JPH02184524A - Production of piezoelectric perovskite-type compound - Google Patents

Production of piezoelectric perovskite-type compound

Info

Publication number
JPH02184524A
JPH02184524A JP84189A JP84189A JPH02184524A JP H02184524 A JPH02184524 A JP H02184524A JP 84189 A JP84189 A JP 84189A JP 84189 A JP84189 A JP 84189A JP H02184524 A JPH02184524 A JP H02184524A
Authority
JP
Japan
Prior art keywords
compound
component
precipitation
precipitate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP84189A
Other languages
Japanese (ja)
Inventor
Masahiro Watanabe
正広 渡邊
Yoshitaka Kubota
吉孝 窪田
Hironari Osada
裕也 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP84189A priority Critical patent/JPH02184524A/en
Publication of JPH02184524A publication Critical patent/JPH02184524A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve uniformity and sintering properties of the title compound by adding precipitation forming liquid to a mixed aqueous solution of each component of Ti, Zr, Ni and Nb to form precipitation of each component, blending the resultant precipitation with a compound of Zn and Pb and burning the blend. CONSTITUTION:A mixed aqueous solution of hydroxide, chloride, etc., of Ti, Zr and Ni is blended with a solution of Nb acidified with hydrochloric acid and containing >=2 times (mol) H2O. Ni component precipitation-forming liquid of aqueous solution of ammonia containing oxime having >=2 times (mol) Ni is added to the blend solution. pH after precipitation formation is kept to >=7 and then impurities of Cl<->, NO ion, etc., are removed and precipitation product containing Ti, Zr, Hi and Nb is filtered and dried. Zn compound and Pb com pound such as hydroxide or oxide are blended with the precipitation product and calcined at 600-1000 deg.C for 1-2hr to provide the piezoelectric perovskite-type compound expressed by the formula (a+b+c+d=1).

Description

【発明の詳細な説明】 [産業上の利用分!I’f1 本発明は、圧電性ペロブスカイト型構造化合物(以下ペ
ロブスカイト化合物と言う)の製造方法に関するもので
ある。
[Detailed description of the invention] [Industrial use! I'f1 The present invention relates to a method for producing a piezoelectric perovskite structure compound (hereinafter referred to as a perovskite compound).

[従来の技術] 従来、ペロブスカイト化合物粉末の製造方法としては、
固相反応法、共沈法等が知られている。
[Prior Art] Conventionally, the method for producing perovskite compound powder is as follows:
Solid phase reaction methods, coprecipitation methods, etc. are known.

これらの内、固相反応法はへロブスカイト化合物を構成
する成分の化合物を乾式又は湿式で混合し、仮焼して得
る方法である。又、共沈法はその全ての構成成分の混合
溶液を調整し、これにアルカリ等の沈澱形成液を添加し
て沈澱を生成させ、共沈物を乾燥、仮焼して得る方法で
ある。
Among these, the solid phase reaction method is a method in which the components constituting the herovskite compound are mixed in a dry or wet manner and calcined. Further, the coprecipitation method is a method in which a mixed solution of all the constituent components is prepared, a precipitate is formed by adding a precipitate forming liquid such as an alkali, and the coprecipitate is dried and calcined.

[発明が解決しようとする課題] 前記した固相反応法では得られた化合物の組成が均一性
に乏しく、またNb成分を含むペロブスカイト化合物に
おいては、反応過程でパイロクロア相が生成し品く、そ
のため化合物の仮焼の際高い仮焼温度が必要となり、ま
たパイロクロア相の残存がそのものの圧γヒ性の低下を
もたらす。
[Problems to be Solved by the Invention] In the solid-phase reaction method described above, the composition of the obtained compound is poor in uniformity, and in the case of perovskite compounds containing Nb components, a pyrochlore phase is generated during the reaction process, resulting in poor quality. A high calcination temperature is required during calcination of the compound, and the residual pyrochlore phase causes a decrease in the pressure gamma arsenic property of the compound.

特に、本発明における一般式で示されるようなPb、 
Ti,2「、Nl5Nb、およびZn成分からなる多成
分系のペロブスカイト型化合物を製造する際、その結晶
構造上同位置を占めるTi、 Zr、 Ni、 Nb、
およびZn成分の組成比に大きな変動が生じ易すく、こ
の組成の変動も前記圧電性の低下につながるものである
In particular, Pb as shown in the general formula in the present invention,
When producing a multi-component perovskite type compound consisting of Ti, 2', Nl5Nb, and Zn components, Ti, Zr, Ni, Nb, which occupy the same position in the crystal structure,
Large fluctuations tend to occur in the composition ratio of Zn and Zn components, and this fluctuation in composition also leads to a decrease in the piezoelectricity.

一方、共沈法では均一性に優れた微細な粉末を得やすい
が、それ故に、沈澱形成時、乾燥時または仮焼時に粒子
が凝集し焼結しにくくなる可能性がある。さらに、共沈
法では多成分になるほど各成分の沈澱形成条件が異なる
場合が多く、成分によって沈澱生成のばらつきが生じ、
所望の組成を得るのが困難となる。また、たとえ沈澱が
完全に生成したとしても、全ての成分が同時に沈澱しな
い場合も多く、そのため生成した沈澱に組成の変動が生
じ、共沈法によっても均一性に欠けるものとなる。
On the other hand, although it is easy to obtain fine powder with excellent uniformity in the coprecipitation method, particles may aggregate during precipitate formation, drying, or calcination, making sintering difficult. Furthermore, in the coprecipitation method, the precipitate formation conditions for each component often differ as the number of components increases, resulting in variations in precipitate formation depending on the component.
It becomes difficult to obtain the desired composition. Further, even if the precipitate is completely formed, there are many cases in which not all components are precipitated at the same time, so that the formed precipitate has a compositional variation, and even when a coprecipitation method is used, it lacks uniformity.

本発明における前記した一般式の化合物の構成成分にお
いては、通常の共沈法で用いるアンモニア水による沈澱
形成の場合、T1、ZrsおよびNb成分は、それぞれ
の水酸化物として共沈させることは可能であるが、Nl
、およびZn成分は、沈澱を生成せず11的組成の沈澱
を得ることが困難であった。
Regarding the constituent components of the compound of the above general formula in the present invention, in the case of precipitate formation with aqueous ammonia used in a normal coprecipitation method, T1, Zrs, and Nb components can be coprecipitated as their respective hydroxides. However, Nl
, and Zn components do not form a precipitate and it is difficult to obtain a precipitate having a 11-dimensional composition.

また、Nb成分の水溶液は塩酸酸性溶液を用いても非常
に加水分解しやすく、そのため他の成分より先に沈澱を
形成する可能性があり、さらに、易加水分解性のため、
成分溶液の保存等の取扱いに注意を要した。
In addition, an aqueous solution of the Nb component is very easily hydrolyzed even when using an acidic solution of hydrochloric acid, so it may form a precipitate before other components.
Care was required in handling, including storage, of component solutions.

〔発明の目的] 本発明の目的は、前記固相反応法および従来の共沈法に
おける生成物の不均一性等の問題点を解決し、微細で、
かつ凝集が少なく、均一性の優れた圧電性ペロブスカイ
ト化合物の製造方法を提供することである。
[Object of the Invention] The object of the present invention is to solve problems such as the heterogeneity of the product in the solid phase reaction method and the conventional coprecipitation method, and to
Another object of the present invention is to provide a method for producing a piezoelectric perovskite compound with less aggregation and excellent uniformity.

[課題を解決するための手段] 即ち、本発明は、一般式 %式%) (ただしa+b+c+d−1である)で表わされるペロ
ブスカイ!・型化合物の製造に際し、Tl5Zr。
[Means for Solving the Problems] That is, the present invention provides Perovsky! expressed by the general formula % (where a+b+c+d-1).・Tl5Zr in the production of the type compound.

Nb、およびNlの各成分溶液と沈澱形成液とを混合し
各成分の沈澱を生成させ、該生成物にZn化合物及びP
b化合物を混合し、この混合物を焼成して圧電性ペロブ
スカイト化合物を製造する方法に関するものである。
A solution of each component of Nb and Nl is mixed with a precipitate forming solution to form a precipitate of each component, and a Zn compound and P are added to the product.
The present invention relates to a method for producing a piezoelectric perovskite compound by mixing B compounds and firing the mixture.

以下、その詳細について説明する。The details will be explained below.

本発明における一般式中の全成分において、T1、Zr
、 Nb、およびNi成分の各溶液の所定量を混合し、
これらの混合溶液を調製する。このとき、Nbの成分溶
液は、H20□を含む塩酸酸性溶液であることが沈澱形
成性の面で好ましい。この混合溶液をNi成分の沈澱形
成剤を含む沈澱形成液と混合し沈澱を生成させる。沈澱
生成に際しては混合溶液のpH”J4節(8〜10)を
することにより行なう。次いで、この沈澱生成物にZn
化合物及びPb化合物を添加、混合し焼成することによ
りペロブスカイト化合物を得る。即ち、本発明は共沈法
と固相反応法の組み合わせにより合成することを特徴と
する製造方法である。
In all the components in the general formula in the present invention, T1, Zr
, Nb, and Ni component solutions in predetermined amounts,
Prepare a mixed solution of these. At this time, the Nb component solution is preferably an acidic hydrochloric acid solution containing H20□ from the viewpoint of precipitation formation. This mixed solution is mixed with a precipitate forming solution containing a precipitant forming agent of Ni component to form a precipitate. Precipitation is generated by adjusting the pH of the mixed solution to 4 (8 to 10). Next, Zn is added to the precipitate.
A perovskite compound is obtained by adding a compound and a Pb compound, mixing and firing. That is, the present invention is a production method characterized by synthesis by a combination of a coprecipitation method and a solid phase reaction method.

本発明の一般式で表わされるペロブスカイト化合物の構
成成分であるTi, ZrsおよびN1成分の溶液を調
製するための各成分化合物としては、特に限定されない
が、それらの水酸化物、塩化物、炭酸塩、硝酸塩等の無
機塩、しゅう酸塩等の有機塩のうち水溶性のものから適
宜選択される。また、Nb成分の溶液を調製するための
成分化合物としては、Nbの塩化物、しゅう酸塩等を用
い、水溶液は、これをH20□を含む塩酸酸性溶液に溶
解させることにより調製される。このNbの成分水溶液
の調製において、塩酸溶液の塩酸濃度は6N以上である
ことが好ましく、またH2O2の添加量は存在するNb
のモル数に対して2倍モル以上添加することが好ましい
Component compounds for preparing a solution of Ti, Zrs and N1 components, which are the constituent components of the perovskite compound represented by the general formula of the present invention, are not particularly limited, but include their hydroxides, chlorides, and carbonates. , inorganic salts such as nitrates, and organic salts such as oxalates, which are water-soluble. Further, as a component compound for preparing a solution of the Nb component, Nb chloride, oxalate, etc. are used, and an aqueous solution is prepared by dissolving this in a hydrochloric acid acidic solution containing H20□. In the preparation of this Nb component aqueous solution, the hydrochloric acid concentration of the hydrochloric acid solution is preferably 6N or more, and the amount of H2O2 added is
It is preferable to add at least twice the number of moles of .

Pb1およびZn成分としては、それぞれの水酸化物、
炭酸塩等の無機塩、しゅう酸塩等の有機塩、および酸化
物から適宜選択されるが、好ましくは、後のボールミル
等による混合時に溶媒に溶解せず、加熱により分解し酸
化物となる化合物から選択される。 沈澱形成液として
は、アンモニア、炭酸アンモニウム等の水溶液が用いら
れ、さらにこのときN1成分の沈澱形成剤を存在させる
ことが好ましい。
As Pb1 and Zn components, respective hydroxides,
The compound is appropriately selected from inorganic salts such as carbonates, organic salts such as oxalates, and oxides, but preferably compounds that do not dissolve in the solvent during subsequent mixing using a ball mill, etc., and decompose on heating to become oxides. selected from. As the precipitate-forming liquid, an aqueous solution of ammonia, ammonium carbonate, etc. is used, and at this time, it is preferable that a precipitate-forming agent of the N1 component is present.

Nl成分の沈澱形成剤としては、オキシン、ジメチルグ
リオキシム等の有機物が挙げられ、Nl成分を完全に沈
澱させるためには、存在するN1のモル数に対して2倍
以上のモル数の沈澱形成剤を添加することが好ましい。
Examples of precipitating agents for the Nl component include organic substances such as oxine and dimethylglyoxime.In order to completely precipitate the Nl component, the number of moles of N1 must be twice or more to form a precipitate. It is preferable to add an agent.

Ti, Zr、、NI、およびNb成分の混合溶液を沈
澱形成液と混合し各成分の共沈物を生成させるにあたっ
ては、各成分が夫々段階的に沈澱することなく一度に沈
澱することが後の生成物の性状の面で好ましいので、沈
澱形成液中に混合溶液を添加して混合し沈澱を形成させ
ることが好ましい。また、このとき好ましくない不純物
であるCI−、NO3−イオンを除去するために沈澱生
成後のpHを7以上とするのが好ましい。
When a mixed solution of Ti, Zr, NI, and Nb components is mixed with a precipitate-forming solution to produce a coprecipitate of each component, it is necessary to precipitate each component at once instead of precipitating each component in stages. Since this is preferable in terms of the properties of the product, it is preferable to add the mixed solution to the precipitate forming solution and mix to form a precipitate. Further, in order to remove CI- and NO3- ions, which are undesirable impurities at this time, it is preferable to adjust the pH after the precipitation to 7 or higher.

この様にして生成した71% Zrs Nb、およびN
l成分を含む沈澱生成物を濾過または遠心分離等によっ
て濾別し、乾燥する。得られた沈澱中の沈澱形成剤等の
有機物は除去するが、これは例えば沈澱生成物の焼成に
よって行う。このときの焼成温度としては、過度に高い
と粒子が粗大化し最終的な原料粉末の大きさに影響する
ので、300〜800℃の範囲が好ましい。
71% Zrs Nb produced in this way, and N
The precipitated product containing the l component is separated by filtration or centrifugation and dried. Organic substances such as a precipitate forming agent in the obtained precipitate are removed, for example by calcining the precipitated product. The firing temperature at this time is preferably in the range of 300 to 800[deg.] C., since if it is too high, the particles will become coarse and the size of the final raw material powder will be affected.

本発明では、前記沈澱生成物にZnSPb成分を混合す
るが、前記沈澱生成物にZnおよびPb化合物を混合す
る時期は、Zn化合物においては、前記の沈澱の焼成前
の乾燥物に混合する場合と、焼成後に混合する場合があ
りこのいずれでもよい。又、Pb化合物においては、Z
n化合物と同時に混合する場合と、 Zn化合物を混合
し焼成した後に混合する場合があるが、いずれの方法で
もよい。本発明では、前記沈澱生成物にZn化合物を混
合して焼成し、次でl)b化合物を混合する方法が、得
られる化合物の物性及び収率の面で好ましい。さらに、
このときの混合方法は、ボールミル、振動ミル、アトラ
イダー等の混合装置が用いられる。
In the present invention, the ZnSPb component is mixed with the precipitated product, but the timing of mixing the Zn and Pb compounds with the precipitated product is different from when the Zn compound is mixed with the dried precipitate before calcination. , or may be mixed after firing, and either of these may be used. In addition, in Pb compounds, Z
There are cases where the Zn compound is mixed at the same time as the Zn compound, and there are cases where the Zn compound is mixed and then mixed after firing, but either method may be used. In the present invention, a method in which a Zn compound is mixed with the precipitated product and calcined, and then compound l)b is mixed is preferred in terms of the physical properties and yield of the resulting compound. moreover,
As for the mixing method at this time, a mixing device such as a ball mill, a vibration mill, an atrider, etc. is used.

本発明の方法においては、前記一般式のa、b。In the method of the present invention, a and b of the above general formula.

c、dの値は特に制限は無く、目的とするペロブスカイ
ト化合物の組成に適合した割合の原料を用いることによ
り必要とする組成を有するペロブスカイト化合物を得る
ことができる。
There are no particular limitations on the values of c and d, and a perovskite compound having the desired composition can be obtained by using raw materials in proportions that match the composition of the desired perovskite compound.

この様にして得られた、PbSTl、Zr5Nl、Nb
PbSTl, Zr5Nl, Nb obtained in this way
.

およびZnの全成分を含む混合物は焼成することにより
、ペロブスカイト型構造の化合物とする。この際の焼成
温度は、過度に低いとペロブスカイト単一組が得られず
、過度に高いと粒子が粗大化するので、600〜100
0℃の範囲で、1〜2時間時間位成するのが好ましい。
The mixture containing all the components of Zn and Zn is fired to form a compound having a perovskite structure. If the firing temperature is too low, a single set of perovskites cannot be obtained, and if it is too high, the particles will become coarse.
Preferably, the temperature is 0°C for about 1 to 2 hours.

以上の様にして得られたペロブスカイト化合物は、ボー
ルミル、振動ミル、アトライダー等を用いて粉砕され、
原料粉末として用いられる。
The perovskite compound obtained as above is pulverized using a ball mill, vibration mill, atrider, etc.
Used as raw material powder.

[発明の効果] 以上で説明した本発明によれば、 (3) Ntt成分を含むペロブスカイト型化合物にお
いて、その生成過程でパイロクロア相を形成しないため
、ペロブスカイト化合物をパイロクロア相を残存させる
ことなく製造することができる。(2)本発明における
一般式で示されるような多成分系の化合物であっても、
組成の変動が少なく、均一な原料粉末を製造することが
できる。
[Effects of the Invention] According to the present invention described above, (3) In a perovskite compound containing an Ntt component, a pyrochlore phase is not formed during the production process, so a perovskite compound can be produced without leaving a pyrochlore phase. be able to. (2) Even if it is a multi-component compound as shown by the general formula in the present invention,
Uniform raw material powder can be produced with little variation in composition.

(3)本発明では粒子径がl#I11以下の微細な粒子
が得られ、このものは凝集の少ない易焼結性の圧電性ペ
ロブスカイ!・の原料粉末として用いることができる。
(3) In the present invention, fine particles with a particle size of l#I11 or less can be obtained, and these particles are easily sinterable piezoelectric perovsky! with little agglomeration.・Can be used as a raw material powder.

[実施例] 実施例1 四塩化チタン(TfCI4) 9.280g1オキシ塩
化ジルコニウム(ZrOCh ) 8.107g、塩化
ニッケル(NtCh ) 2.002gをそれぞれ水に
溶解した溶液、および、五塩化ニオブ(NbCI、) 
10.728gを31%の過酸化水素水18gを含む6
N塩酸200gに溶解させた溶液をそれぞれ調製した。
[Example] Example 1 Titanium tetrachloride (TfCI4) 9.280 g1 A solution in which zirconium oxychloride (ZrOCh ) 8.107 g and nickel chloride (NtCh ) 2.002 g were dissolved in water, and niobium pentachloride (NbCI, )
6 containing 10.728g and 18g of 31% hydrogen peroxide solution
A solution was prepared by dissolving each in 200 g of N hydrochloric acid.

これらを混合し、オキシン17.5gを溶解させた28
%アンモニア水に添加して沈澱を生成させた。この沈澱
物を濾過、洗浄後、乾燥し、乾燥した沈澱物を550℃
で焼成し、沈澱形成剤等の有機物を分解、除去して後、
ZnC011,174gを添加し、ボールミルにより混
合後、600℃で焼成して、Pb以外の複合酸化物を得
た。
These were mixed and 17.5g of oxine was dissolved in 28
% ammonia water to form a precipitate. This precipitate was filtered, washed and dried, and the dried precipitate was heated to 550°C.
After decomposing and removing organic substances such as precipitants,
174 g of ZnC011 was added, mixed using a ball mill, and then fired at 600°C to obtain a composite oxide other than Pb.

この複合酸化物に、Pb02B、909gを添加し、ボ
ールミルによる混合後、700℃−2時間焼成し、0.
35(PbT10i )−0,19(PbZrO3)J
JO(Pb(Nl+/i Nbz/3)031−0.1
6{Pb(Zn1/i Nb273)031で表される
ペロブスカイト化合物を得た。
909 g of Pb02B was added to this composite oxide, and after mixing in a ball mill, it was fired at 700°C for 2 hours.
35(PbT10i)-0,19(PbZrO3)J
JO(Pb(Nl+/i Nbz/3)031-0.1
A perovskite compound represented by 6{Pb(Zn1/i Nb273)031 was obtained.

この粉末をボールミルにより24時間粉砕を行った。This powder was pulverized for 24 hours using a ball mill.

この粉末の一部をBET測定装置により比表面積を/l
1lJ定したところ、5.98rf/gであり、これか
ら算出した平均粒径は、0.1211mであった。
A portion of this powder was measured using a BET measuring device to measure the specific surface area/l.
When 1 lJ was determined, it was 5.98 rf/g, and the average particle diameter calculated from this was 0.1211 m.

また、X線回折法によりこのものの結晶相を調べたとこ
ろ、ペロブスカイト化合物の含有量は、その強度比から
98%で、その他は、未反応のPbOおよびPb成分以
外の複合酸化物であった。この時の含有量は、 Ip  (%)−1p / (Ip +lPb+1゜。
Further, when the crystal phase of this product was examined by X-ray diffraction, the content of the perovskite compound was 98% based on its intensity ratio, and the rest was unreacted PbO and composite oxides other than the Pb component. The content at this time is Ip (%) - 1p / (Ip + lPb + 1°).

MP)■、 −ペロブスカイト相の(110)面の強度
IPb  −PbOの(111)面の強度I coMp
−Pb以外の複合酸化物の(131)面の強度で表され
るペロブスカイト相の強度比重、(%)と、あらかじめ
求められた検量線によって決定した。
MP) ■, - Intensity of (110) plane of perovskite phase IPb - Intensity of (111) plane of PbO I coMp
It was determined based on the strength specific gravity (%) of the perovskite phase expressed by the strength of the (131) plane of the composite oxide other than -Pb, and a previously determined calibration curve.

この粉末を、300kg/dで金型成形した後、 20
00kg#で静水圧成形し、鉛雰囲気下で1100℃−
2時間で焼成を行った。得られた焼結体の密度をアルキ
メデス法により求めたところ7.9g/cm’であった
After molding this powder with a mold at 300 kg/d, 20
Isostatically formed with 00kg # and 1100℃- under lead atmosphere.
Firing was performed for 2 hours. The density of the obtained sintered body was determined by the Archimedes method and was 7.9 g/cm'.

また焼結体は、はぼ1001%ペロブスカイト化合物で
あった。
The sintered body was approximately 1001% perovskite compound.

実施例2 四塩化チタン9.751g 、オキシ塩化ジルコニウム
6.087g 、塩化ニッケル1.914g 、五塩化
ニオブlO,054g、炭酸亜鉛0.571g 、酸化
訛31.884gを用い、実施例1と同様の方法によっ
て次式のペロブスカイト化合物を得た。
Example 2 The same procedure as in Example 1 was carried out using 9.751 g of titanium tetrachloride, 6.087 g of zirconium oxychloride, 1.914 g of nickel chloride, 054 g of niobium pentachloride, 0.571 g of zinc carbonate, and 31.884 g of oxidized carbonate. A perovskite compound of the following formula was obtained by the method.

0.36(PbTIOi )−0,24(PbZrOi
 )−OJO+Pb(N1□/3Nbzzi )031
−0.10{Pb(Zn17i Nb2/3 )031
この粉末の比表面積は、5.12rrr/gであり、こ
れより算出した平均粒径は、0.15μmであった。ま
た、ペロブスカイト化合物の含有量は98.5%であり
、他はPbOとPb成分以外の複合酸化物であった。
0.36(PbTIOi)-0,24(PbZrOi
)-OJO+Pb(N1□/3Nbzzi)031
-0.10{Pb(Zn17i Nb2/3)031
The specific surface area of this powder was 5.12 rrr/g, and the average particle size calculated from this was 0.15 μm. Further, the content of the perovskite compound was 98.5%, and the rest was a composite oxide other than PbO and Pb components.

この粉末を、実施例1と同様に成形し焼成したところ、
焼結体の密度は8.0g/ar+’であった。
When this powder was molded and fired in the same manner as in Example 1,
The density of the sintered body was 8.0 g/ar+'.

実施例3 四塩化チタン16.098g、オキシ塩化ジルコニウム
11.869g、塩化ニッケル3.274g 、五塩化
ニオブ27.292gを用い、実施例1と同様な方法に
より、Tl5Zr、N!、およびNb成分の沈澱物を生
成させ、濾過、乾燥し、乾燥させた沈澱物とZnC0g
  2.93(igをボールミルにより混合した後、7
00℃で焼成して複合酸化物を得た。得られた複合酸化
物に、Pb0137.837gを添加しボールミルによ
り混合し、800℃−2時間焼成して、 0.28(PbT103)−0,22(PbZrOi 
)−0,25iPb(Nl+/3Nb2/i )031
−0.251Pb(Zn+/i Nb2z3)031で
表されるペロブスカイト化合物を得た。
Example 3 Tl5Zr, N! , and a precipitate of Nb component, filtered and dried, and the dried precipitate and ZnC0g
2.93 (after mixing ig by ball mill, 7
A composite oxide was obtained by firing at 00°C. Pb0137.837g was added to the obtained composite oxide, mixed in a ball mill, and fired at 800°C for 2 hours to form 0.28(PbT103)-0,22(PbZrOi).
)-0,25iPb(Nl+/3Nb2/i)031
A perovskite compound represented by -0.251Pb(Zn+/iNb2z3)031 was obtained.

この粉末の比表面積は、2.88r#/gであり、これ
より算出した平均粒径は、0.27μmであった。また
、ペロブスカイト化合物の含有量は97%であり、他は
円)OとPb成分以外の複合酸化物であった。
The specific surface area of this powder was 2.88 r#/g, and the average particle size calculated from this was 0.27 μm. Further, the content of the perovskite compound was 97%, and the rest was a composite oxide other than the O and Pb components.

この粉末を、実施例1と同様に成形し焼成したところ、
焼結体の密度は8.0g/cm’であった。
When this powder was molded and fired in the same manner as in Example 1,
The density of the sintered body was 8.0 g/cm'.

比較例1 酸化鉛(PbO)  7o、2g、酸化チタン(T10
2 )7.8g、酸化ジルコニウム(ZrO2) 8.
2g1酸化ニツ’r ル(NIO) 3.0g1五酸化
ニオブ(Nbz Os )11.0g 、および酸化亜
鉛(ZnO) 18gをそれぞれ秤量し、これらをエタ
ノールを用いてボールミルにより湿式混合した後、乾燥
した。これを800℃−4時間焼成した。得られた粉末
の組成は、実施例1と同様であった。
Comparative Example 1 Lead oxide (PbO) 7o, 2g, titanium oxide (T10
2) 7.8g, zirconium oxide (ZrO2) 8.
Weighed 2 g, 3.0 g of niobium oxide (NIO), 11.0 g of niobium pentoxide (NbzOs), and 18 g of zinc oxide (ZnO), wet-mixed them using ethanol in a ball mill, and then dried them. . This was baked at 800°C for 4 hours. The composition of the obtained powder was the same as in Example 1.

この粉末の比表面積は1.Q3rrr/gであり、これ
より算出した平均粒径は0.46μmであったが、SE
M観察によると粒子の大きさが不均一であった。
The specific surface area of this powder is 1. Q3rrr/g, and the average particle diameter calculated from this was 0.46 μm, but SE
According to M observation, the particle size was non-uniform.

さらに、X線回折によると、ペロブスカイト相を909
6含んでいるが、その他に数%のパイロクロア相を含ん
でいた。
Furthermore, according to X-ray diffraction, the perovskite phase is 909
6, but also contained several percent of pyrochlore phase.

この粉末を実施例1と同様にして焼成を行ったところ、
得られた焼結体の密度は7.4g/am’であった。ま
た焼結体においても粉末のときに含まれていたパイロク
ロア相が残存していた。
When this powder was fired in the same manner as in Example 1,
The density of the obtained sintered body was 7.4 g/am'. In addition, the pyrochlore phase contained in the powder remained in the sintered body.

Claims (3)

【特許請求の範囲】[Claims] (1)一般式, a(PbTiO_3)−b(PbZrO_3)−c{P
b(Ni_1_/_3Nb_2_/_3)O_3}−d
{Pb(Zn_1_/_3Nb_2_/_3)O_3}
(ただし、a+b+c+d=1である) で表わされるペロブスカイト型構造化合物の製造に際し
、Ti,Zr,Ni,およびNbの各成分水溶液の混合
溶液と沈澱形成液とを混合して各成分の沈澱を生成させ
、該生成物にZn化合物及びPb化合物を混合し、この
混合物を焼成することを特徴とする圧電性ペロブスカイ
ト型構造化合物の製造方法。
(1) General formula, a(PbTiO_3)-b(PbZrO_3)-c{P
b(Ni_1_/_3Nb_2_/_3)O_3}-d
{Pb(Zn_1_/_3Nb_2_/_3)O_3}
(However, a + b + c + d = 1) When producing a perovskite-type structure compound represented by 1. A method for producing a piezoelectric perovskite structure compound, which comprises: mixing a Zn compound and a Pb compound with the product; and firing the mixture.
(2)Nb成分の水溶液が、H_2O_2を含んだ塩酸
酸性溶液であることを特徴とする、特許請求の範囲第一
項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the aqueous solution of the Nb component is an acidic hydrochloric acid solution containing H_2O_2.
(3)沈澱形成液がオキシンまたはジメチルグリオキシ
ムを含むアンモニアあるいは炭酸アンモニウムの水溶液
であることを特徴とする特許請求範囲第一又は第二項記
載の製造方法。
(3) The manufacturing method according to claim 1 or 2, wherein the precipitate forming liquid is an aqueous solution of ammonia or ammonium carbonate containing oxine or dimethylglyoxime.
JP84189A 1989-01-07 1989-01-07 Production of piezoelectric perovskite-type compound Pending JPH02184524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP84189A JPH02184524A (en) 1989-01-07 1989-01-07 Production of piezoelectric perovskite-type compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP84189A JPH02184524A (en) 1989-01-07 1989-01-07 Production of piezoelectric perovskite-type compound

Publications (1)

Publication Number Publication Date
JPH02184524A true JPH02184524A (en) 1990-07-19

Family

ID=11484844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP84189A Pending JPH02184524A (en) 1989-01-07 1989-01-07 Production of piezoelectric perovskite-type compound

Country Status (1)

Country Link
JP (1) JPH02184524A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498886B1 (en) * 2002-11-27 2005-07-04 한국전기연구원 Piezoelectric ceramic composite for application to multilayer actuator and manufacturing method thereof
WO2009041207A1 (en) * 2007-09-26 2009-04-02 Aruze Corp. Method for producing metal complex oxide powder
CN102674446A (en) * 2012-05-10 2012-09-19 浙江大学 Preparation method for lead titanate powder having laminated structure
CN102674443A (en) * 2012-05-10 2012-09-19 浙江大学 Preparation method for self-assembled disk-shaped lead titanate
CN102674444A (en) * 2012-05-10 2012-09-19 浙江大学 Preparation method of pyrochlore-structured lead titanate powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498886B1 (en) * 2002-11-27 2005-07-04 한국전기연구원 Piezoelectric ceramic composite for application to multilayer actuator and manufacturing method thereof
WO2009041207A1 (en) * 2007-09-26 2009-04-02 Aruze Corp. Method for producing metal complex oxide powder
JPWO2009041207A1 (en) * 2007-09-26 2011-01-20 株式会社ユニバーサルエンターテインメント Method for producing metal composite oxide powder
CN102674446A (en) * 2012-05-10 2012-09-19 浙江大学 Preparation method for lead titanate powder having laminated structure
CN102674443A (en) * 2012-05-10 2012-09-19 浙江大学 Preparation method for self-assembled disk-shaped lead titanate
CN102674444A (en) * 2012-05-10 2012-09-19 浙江大学 Preparation method of pyrochlore-structured lead titanate powder

Similar Documents

Publication Publication Date Title
JPH0345025B2 (en)
JPS6214489B2 (en)
JPS6214490B2 (en)
JPH02184524A (en) Production of piezoelectric perovskite-type compound
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPS6363511B2 (en)
JPS62187116A (en) Production of pzt type piezoelectric ceramic powder sinterable at low temperature
JPH0159205B2 (en)
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPS61251516A (en) Production of perovskite type oxide
JPH032818B2 (en)
JPS6265907A (en) Production of easy-to-sinter perovskite powder
JPH02307825A (en) Production of powdery raw material for piezoelectric perovskite
JPS62202821A (en) Production of powdery raw material of easily sintering composite perovskite by multi-stage wet process
JP2899755B2 (en) Method for producing PZT powder
JPH01122907A (en) Production of perovskite oxide powder
JPH032819B2 (en)
JPH0193419A (en) Production of piezoelectric ceramics raw material powder
JPS63285146A (en) Production of perovskite ceramic
JPS63239125A (en) Production of perovskite ceramic powder containing zirconium
JPS61122125A (en) Production of piezoelectric ceramic powder
JPS62105926A (en) Production of raw material powder of ceramic having electro-optical characteristics
JPH0216245B2 (en)
JPS63285151A (en) Production of perovskite ceramic