JPS62187116A - Production of pzt type piezoelectric ceramic powder sinterable at low temperature - Google Patents

Production of pzt type piezoelectric ceramic powder sinterable at low temperature

Info

Publication number
JPS62187116A
JPS62187116A JP61026504A JP2650486A JPS62187116A JP S62187116 A JPS62187116 A JP S62187116A JP 61026504 A JP61026504 A JP 61026504A JP 2650486 A JP2650486 A JP 2650486A JP S62187116 A JPS62187116 A JP S62187116A
Authority
JP
Japan
Prior art keywords
precipitate
composite
compound
pzt
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61026504A
Other languages
Japanese (ja)
Other versions
JPH0688788B2 (en
Inventor
Shinichi Shirasaki
信一 白崎
Soichiro Sugano
総一郎 菅野
Hiromichi Okamura
岡村 博道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Nippon Soda Co Ltd
Original Assignee
National Institute for Research in Inorganic Material
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Nippon Soda Co Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP61026504A priority Critical patent/JPH0688788B2/en
Publication of JPS62187116A publication Critical patent/JPS62187116A/en
Publication of JPH0688788B2 publication Critical patent/JPH0688788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce high density powdery starting material sinterable at low temp. and having superior electrical characteristics by forming a composite precipitate of Zr and Ti compounds, washing the precipitate, further precipitating a Pb compound in a composite state, washing the resulting composite precipitate and calcining it. CONSTITUTION:An aqueous soln. of a Zr compound is dropped into an aqueous ammonia soln. and reacted. An aqueous soln. of a Ti compound is further dropped to form a composite precipitate of Zr and Ti hydroxides. This precipitate is aged, washed and dispersed again in an aqueous ammonia soln. and an aqueous soln. of a Pb compound is dropped to form a composite precipitate of Zr, Ti and Pb hydroxides. This precipitate is separated by filtration, washed, dried, calcined at 500-1,100 deg.C and ground. By this method, powdery starting metarial suitable for the production of PZT type piezoelectric ceramics is obtd. with inexpensive materials.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低温焼結性で高性能のチタンジルコン酸鉛(
PZT)系圧電セラミックス原料粉末の製造方法に関す
る。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides lead titanium zirconate (lead titanium zirconate) with low temperature sinterability and high performance.
The present invention relates to a method for producing PZT)-based piezoelectric ceramic raw material powder.

PZT系セラミックスは、高周波フィルター、超音波振
動子、共振子エレメント(ビックアンプエレメント、着
火素子メカニカルフィルタ、遅延線用変換素子、バイモ
ルフ素子等)とし°ζ広範囲に利用されている。
PZT ceramics are widely used as high frequency filters, ultrasonic vibrators, and resonator elements (big amplifier elements, ignition element mechanical filters, delay line conversion elements, bimorph elements, etc.).

〔従来技術〕[Prior art]

従来、PZT系セラミックスの原料粉末の製造方法とし
て、乾式法と湿式共沈法が知られている。
Conventionally, dry methods and wet co-precipitation methods are known as methods for producing raw material powder for PZT ceramics.

乾式法は、PZTセラミックス構成成分の各酸化物粉末
を混合し、これを仮焼して原料粉末とする方法であり、
従来から広く採用されてきた最も一般的な方法である。
The dry method is a method in which oxide powders of the constituent components of PZT ceramics are mixed and calcined to obtain a raw material powder.
This is the most common method that has been widely adopted.

湿式共沈法は、PZTセラミックス構成成分に該当する
各金属化合物の均一な混合液を作り、これにアルカリ等
の沈澱形成液を添加して共沈させ、乾燥、仮焼して原料
粉末とする方法であり、混合液として無機金属化合物の
水溶液を使用する方法(マテリアルリサーチブリチン・
Material Re5earch Bull、 V
ol。
In the wet coprecipitation method, a uniform mixture of metal compounds corresponding to the constituent components of PZT ceramics is made, a precipitate forming liquid such as alkali is added to this, the mixture is co-precipitated, and the mixture is dried and calcined to obtain a raw material powder. This method uses an aqueous solution of an inorganic metal compound as a mixed solution (Material Research Bulletin).
Material Research Bull, V
ol.

17、101〜104. (1982)参照)および有
機金属化合物の有8g溶剤溶液を使用する方法(セラミ
ックブリチン・Ceramic Bull、 No、4
. 591〜(1984)参照)がある。
17, 101-104. (1982)) and a method using an 8g solvent solution of an organometallic compound (Ceramic Bull, No. 4).
.. 591-(1984)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

乾式法では、均一な組成の原料粉末が得難(、またPZ
Tの生成反応を完遂させるために仮焼温度を高くするこ
とが必要であるので、得られる粉末粒子が粗大化し、低
温焼結性の原料粉末が得られない。
In the dry method, it is difficult to obtain raw material powder with a uniform composition (and PZ
Since it is necessary to raise the calcination temperature in order to complete the T production reaction, the resulting powder particles become coarse, making it impossible to obtain a raw material powder that is sinterable at low temperatures.

また、湿式共沈法では、組成および粒子径の均一性の優
れた粉末が得やすいが、均一性の良好な粒子であること
により沈澱生成時、乾燥時、また仮焼時に凝集して二次
粒子を形成し、期待される程の低温焼結性の原料粉末は
得られない場合がある。また、共沈法では、沈澱形成液
の添加時の濃度が一定であるため、各成分の溶解度等の
性質が異なる場合には、ある成分は100%沈澱を生成
するが、他の成分は100%沈澱を生成し得ないことが
あり、所望組成のものを得られない場合がある。更に、
PZTは鉛とチタンとを含存しているので、これを共沈
法で製造する場合、チタン原料として安価な四塩化チタ
ンを使用すると、四塩化チタンの塩素イオンが鉛イオン
と反応して白色沈澱を生成するため、四塩化チタンは使
用できない、この場合、オキシ硝酸チタンを使用すれば
この沈澱の生成を防ぐことができるが、高価であるため
実用的ではない。
In addition, with the wet coprecipitation method, it is easy to obtain powder with excellent uniformity in composition and particle size. Particles may be formed, and a raw material powder with expected low-temperature sinterability may not be obtained. In addition, in the coprecipitation method, the concentration of the precipitate forming solution at the time of addition is constant, so if each component has different properties such as solubility, one component will form a 100% precipitate, while another component will form a 100% precipitate. % precipitate may not be produced, and the desired composition may not be obtained. Furthermore,
PZT contains lead and titanium, so when producing it by coprecipitation, if cheap titanium tetrachloride is used as the titanium raw material, the chlorine ions of titanium tetrachloride will react with the lead ions, resulting in a white color. Titanium tetrachloride cannot be used because it forms a precipitate. In this case, titanium oxynitrate can be used to prevent the formation of this precipitate, but it is not practical because it is expensive.

また、湿式法として、有機金属化合物を用いる方法もあ
り、この場合、有害な陰イオンの生成はないが、原料が
高価であり工業的生産には適していない。
In addition, as a wet method, there is also a method using an organometallic compound, and in this case, no harmful anions are generated, but the raw materials are expensive and it is not suitable for industrial production.

本発明の目的は、チタン原料として安価な四塩化チタン
も使用でき、高密度で電気特性の優れたPZT系圧電セ
ラミックスの製造に適した、低温焼結性の原料粉末を製
造する方法を提供するにある。
An object of the present invention is to provide a method for producing low-temperature sinterable raw material powder, which is suitable for producing PZT-based piezoelectric ceramics with high density and excellent electrical properties, in which inexpensive titanium tetrachloride can also be used as a titanium raw material. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、PZT系圧電セラミックス原料粉末の湿
式法による製造において、各成分の沈澱を初期の沈澱の
種類を選択し、該沈澱粒子(プレカーサー)を核にして
各沈澱物を段階的に形成させる多段沈澱法を採用するこ
とにより得られる粉末が、高密度で電気特性に優れたP
ZT系セラミックス焼結体の原料粉末となることを見出
し、本発明を完成した。
In manufacturing PZT-based piezoelectric ceramic raw material powder by a wet method, the present inventors select the initial type of precipitation for each component, and gradually convert each precipitate using the precipitate particles (precursor) as a nucleus. The powder obtained by adopting a multi-stage precipitation method is a P powder with high density and excellent electrical properties.
It was discovered that the powder can be used as a raw material powder for ZT-based ceramic sintered bodies, and the present invention was completed.

本発明は、ジルコニウム化合物水溶液を過剰の沈澱形成
液に混合して沈澱を形成した後、該沈澱を分散した沈澱
形成液にチタン化合物水溶液を混合してジルコニウム化
合物沈澱を核としてチタン化合物を複合させた沈澱を形
成し、得られた複合沈澱を洗浄した後、該複合沈澱を再
び過剰の沈澱形成液に分散し、該複合沈澱分散沈澱形成
液に鉛化合物水溶液を混合して前記複合沈澱を核として
鉛化合物を複合させた全成分の複合沈澱を作り、該複合
沈澱を濾過、洗浄後、500〜1100℃で仮焼するこ
とを特徴とする低温焼結性PZT系圧電セラミックス原
料粉末の製造方法である。
In the present invention, a zirconium compound aqueous solution is mixed with an excess precipitate forming liquid to form a precipitate, and then a titanium compound aqueous solution is mixed into the precipitate forming liquid in which the precipitate is dispersed, and the titanium compound is complexed using the zirconium compound precipitate as a core. After forming a precipitate and washing the obtained composite precipitate, the composite precipitate is again dispersed in an excess precipitate forming solution, and an aqueous lead compound solution is mixed with the composite precipitate-dispersed precipitate forming solution to nucleate the composite precipitate. A method for producing a low-temperature sinterable PZT-based piezoelectric ceramic raw material powder, which is characterized by preparing a composite precipitate of all components in which a lead compound is combined, filtering and washing the composite precipitate, and then calcining it at 500 to 1100°C. It is.

本発明において、各沈澱の生成反応は、各成分の水溶液
を沈澱形成液に注加柊了後10〜80℃の温度で30分
以上、好ましくは1〜24時間熟成することにより行う
In the present invention, the reaction for forming each precipitate is carried out by adding an aqueous solution of each component to a precipitate forming solution, and then aging at a temperature of 10 to 80°C for 30 minutes or more, preferably 1 to 24 hours.

本発明により得られるPZT系圧電セラミックス原料粉
末は、1000〜1220℃で焼結することにより、高
密度で電気特性の優れたPZT系圧電セラミックス焼結
体を得ることのできる、低温焼結性の粉末である。
The PZT-based piezoelectric ceramic raw material powder obtained by the present invention is a low-temperature sinterable powder that can be sintered at 1000 to 1220°C to obtain a PZT-based piezoelectric ceramic sintered body with high density and excellent electrical properties. It is a powder.

本発明において、PZT系圧電セラミックスとは、一般
式pb(Zr*↑L−、)as (但し、x=o、L 
〜0.9)で示されるPZTおよび前記一般式のPb/
(Zr+Ti)の原子比を1.0より高くあるいは低く
ずらしたPZTおよびこれらに微量の金属元素を添加し
た系を総称する。
In the present invention, PZT-based piezoelectric ceramics is defined by the general formula pb(Zr*↑L-,) as (where x=o, L
~0.9) PZT and the above general formula Pb/
It is a general term for PZT in which the atomic ratio of (Zr+Ti) is shifted higher or lower than 1.0, and a system in which a trace amount of a metal element is added to these.

PZT系の構成成分の水溶液を作る成分化合物としては
、水酸化物、オキシ塩化物、炭酸塩、オキシ硝酸塩、硫
酸塩、硝酸塩、酢酸塩、ギ酸塩、蓚酸塩、塩化物、酸化
物等が挙げられる。これらが水に可溶でない場合は、F
L#等を添加して可溶とすることができるが、最も安価
で、本発明方法に通したものは、オキシ塩化ジルコニウ
ムまたはオキシ硝酸ジルコニウム、四塩化チタンおよび
硝酸鉛である。
Component compounds for making an aqueous solution of PZT-based components include hydroxides, oxychlorides, carbonates, oxynitrates, sulfates, nitrates, acetates, formates, oxalates, chlorides, oxides, etc. It will be done. If these are not soluble in water, F
It is possible to make it soluble by adding L#, etc., but the cheapest ones that can be passed through the process of the present invention are zirconium oxychloride or zirconium oxynitrate, titanium tetrachloride and lead nitrate.

沈澱形成液として、アルカリ性水溶液例えば、アンモニ
ア、苛性アルカリ、炭酸ソーダ、蓚酸アンモニウム、ア
ミン等の水溶液が使用できるが、微量の混入が電気特性
に影響するナトリウム、カリウムを含まず、仮焼段階で
容易に分解し、かつ安価なアンモニア水が好ましく使用
される。
As the precipitate forming liquid, alkaline aqueous solutions such as ammonia, caustic alkali, soda carbonate, ammonium oxalate, amines, etc. can be used; however, they do not contain sodium or potassium, which would affect electrical properties if mixed in trace amounts, and are easily used in the calcination stage. Aqueous ammonia is preferably used because it decomposes into water and is inexpensive.

本発明において、最終沈澱の洗浄の他、中間沈澱の洗浄
を行うが、特に、チタン原料として四塩化チタンを使用
する場合、中間洗浄として鉛化合物の添加前に十分な洗
浄を行い陰イオン、特に塩素イオンを除去する必要があ
る。洗浄は、通常、水またはアンモニア水を使用し、リ
パルプ水洗を繰り返して行うが、リパルプ水洗を5回以
上操り返すことが好ましい。該中間洗浄が十分でないと
、最終洗浄では除去困難な塩化鉛等を生成し焼結時に重
量減少し、焼結性および電気特性が低下する。
In the present invention, in addition to washing the final precipitate, intermediate precipitates are washed. In particular, when titanium tetrachloride is used as a titanium raw material, sufficient washing is performed as an intermediate wash before adding a lead compound to remove anions, especially It is necessary to remove chloride ions. Washing is usually carried out using water or aqueous ammonia and repeating repulp washing with water, but it is preferable to repeat repulping washing with water five or more times. If the intermediate cleaning is not sufficient, lead chloride, etc., which are difficult to remove in the final cleaning, will be produced, resulting in weight loss during sintering, and sinterability and electrical properties will deteriorate.

また、より性能の優れた粉末を得るためには、各沈澱生
成後、熟成を行うことが好ましい。熟成は、低温の場合
は長時間、高温の場合は短時間であり、通常、10〜8
0℃で30分以上、好ましくは1〜24時間である。
Further, in order to obtain a powder with better performance, it is preferable to perform ripening after each precipitate is formed. Aging is carried out for a long time at low temperatures and for a short time at high temperatures, and is usually aged between 10 and 8
The time is 30 minutes or more at 0°C, preferably 1 to 24 hours.

本発明において、PZT系セラミックスの焼結性や電気
特性を制御するために、微量成分、例えば、Ba、 C
a+ Sr+Sn+ Mn+ A1. La+ Nb、
Cs、Ge+ vl yl BL Fe、Cr、Ni。
In the present invention, in order to control the sinterability and electrical properties of PZT ceramics, trace components such as Ba, C, etc.
a+ Sr+Sn+ Mn+ A1. La+Nb,
Cs, Ge+ vl yl BL Fe, Cr, Ni.

Ir、Rh、Na、Sc、 In、に、Ga、TIJ、
Th等の元素の化合物を添加することができる。
Ir, Rh, Na, Sc, In, Ga, TIJ,
Compounds of elements such as Th can be added.

〔作 用〕[For production]

本発明において、複合沈澱の生成法として多段沈澱法を
採用し、各沈澱を一般的な各化合物水溶液に沈澱形成液
を性別する方法とは逆に、沈澱形成液に各化合物水溶液
を順次江別し、それぞれ熟成して製造する。特に、該方
法で沈澱させた槙となるジルコニウム化合物沈澱は均一
な微粒子となり、かっ粒径の制御が容易である。その結
果最終目的の仮焼粉末も均一な粒径のものが得られ、低
温焼結性が達成される。
In the present invention, a multi-stage precipitation method is adopted as a method for producing a composite precipitate, and contrary to the general method of separating each precipitate into a precipitate forming solution into an aqueous solution of each compound, an aqueous solution of each compound is sequentially separated into a precipitate forming solution. , each is aged and manufactured. In particular, the zirconium compound precipitate that becomes the molasses precipitated by this method becomes uniform fine particles, and the particle size can be easily controlled. As a result, the final target calcined powder has a uniform particle size, and low-temperature sinterability is achieved.

〔実施例〕〔Example〕

以下、実施例を挙げ本発明を更に詳細に説明するが、本
発明はこれら実施例によりなんら限定されるものではな
い。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 オキシ塩化ジルコニウム0.1モルを水500mI中に
溶解して水溶液を作り、この溶液を温度60℃に保持攪
拌している3Nアンモニア水Iz中に15分間で滴下し
た後、温度60℃に保持し、1時間攪拌をwIVtシ反
応を熟成した。その後、四塩化チタン0.1モルを水5
00m l中に溶解した水溶液をこの分散液に攪拌を続
行しながら滴下し、ZrとTiの複合水酸化物沈澱を生
成した後、室温下−昼夜攪拌をm続し沈澱を熟成した。
Example 1 0.1 mole of zirconium oxychloride was dissolved in 500 mI of water to make an aqueous solution, and this solution was dropped over 15 minutes into 3N ammonia water Iz which was maintained at a temperature of 60°C and stirred, and then the temperature was increased to 60°C. The reaction was aged by holding at 40°C and stirring for 1 hour. Then, add 0.1 mol of titanium tetrachloride to 5 mol of water.
The aqueous solution dissolved in 0.00ml was added dropwise to this dispersion while stirring to form a composite hydroxide precipitate of Zr and Ti, and the precipitate was aged by continuous stirring day and night at room temperature.

濾過後、濾過ケーキを再び稀アンモニア水に分散させて
濾過する方法(リパルプ洗浄)を数回繰り返し、CI−
イオンを十分除去した後、濾過ケーキを2.4Nアンモ
ニア水11中に再分散させ攪拌を行いながら、硝酸鉛0
.2モルを300m1の水に溶解した溶液を滴下してZ
r、Ti及びpbの水酸化物の複合した沈澱を作った後
、室温下−昼夜攪拌を継続し反応生成物を熟成した。付
着したNo、−イオンを上記と同様にリパルプ洗浄によ
り除いた。なお、リパルプ水洗による濾紙への付着によ
る各成分の量論比が変る事を防ぐため、常に同−濾紙上
にて濾過を行った。
After filtration, the filter cake was again dispersed in dilute ammonia water and filtered (repulp washing) several times, and CI-
After sufficiently removing ions, the filter cake was redispersed in 2.4N aqueous ammonia 11, and while stirring, 0% lead nitrate was added.
.. A solution of 2 moles dissolved in 300 ml of water was added dropwise to Z.
After forming a precipitate containing the hydroxides of r, Ti, and pb, stirring was continued day and night at room temperature to ripen the reaction product. The attached No, - ions were removed by repulp washing in the same manner as above. In addition, in order to prevent the stoichiometric ratio of each component from changing due to adhesion to the filter paper due to repulp washing with water, filtration was always performed on the same filter paper.

そして、最終の濾過ケーキを100℃の温度に5時間保
持して乾燥し、750℃で約2時間仮焼し、PZTセラ
ミックス、Pb(0,5Zr ・0.5Ti)Ozの仮
焼粉末を得た。この得られた仮焼粉末をボールミルに仕
込み、エタノールを加え48時間粉砕した後、100℃
で2時間乾燥しPZTセラミックス原料粉末を得た。
Then, the final filter cake was dried by keeping it at a temperature of 100°C for 5 hours, and then calcined at 750°C for about 2 hours to obtain a calcined powder of PZT ceramics and Pb(0.5Zr ・0.5Ti) Oz. Ta. The obtained calcined powder was placed in a ball mill, ethanol was added thereto, the powder was ground for 48 hours, and then heated to 100°C.
The mixture was dried for 2 hours to obtain a PZT ceramic raw material powder.

(試料No、 1−1〜1−4 ) 実施例2 実施例1と同一の操作で熟成工程を省略したプロセスで
PZTセラミックスPb(0,5Zr ・0.5Ti)
O*原料粉末を得た。(試料No、 2−1〜2−4 
)比較例1 四塩化チタン0.1モルとオキシ塩化ジルコニウム0.
1モルとを、水1j!中に溶解して、Ti←とZr’ 
”の等モルの混合水溶液を作った。この溶液を60℃で
攪拌した3Nアンモニア水tz中に30分間で滴下し、
生成した沈澱を濾別した。ケーキに吸着しているCI−
イオンを十分洗浄した後、2.4Nアンモニア水11中
に再分散させ攪拌を行いながら、硝酸鉛0.2モルを3
00+wlの水に溶解した溶液を10分間で滴下して、
Zr、 Ti及びpbの複合した水酸化物の沈澱を作っ
た。
(Sample Nos. 1-1 to 1-4) Example 2 PZT ceramics Pb (0.5Zr 0.5Ti) were produced using the same process as in Example 1 but omitting the aging process.
O* raw material powder was obtained. (Sample No. 2-1 to 2-4
) Comparative Example 1 0.1 mol of titanium tetrachloride and 0.1 mol of zirconium oxychloride.
1 mole and 1 j of water! Dissolved in Ti← and Zr'
An equimolar mixed aqueous solution of " was prepared. This solution was added dropwise over 30 minutes to 3N ammonia water stirred at 60°C.
The formed precipitate was filtered off. CI- adsorbed on the cake
After sufficiently washing the ions, 0.2 mol of lead nitrate was added to the
A solution dissolved in 00+wl of water was added dropwise over 10 minutes.
A complex hydroxide of Zr, Ti and PB was precipitated.

以下は実施例1と同様な操作でPZTセラミックスPb
(0,5Zr−0,5Ti)Ox原料粉末を得た。
The following is the same operation as in Example 1 to prepare PZT ceramic Pb.
(0,5Zr-0,5Ti)Ox raw material powder was obtained.

(試料No、比1−1〜比1−4) 比較例2 市販(7)PbO+ Ti0z、 Zr0t 117)
粉末をPb(0,5Zr−0,5Ti)0.の組成にな
るように配合し、ボールミルで混合した後800℃で約
2時間仮焼し、再びボールミルで粉砕した後、乾燥原料
粉末を得た。
(Sample No., ratio 1-1 to ratio 1-4) Comparative example 2 Commercially available (7) PbO+ Ti0z, Zr0t 117)
Pb(0,5Zr-0,5Ti)0. They were mixed in a ball mill, calcined at 800°C for about 2 hours, and ground again in a ball mill to obtain a dry raw material powder.

(試料No、比2−1〜比2−4) 比較例3 比較例1と同一の操作で熟成工程及び硝酸鉛滴下前の洗
浄工程を省略したプロセスでPZTセラミックスPb(
0,5Zr ・0.5Ti)(L+原料粉末を得た。得
られた粉末のDTG測定では、900℃付近で3.7w
t%の重@減少があり、PbCIgの生成が認められた
(Sample No., Ratio 2-1 to Ratio 2-4) Comparative Example 3 PZT ceramic Pb (
0.5Zr ・0.5Ti) (L+ raw material powder was obtained. DTG measurement of the obtained powder showed 3.7w at around 900°C.
There was a weight loss of t%, and the formation of PbCIg was observed.

(評価試験) (A>  原料粉末の特性 実施例及び比較例で得た各原料粉末の粒度分布を、遠心
沈降式粒度分布測定機(島津製作所製・5A−cp型)
を用いて測定した。
(Evaluation test) (A> Characteristics of raw material powder The particle size distribution of each raw material powder obtained in Examples and Comparative Examples was measured using a centrifugal sedimentation type particle size distribution analyzer (manufactured by Shimadzu Corporation, Model 5A-CP).
Measured using

(A−1)  平均粒径:D%@ 累積重量百分率が50%が示す粒径1Dsoを平均粒径
として第1表中に示す。
(A-1) Average particle size: D%@ The particle size 1Dso indicated by a cumulative weight percentage of 50% is shown in Table 1 as the average particle size.

(A−2)  粒度分布;D、。/ D +。(A-2) Particle size distribution; D. / D +.

累積重量百分率が90%を示す粒径;D、。を、累積重
量百分率が10%を示す粒径;D、。で除した値;D、
Particle size exhibiting a cumulative weight percentage of 90%; D. , the particle size exhibiting a cumulative weight percentage of 10%; D. The value divided by; D,
.

/ D +。を、粒度分布として第1表中に示す。/ D +. is shown in Table 1 as the particle size distribution.

(A−3)  比表面積 原料粉末の比表面積を比表面積自動測定装置(島津マイ
クロメリティクス2200形)を用いて測定した。
(A-3) Specific surface area The specific surface area of the raw material powder was measured using an automatic specific surface area measuring device (Shimadzu Micromeritics Model 2200).

(A−4)  SEM写真 実施例1および比較例1で得られた粉末の38M観察を
日本電子型JSM−T−200を用いて行った。
(A-4) SEM Photograph 38M observation of the powders obtained in Example 1 and Comparative Example 1 was performed using JEOL JSM-T-200.

(B)  誘電体磁器の特性 実施例及び比較例で得た各原料粉末を使用して圧電体磁
器を製造した。
(B) Characteristics of dielectric porcelain Piezoelectric porcelain was manufactured using each of the raw material powders obtained in Examples and Comparative Examples.

原料粉末;1gを直径20龍の金型に入れ、2Ton/
(J”の圧力で加圧成形し、成形体を得た。この成形体
を、マグネシアルツボに入れて蓋をし、焼成炉中におい
て焼結し圧電体磁器を得た。
Raw material powder; 1g was put into a mold with a diameter of 20 dragons, and 2Ton/
(J" pressure) to obtain a molded body. This molded body was placed in a magnesia crucible, covered, and sintered in a firing furnace to obtain piezoelectric porcelain.

各試料について、マグネシアルツボ中に雰囲気調整用)
pbo *粉を同封し、1050℃、1100℃、 1
150℃および1220℃の4水準の温度で焼成した。
For each sample, adjust the atmosphere in the magnesia crucible)
pbo *Enclose powder, 1050℃, 1100℃, 1
Firing was performed at four levels of temperature: 150°C and 1220°C.

 電気特性測定用の電極として、得られた圧電体磁器の
両面にへgペーストを焼付けた。
Heg paste was baked on both sides of the obtained piezoelectric porcelain as electrodes for measuring electrical characteristics.

(B−1)  成形体密度 加圧成形体の寸法密度を測定した。測定結果を第1表中
に示す。
(B-1) Density of compacted product The dimensional density of the compacted compact was measured. The measurement results are shown in Table 1.

(B−2)  焼結密度 誘電体磁器の焼結密度を水中置換法により測定した。測
定結果を第1表中に示す。
(B-2) Sintered Density The sintered density of the dielectric ceramic was measured by an underwater displacement method. The measurement results are shown in Table 1.

(B−3)  誘電特性;εおよびtan δLCZメ
ーター(横河ヒューレットパッカード製・4276A)
を使用し、20℃ IKHzの条件で比誘電気率;εお
よび誘電正接; tan δを測定した。測定結果を第
1表中に示す。
(B-3) Dielectric properties; ε and tan δ LCZ meter (manufactured by Yokogawa Hewlett-Packard, 4276A)
The dielectric constant; ε and the dielectric loss tangent; tan δ were measured at 20° C. and IKHz. The measurement results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

実施例および比較例に示す如く、本発明の方法で製造さ
れた原料粉末は、低温焼結性であり、該粉末の焼結によ
り得られるPZT系圧電セラミックス焼結体は、高密度
で電気特性に優れている。 これらの効果は、構成成分
の沈澱形成の順序、即ちプレカーサーの選択および中間
洗浄によって得られたものであり、更に熟成工程の組み
合わせによって一層その効果が顕著になっている。  
 以上の如く、本発明によれば、電気特性の優れたPZ
T性セラミックスを容易に製造することができ、その産
業的価値は極めて大である。
As shown in the Examples and Comparative Examples, the raw material powder produced by the method of the present invention is sinterable at low temperatures, and the PZT piezoelectric ceramic sintered body obtained by sintering the powder has high density and good electrical properties. Excellent. These effects were obtained by the order of precipitate formation of the constituent components, that is, the selection of precursors and intermediate washing, and the effects became even more pronounced by the combination of the ripening steps.
As described above, according to the present invention, PZ with excellent electrical properties
T-type ceramics can be easily produced, and their industrial value is extremely large.

特許出願人 科学技術庁 無機材質研究所長(430)
日本曹達株式会社
Patent applicant: Director, Inorganic Materials Research Institute, Science and Technology Agency (430)
Nippon Soda Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)ジルコニウム化合物水溶液を過剰の沈澱形成液に
混合して沈澱を形成した後、該沈澱を分散した沈澱形成
液にチタン化合物水溶液を混合して複合沈澱を形成し、
得られた複合沈澱を洗浄した後、該複合沈澱を再び過剰
の沈澱形成液に分散し、該沈澱分散沈澱形成液に鉛化合
物水溶液を混合して全成分の複合沈澱を作り、該複合沈
澱を濾過、洗浄後、500〜1100℃で仮焼すること
を特徴とする低温焼結性PZT系圧電セラミックス粉末
の製造方法
(1) After mixing a zirconium compound aqueous solution with an excess precipitate forming liquid to form a precipitate, a titanium compound aqueous solution is mixed with the precipitate forming liquid in which the precipitate is dispersed to form a composite precipitate,
After washing the obtained composite precipitate, the composite precipitate is again dispersed in an excess precipitate forming liquid, and an aqueous lead compound solution is mixed with the precipitate-dispersed precipitate forming liquid to form a composite precipitate of all the components. A method for producing a low-temperature sinterable PZT-based piezoelectric ceramic powder, which is characterized by calcination at 500 to 1100°C after filtration and washing.
(2)各沈澱生成後、10〜80℃の温度に保持して熟
成を行う特許請求の範囲第(1)項記載の方法
(2) The method according to claim (1), in which after each precipitate is formed, the temperature is maintained at 10 to 80°C for ripening.
JP61026504A 1986-02-08 1986-02-08 Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder Expired - Lifetime JPH0688788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61026504A JPH0688788B2 (en) 1986-02-08 1986-02-08 Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61026504A JPH0688788B2 (en) 1986-02-08 1986-02-08 Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder

Publications (2)

Publication Number Publication Date
JPS62187116A true JPS62187116A (en) 1987-08-15
JPH0688788B2 JPH0688788B2 (en) 1994-11-09

Family

ID=12195314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61026504A Expired - Lifetime JPH0688788B2 (en) 1986-02-08 1986-02-08 Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder

Country Status (1)

Country Link
JP (1) JPH0688788B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298059A (en) * 1988-05-26 1989-12-01 Nippon Denso Co Ltd Production of pzt
US5204031A (en) * 1989-09-30 1993-04-20 Osaka Titanium Co., Ltd. Powder of oxide for dielectric ceramics and a process for producing dielectric ceramics
US5229101A (en) * 1991-01-09 1993-07-20 Munetoshi Watanabe Process for producing a powder of perovskite-type double oxide
US5308807A (en) * 1992-07-15 1994-05-03 Nalco Chemical Company Production of lead zirconate titanates using zirconia sol as a reactant
US5453262A (en) * 1988-12-09 1995-09-26 Battelle Memorial Institute Continuous process for production of ceramic powders with controlled morphology
US7056443B2 (en) 2002-05-30 2006-06-06 Tdk Corporation Piezoelectric ceramic production method and piezoelectric element production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298059A (en) * 1988-05-26 1989-12-01 Nippon Denso Co Ltd Production of pzt
US5453262A (en) * 1988-12-09 1995-09-26 Battelle Memorial Institute Continuous process for production of ceramic powders with controlled morphology
US5204031A (en) * 1989-09-30 1993-04-20 Osaka Titanium Co., Ltd. Powder of oxide for dielectric ceramics and a process for producing dielectric ceramics
US5229101A (en) * 1991-01-09 1993-07-20 Munetoshi Watanabe Process for producing a powder of perovskite-type double oxide
US5308807A (en) * 1992-07-15 1994-05-03 Nalco Chemical Company Production of lead zirconate titanates using zirconia sol as a reactant
US7056443B2 (en) 2002-05-30 2006-06-06 Tdk Corporation Piezoelectric ceramic production method and piezoelectric element production method

Also Published As

Publication number Publication date
JPH0688788B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
JP5361190B2 (en) Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same
JPS6214489B2 (en)
JPS6214490B2 (en)
JPS62187116A (en) Production of pzt type piezoelectric ceramic powder sinterable at low temperature
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPH0559048B2 (en)
JPS6363511B2 (en)
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPH02184524A (en) Production of piezoelectric perovskite-type compound
JP2740648B2 (en) Method for producing soft magnetic oxide material
JPS6311522A (en) Production of ceramics powder capable of easily sintering for producing dielectric porcelain
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
EP0163739A1 (en) Process for preparing fine particles of ba (zrx ti 1-x)o3-solid solution
JPS6311520A (en) Production of ceramics powder capable of easily sintering for producing dielectric porcelain
JPS6311523A (en) Production of easily-sinterable piezoelectric ceramic powder
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
KR100531137B1 (en) Method for Preparation of Piezoelectric Ceramics by Coprecipitation
JPS6311521A (en) Production of ceramics powder capable of easily sintering for producing dielectric porcelain having high density
KR960004400B1 (en) Process for the preparation of ba1-x pbx tio3
JPH05238735A (en) Production for perovskite type oxide powder
JPH01122907A (en) Production of perovskite oxide powder
JPH01224210A (en) Production of perovskite oxide powder
JPS63144115A (en) Production of oxide
JPH0651570B2 (en) Method for manufacturing piezoelectric ceramic raw material powder
JPS62202821A (en) Production of powdery raw material of easily sintering composite perovskite by multi-stage wet process

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term