JPS6311521A - Production of ceramics powder capable of easily sintering for producing dielectric porcelain having high density - Google Patents

Production of ceramics powder capable of easily sintering for producing dielectric porcelain having high density

Info

Publication number
JPS6311521A
JPS6311521A JP61155633A JP15563386A JPS6311521A JP S6311521 A JPS6311521 A JP S6311521A JP 61155633 A JP61155633 A JP 61155633A JP 15563386 A JP15563386 A JP 15563386A JP S6311521 A JPS6311521 A JP S6311521A
Authority
JP
Japan
Prior art keywords
precipitate
calcining
oxide
obtd
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61155633A
Other languages
Japanese (ja)
Other versions
JPH0788220B2 (en
Inventor
Shinichi Shirasaki
信一 白崎
Soichiro Sugano
総一郎 菅野
Hiromichi Okamura
岡村 博道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Nippon Soda Co Ltd
Original Assignee
National Institute for Research in Inorganic Material
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Nippon Soda Co Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP15563386A priority Critical patent/JPH0788220B2/en
Publication of JPS6311521A publication Critical patent/JPS6311521A/en
Publication of JPH0788220B2 publication Critical patent/JPH0788220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a Pb contg. perovskite type oxide powder for producing the dielectric porcelain having a high density which is capable of sintering at a low temp. by mixing solutions of Zr and Ti compds. and a composite oxide obtd. by calcining, to a solution capable of forming a precipitate, calcining the obtained precipitate and mixing a Pb oxide followed by calcining the obtd. precipitate. CONSTITUTION:The each solutions of the Zr and Ti compds. and the composite oxide which is shown by AO.B2O5 (wherein A is >=one kind of Mg, Ni, Zn and Mn, B is Nb and Ta), and is obtd. by previously calcining, are mixed to the solution capable of forming the precipitate such as an aqueous solution of ammonia, etc. The obtd. precipitate is calcined, and the obtd. calcined product is mixed with a Pb oxide, followed by calcining and pulverizing it. By the method as mentioned above, the perovskite type piezoelectric ceramic particle composed of the oxide shown by the formula Pb(ZrtTi1-t)O3 (wherein t=0.1-0.9) and the oxide shown by the formula PbA1/3B2/3O3 is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低温焼結性で高性能のPZT系圧電セラミッ
クス原料粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing PZT-based piezoelectric ceramic raw material powder that is low-temperature sinterable and has high performance.

PZT系セラミックスは、高周波フィルター、超音波振
動子、共振子エレメント(ピックアンプエレメント、着
火素子メカニカルフィルタ、遅延線用変換素子、バイモ
ルフ素子等)として広範囲に利用されている。
PZT ceramics are widely used as high frequency filters, ultrasonic vibrators, and resonator elements (pick amplifier elements, ignition element mechanical filters, delay line conversion elements, bimorph elements, etc.).

〔従来技術〕[Prior art]

従来のPZT系セラミックスの原料粉末の製造方法とし
ては、乾式法と湿式共沈法が知られている。
A dry method and a wet co-precipitation method are known as conventional methods for producing raw material powder for PZT-based ceramics.

乾式法は、構成成分の酸化物又は炭酸塩等の粉末を混合
し、これを仮焼する方法である。湿式共比法は、PZT
の構成成分の全ての混合液を作り、これにアルカリ等の
沈殿形成液を添加して共沈させ、乾燥、仮焼する方法で
ある。
The dry method is a method in which powders of constituent oxides or carbonates are mixed and calcined. The wet co-ratio method uses PZT
In this method, a mixed solution of all the constituent components is prepared, a precipitate-forming liquid such as an alkali is added thereto to cause co-precipitation, followed by drying and calcining.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来から知られでいる乾式法では、均一な組成の原料粉
末が得難く、またPZTの生成反応を完遂させるために
仮焼温度を高くすることが必要であるので、粒子が粗大
化して易焼結性になり難い欠点があった。
In the conventionally known dry method, it is difficult to obtain raw material powder with a uniform composition, and it is necessary to increase the calcination temperature to complete the PZT production reaction, so the particles become coarse and easily sintered. The drawback was that it was difficult to form a bond.

また、湿式共沈法では、沈殿形成液の添加時の?=度が
一定であるため、各成分の沈殿形成能が異なる場合には
、ある成分は100%沈殿を生成するが、他の成分は1
00%沈殿を生成し得ないことがあり、所望組成のもの
を得難い欠点がある。
In addition, in the wet co-precipitation method, when adding the precipitate forming solution? = Since the degree is constant, if the precipitate forming ability of each component is different, one component will produce 100% precipitate, while the other component will produce 100% precipitate.
This method has the disadvantage that it may not be possible to produce 00% precipitate, making it difficult to obtain a desired composition.

更に、PZTは鉛とチタンとを含有しているので、これ
を共沈法で製造する場合、チタン原料として安価な四塩
化チタンを使用すると、四塩化チタンの塩素イオンが鉛
イオンと反応して白色沈殿を生成するため、四塩化チタ
ンは使用できない。この場合、オキシ硝酸チタンを使用
すればこの沈殿の生成を防ぐことができるが、高価であ
るため実用的でない。
Furthermore, since PZT contains lead and titanium, when producing it by coprecipitation method, if cheap titanium tetrachloride is used as the titanium raw material, the chlorine ions of titanium tetrachloride will react with the lead ions. Titanium tetrachloride cannot be used because it produces a white precipitate. In this case, the formation of this precipitate can be prevented by using titanium oxynitrate, but it is not practical because it is expensive.

また、湿式法として、有機金属化合物を用いる方法もあ
り、この場合、有害な陰イオンの生成はないが、原料が
高価であり工業的生産には適していない。
In addition, as a wet method, there is also a method using an organometallic compound, and in this case, no harmful anions are generated, but the raw materials are expensive and it is not suitable for industrial production.

更に、Mg+Nt+Zn+Mnは、共通の沈殿形成液を
用い、同−pH?+i域内で沈殿を形成させることが困
難であり、Nb、Taは、水系溶媒に溶解する塩が少な
く、そのため、これらの金属を含有するPZT系セラミ
ックス粉末を、水系溶液から沈殿形成させる方法で、正
しい化学量論比を持つペロブスカイト系酸化物として得
ることは困難であった。
Furthermore, Mg+Nt+Zn+Mn uses a common precipitate forming solution and has the same pH? It is difficult to form a precipitate within the +i range, and Nb and Ta have few salts dissolved in an aqueous solvent. It has been difficult to obtain perovskite oxides with the correct stoichiometry.

本発明の目的は、Mg、 N+ + Zn、 Mn、 
Nb+ Ta等の金属を含有するPZT系圧主圧電セラ
ミックス料粉末の製法における従来法の欠点を解消し、
チタン原料として安価な四塩化チタンも使用でき、高密
度で電気特性の優れたPZT系圧主圧電セラミックス造
に適した、低温焼結性の粉末を製造する方法を提供する
にある。
The object of the present invention is Mg, N + + Zn, Mn,
Eliminates the drawbacks of the conventional method for manufacturing PZT-based piezoelectric ceramic material powder containing metals such as Nb + Ta,
It is an object of the present invention to provide a method for producing low-temperature sinterable powder suitable for producing PZT-based piezoelectric ceramics having high density and excellent electrical properties, which can also use inexpensive titanium tetrachloride as a titanium raw material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、一般式Pb(Zrt Tit−c)03(但
し、1=0.1〜0.9)で表される酸化物と一般式P
bA+7Jzz303(但し、AはMg、 Ni、Zn
及びMnからなる群から選ばれた1種又は2種以上を、
BはNb及び又はTaを表す)で表される酸化物とから
なるペロブスカイト系構造を持つPZT系圧電セラミッ
クス粉末の製造において、ジルコニウム及びチタニウム
化合物の溶液、並びに予め仮焼して得られたAO−82
0Sで表される複合酸化物を沈殿形成液と混合し、得ら
れた沈殿を仮焼した後、鉛酸化物と混合し、仮焼するこ
とからなる鉛含有ペロブスカイト複合酸化物の製造法で
ある。
The present invention relates to an oxide represented by the general formula Pb(ZrtTit-c)03 (where 1=0.1 to 0.9) and a general formula P
bA+7Jzz303 (However, A is Mg, Ni, Zn
and one or more selected from the group consisting of Mn,
In the production of PZT-based piezoelectric ceramic powder having a perovskite structure consisting of an oxide represented by Nb and/or Ta), a solution of zirconium and titanium compounds and an AO- 82
This is a method for producing a lead-containing perovskite composite oxide, which comprises mixing a composite oxide represented by 0S with a precipitate forming liquid, calcining the resulting precipitate, mixing it with lead oxide, and calcining it. .

本発明において、PZT系圧主圧電セラミックス、前記
一般式のpbの原子比を1.0より高くあるいは低くず
らしたもの、また微量の他金属元素を添加した系をも含
むものである。
The present invention includes PZT-based piezoelectric ceramics, those in which the atomic ratio of pb in the above general formula is shifted higher or lower than 1.0, and systems in which trace amounts of other metal elements are added.

本発明方法においては、Zr及びTi成分はそれらの原
料化合物の溶液を沈殿形成;包と混合し、共沈法により
沈殿形成させる。
In the method of the present invention, the Zr and Ti components are mixed with a solution of their raw material compounds to form a precipitate, and are precipitated by a coprecipitation method.

原料化合物として使用するZr、Ti化合物としては、
水酸化物、オキシ塩化物、炭酸塩、オキシ硝酸塩、硫酸
塩、硝酸塩、酢酸塩、ギ酸塩、蓚酸塩、塩化物、酸化物
等が挙げられる。これらが水に可溶でない場合は、鉱酸
等を添加して可溶とするができるが、最も安価で、本発
明方法に適したものは、オキシ塩化ジルコニウム又はオ
キシ硝酸シルコニニウム、及び四塩化チタンである。
Zr and Ti compounds used as raw material compounds include:
Examples include hydroxides, oxychlorides, carbonates, oxynitrates, sulfates, nitrates, acetates, formates, oxalates, chlorides, oxides, and the like. If these are not soluble in water, mineral acids etc. can be added to make them soluble, but the cheapest and most suitable for the method of the present invention are zirconium oxychloride or silconinium oxynitrate, and titanium tetrachloride. It is.

八及びB成分は、予め、両成分原料化合物を混合した後
、400〜1000℃、好ましくは700〜1000℃
で仮焼して得られた、不溶性複合酸化物へ〇・B20、
を粉砕し、通常、縣濁液として添加する。
Components 8 and B are heated at 400 to 1000°C, preferably 700 to 1000°C, after mixing the raw material compounds of both components in advance.
To the insoluble composite oxide obtained by calcining with 〇・B20,
is ground and usually added as a suspension.

八〇・Btus粉末は、原料、仮焼温度、粉砕工程等を
制御することにより、粒径分布が均一で粒径が小さいも
のとする必要がある。粒径は1.0μm以下とすること
が好ましい。
The 80.Btus powder needs to have a uniform particle size distribution and a small particle size by controlling the raw materials, calcination temperature, pulverization process, etc. The particle size is preferably 1.0 μm or less.

八〇 −Bzosの添加は、Zr−Ti成分の沈殿形成
前にAO・B20.を沈殿形成液に分散させておく方法
、Zr−Ti成分の沈殿形成後、該’632の分散した
沈殿形成液にAO−Btusを加え分散させる方法を採
用することが出来る。
80-Bzos is added to AO/B20. before precipitation of the Zr-Ti component. It is possible to adopt a method in which AO-Btus is dispersed in a precipitate forming liquid, or a method in which AO-Btus is added and dispersed in the precipitate forming liquid in which the '632 is dispersed after forming a precipitate of the Zr-Ti component.

A及びB成分の原料化合物としては、水酸化物、オキシ
塩化物、炭酸塩、オキシ硝酸塩、硝酸塩、酢酸塩、ギ酸
塩、硝酸塩、酸化物等が挙げられる。
The raw material compounds for components A and B include hydroxides, oxychlorides, carbonates, oxynitrates, nitrates, acetates, formates, nitrates, oxides, and the like.

沈殿形成液としては、例えば、アンモニア、苛性アルカ
リ、炭酸ソーダ、蓚酸アンモニウム、アミン等の溶液が
挙げられるが、itの混入が電気特性に影響するナトリ
ウム、カリウムを含まず、仮焼段階で容易に分解し、か
つ安価なアンモニア水が好ましい。
Examples of the precipitate-forming solution include solutions of ammonia, caustic alkali, soda carbonate, ammonium oxalate, amines, etc., but they do not contain sodium or potassium, which would affect electrical properties if mixed with IT, and are easily formed during the calcination stage. Aqueous ammonia, which decomposes and is inexpensive, is preferred.

Zr−Tiの混合水酸化物沈殿の形成にあたっては、沈
殿形成後、洗浄により陰イオンの除去を十分に行う必要
がある。洗浄は、通常、水又はアンモニア水を使用し、
リパルプ水洗を繰り返すことが好ましい、該洗浄が十分
でないと、塩化鉛等を生成し焼結時に重量減少し、焼結
性及び電気特性が低下する。
In forming a mixed hydroxide precipitate of Zr-Ti, it is necessary to sufficiently remove anions by washing after forming the precipitate. Cleaning usually uses water or ammonia water,
It is preferable to repeatedly wash the repulp with water; if the washing is not sufficient, lead chloride etc. will be produced, weight will be reduced during sintering, and sinterability and electrical properties will deteriorate.

また、より性能の優れた粉末を得るためには、沈殿生成
後、熟成を行うことが好ましい。熟成は、低温の場合は
長時間、高温の場合は短時間であり、通常、10〜80
℃で30分以上、好ましくは1〜24時間である。
Further, in order to obtain a powder with better performance, it is preferable to perform aging after precipitation. Aging is carried out for a long time at low temperatures and for a short time at high temperatures, and is usually aged between 10 and 80
℃ for 30 minutes or more, preferably 1 to 24 hours.

本発明における沈殿形成は、水系溶媒、例えば、水又は
水−アルコール中で行われる。
Precipitation formation in the present invention is carried out in an aqueous solvent, such as water or water-alcohol.

上記の方法により得られたZr−Ti−A−8の水酸化
物と酸化物との混合沈殿を仮焼した後、鉛酸化物を混合
し、更に仮焼することにより、本発明の複合酸化物粉末
を得ることが出来る。
After calcining the mixed precipitate of Zr-Ti-A-8 hydroxide and oxide obtained by the above method, the composite oxide of the present invention is prepared by mixing lead oxide and further calcining. You can get powder.

鉛酸化物としてはPbO又はr’bz04が使用できる
PbO or r'bz04 can be used as the lead oxide.

Zr−Ti−A−8の混合沈殿の仮焼は、400〜10
00℃、好ましくは600〜900℃で行う。また、最
終仮焼は400〜1000℃、好ましくは700〜10
00℃で行う。
The calcination of mixed precipitate of Zr-Ti-A-8 is 400-10
00°C, preferably 600-900°C. In addition, the final calcination is performed at 400 to 1000°C, preferably 700 to 100°C.
Perform at 00°C.

本発明において、PZT系セラミックスの焼結性や特性
を制御するために、微量成分、例えば、Ba、 Ca、
 Sr、Sn、 Mn、 AI、 La、 Nb、 C
s、 Ge、 V、 Y、 Bi、 Fe、 Cr。
In the present invention, in order to control the sinterability and properties of PZT ceramics, trace components such as Ba, Ca,
Sr, Sn, Mn, AI, La, Nb, C
s, Ge, V, Y, Bi, Fe, Cr.

Ni、 Ir+ Rh、 Na、 Sc+ In、 K
、 Ga+ Tl+ W、 Th等の元素の化合物を添
加してもよい。
Ni, Ir+ Rh, Na, Sc+ In, K
, Ga+ Tl+ W, Th, and other elemental compounds may be added.

本発明により得られるPZT系圧電セラミックス原料粉
末は低温焼結性の粉末であり、800〜1220℃で焼
結することにより、高密度で電気特性の優れたPZT系
圧電セラミックス焼結体を得ることが出来る。
The PZT-based piezoelectric ceramic raw material powder obtained by the present invention is a low-temperature sinterable powder, and by sintering at 800 to 1220°C, a PZT-based piezoelectric ceramic sintered body with high density and excellent electrical properties can be obtained. I can do it.

以下、実施例を挙げ本発明を更に詳細に説明するが、本
発明はこれら実施例によりなんら限定されるものではな
い。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1゜ Mg00.0167モルとNb!OsO,0167モル
とをボールミルで混合し、850℃で2時間仮焼した。
Example 1゜Mg00.0167 mol and Nb! 0167 mol of OsO was mixed in a ball mill and calcined at 850°C for 2 hours.

この仮焼粉末を11のアンモニア水中に分散した分散液
に、オキシ塩化ジルコニウム0.0135モルと四塩化
チタン0.0365モルとを水500ta 1中に溶解
した混合水溶液を徐々に滴下し、濾過後、濾過ケーキを
再び希アンモニア水に分散させて濾過する方法(リパル
プ洗浄)を数回繰り返し、塩素イオンを十分除去した。
A mixed aqueous solution of 0.0135 mol of zirconium oxychloride and 0.0365 mol of titanium tetrachloride dissolved in 500 ta of water was gradually added dropwise to a dispersion of this calcined powder in ammonia water in step 11, and after filtration, The method of dispersing the filter cake in dilute aqueous ammonia and filtering it again (repulp washing) was repeated several times to sufficiently remove chlorine ions.

尚、リパルプ洗浄時の濾紙への付着による各成分の量論
比が変わることを防ぐため、常に同じ濾紙上で濾過を行
った。
In addition, in order to prevent the stoichiometric ratio of each component from changing due to adhesion to the filter paper during repulp washing, filtration was always performed on the same filter paper.

次いで、この混合沈殿を乾燥した後、900℃で2時間
仮焼し、仮焼粉末とPb30aとを混合し、800℃で
2時間仮焼し、再びボールミルで粉砕し、Pb(Mg+
zzNbzzs)o、 soo Zro、 +5sTi
o、 36503組成のセラミックス粉末を得た。
Next, after drying this mixed precipitate, it was calcined at 900°C for 2 hours, the calcined powder and Pb30a were mixed, calcined at 800°C for 2 hours, and ground again in a ball mill to form Pb(Mg+
zzNbzzs)o, soo Zro, +5sTi
A ceramic powder having a composition of 36503 was obtained.

比較例 市販のPbO、Ti0z、ZrO,、MgO、NbzO
sの粉末をPbCMg、7.Nbzyx)o、 sol
 Zro、 +5sTio、 zasOsの組成になる
ように配合し、ボールミルで混合した後、800℃で約
2時間仮称し、再びボールミルで粉砕した後乾燥し、P
b(Mg+zJbz/i)o、soo Zro、+5s
Tio。
Comparative examples Commercially available PbO, TiOz, ZrO, MgO, NbzO
PbCMg,7. Nbzyx)o, sol
Zro, +5sTio, and zasOs were blended, mixed in a ball mill, tentatively heated at 800°C for about 2 hours, ground again in a ball mill, dried, and P
b(Mg+zJbz/i)o, soo Zro, +5s
Tio.

36503組成のセラミックス粉末を得た。A ceramic powder having a composition of 36503 was obtained.

(評価試験) (A)原料粉末の特性 粒度分布は遠心沈降式粒度分布測定機(話法製作所・5
A−CP型)を用いて測定した。
(Evaluation test) (A) The characteristic particle size distribution of the raw material powder was measured using a centrifugal sedimentation type particle size distribution measuring machine (Kaho Seisakusho 5).
A-CP type).

(A−1)平均粒径り、。;累積重量百分率が50χを
示す粒径 (A−2)粒度分布り、。/D+o:累積重量百分率が
90χを示す粒径り、。を累積重量百分率が10χを示
す粒径010で除した値 (^−3)比表面積:比表面積自動測定装置(話法マイ
クロメリティクス2200型)を用いて測定下。
(A-1) Average particle size. ; Particle size (A-2) particle size distribution exhibiting a cumulative weight percentage of 50χ; /D+o: Particle size with cumulative weight percentage of 90χ. The value obtained by dividing by the particle size 010 with a cumulative weight percentage of 10χ (^-3) Specific surface area: Measured using an automatic specific surface area measuring device (Koho Micromeritics Model 2200).

(B)誘電体磁器の特性 実施例及び比較例で得られた粉末を使用して圧電体磁器
を製造した。
(B) Characteristics of dielectric porcelain Piezoelectric porcelain was manufactured using the powders obtained in the Examples and Comparative Examples.

原料粉末1gを直径201の金型に入れ、2ton/c
m2の圧力で加圧成形し成形体を得た。この成形体をマ
グネシアルツボに入れ蓋をし、焼成炉で焼結し圧電体磁
器を得た。
Put 1 g of raw material powder into a mold with a diameter of 201 mm and press 2 tons/c.
A molded product was obtained by pressure molding at a pressure of m2. This molded body was placed in a magnesia crucible, covered with a lid, and sintered in a firing furnace to obtain piezoelectric porcelain.

(B−1)焼結密度:水中置換法により測定した。(B-1) Sintered density: Measured by an underwater displacement method.

(B−2) 誘電特性ε及びtan δ: LCZメー
ター(横河ヒューレットパッカード製4276A)を使
用し、20℃、IKH,の条件で比誘電率ε及び誘電正
接tanδを測定した。
(B-2) Dielectric properties ε and tan δ: Using an LCZ meter (4276A manufactured by Yokogawa Hewlett-Packard), the relative dielectric constant ε and the dielectric loss tangent tan δ were measured at 20° C. and IKH.

結果を第1表に記載した。The results are listed in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明方法は、工業的方法としても優れたものであり、
本発明の方法で製造された原料粉末は、低温焼結性であ
り、該粉末の焼結により得られるPZT系圧電セラミッ
クス焼結体は、高密度で電気特性に優れている。
The method of the present invention is also excellent as an industrial method,
The raw material powder produced by the method of the present invention is sinterable at low temperatures, and the PZT piezoelectric ceramic sintered body obtained by sintering the powder has high density and excellent electrical properties.

特許出願人  科学技術庁無機材料研究所(430)日
本曹達株式会社 代 理 人 (6286)  伊藤 晴之(7125)
  検出 吉美
Patent applicant: Science and Technology Agency Inorganic Materials Research Institute (430) Nippon Soda Co., Ltd. Representative (6286) Haruyuki Ito (7125)
Detection Yoshimi

Claims (3)

【特許請求の範囲】[Claims] (1)一般式Pb(Zr_tTi_1_−_t)O_3
(但し、t=0.1〜0.9)で表される酸化物と一般
式 PbA_1_/_3B_2_/_3O_3(但し、Aは
Mg、Ni、Zn及びMnからなる群から選ばれた1種
又は2種以上を、BはNb及び又はTaを表す)で表さ
れる酸化物とからなるペロブスカイト系圧電セラミック
ス粉末の製造において、ジルコニウム及びチタニウム化
合物の溶液、並びに予め仮焼して得られたAO・B_2
O_5で表される複合酸化物を沈殿形成液と混合し、得
られた沈殿を仮焼した後、鉛酸化物と混合し、仮焼する
ことを特徴とする鉛含有ペロブスカイト系酸化物の製造
法。
(1) General formula Pb(Zr_tTi_1_-_t)O_3
(However, t = 0.1 to 0.9) and the general formula PbA_1_/_3B_2_/_3O_3 (However, A is one or two selected from the group consisting of Mg, Ni, Zn, and Mn. In the production of a perovskite piezoelectric ceramic powder consisting of a perovskite piezoelectric ceramic powder consisting of an oxide represented by at least one species (B represents Nb and/or Ta), a solution of zirconium and titanium compounds, and AO/B_2 obtained by pre-calcination.
A method for producing a lead-containing perovskite oxide, which comprises mixing a composite oxide represented by O_5 with a precipitate forming liquid, calcining the resulting precipitate, and then mixing it with lead oxide and calcining it. .
(2)AO・B_2O_5を分散させた沈殿形成液にジ
ルコニウム及びチタニウム化合物の溶液を加え沈殿形成
させる特許請求の範囲第(1)項記載の方法。
(2) The method according to claim (1), wherein a solution of zirconium and titanium compounds is added to a precipitate forming solution in which AO.B_2O_5 is dispersed to form a precipitate.
(3)ジルコニウム及びチタニウム混合水酸化物の分散
した沈殿形成液にAO・B_2O_5を加える特許請求
の範囲第(1)項記載の方法。
(3) The method according to claim (1), in which AO.B_2O_5 is added to the precipitate forming liquid in which zirconium and titanium mixed hydroxide are dispersed.
JP15563386A 1986-07-02 1986-07-02 Manufacturing method of easily sinterable ceramic powder for high-density dielectric ceramics Expired - Lifetime JPH0788220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15563386A JPH0788220B2 (en) 1986-07-02 1986-07-02 Manufacturing method of easily sinterable ceramic powder for high-density dielectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15563386A JPH0788220B2 (en) 1986-07-02 1986-07-02 Manufacturing method of easily sinterable ceramic powder for high-density dielectric ceramics

Publications (2)

Publication Number Publication Date
JPS6311521A true JPS6311521A (en) 1988-01-19
JPH0788220B2 JPH0788220B2 (en) 1995-09-27

Family

ID=15610247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15563386A Expired - Lifetime JPH0788220B2 (en) 1986-07-02 1986-07-02 Manufacturing method of easily sinterable ceramic powder for high-density dielectric ceramics

Country Status (1)

Country Link
JP (1) JPH0788220B2 (en)

Also Published As

Publication number Publication date
JPH0788220B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
JPH0459261B2 (en)
JPS6214489B2 (en)
JPS6214490B2 (en)
JPS62187116A (en) Production of pzt type piezoelectric ceramic powder sinterable at low temperature
JPH0159967B2 (en)
JPS6214488B2 (en)
JPS6311521A (en) Production of ceramics powder capable of easily sintering for producing dielectric porcelain having high density
JPS6363511B2 (en)
KR960014909B1 (en) Process for the preparation of barium titanate
JPS6311520A (en) Production of ceramics powder capable of easily sintering for producing dielectric porcelain
JPS6311523A (en) Production of easily-sinterable piezoelectric ceramic powder
EP0163739B1 (en) Process for preparing fine particles of ba (zrx ti 1-x)o3-solid solution
JPS6311522A (en) Production of ceramics powder capable of easily sintering for producing dielectric porcelain
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
KR960004400B1 (en) Process for the preparation of ba1-x pbx tio3
JPS6227371A (en) Composition for ceramic dielectric and manufacture of ceramic dielectric
JPH0457615B2 (en)
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPH0193419A (en) Production of piezoelectric ceramics raw material powder
JPH07112928B2 (en) Manufacturing method of ceramic raw material powder
JPS63285146A (en) Production of perovskite ceramic
JPH0798664B2 (en) Manufacturing method of fine powder for producing pyroelectric porcelain for infrared sensor
JPH02188427A (en) Inorganic composition
JPS6325263A (en) Manufacture of high density bzt base ferroelectric ceramic
JPH0629139B2 (en) Method for producing raw material powder for producing dielectric porcelain

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term