH0651570B2 (en) Method for manufacturing piezoelectric ceramic raw material powder
JPH0457617B2 (en)
JPH0456778B2 (en)
JPS6325223A (en) Production of ceramic raw material powder
JPH0456777B2 (en)
JPH013019A (en) Method for producing perovskite ceramic fine powder
JPS6265907A (en) Production of easy-to-sinter perovskite powder
JP2866416B2 (en) Method for producing perovskite-type composite oxide powder
JPS62226812A (en) Production of easy-to-sinter perovskite powder
JPH0367965B2 (en)
JPH0475850B2 (en)