JPS6311520A - Production of ceramics powder capable of easily sintering for producing dielectric porcelain - Google Patents

Production of ceramics powder capable of easily sintering for producing dielectric porcelain

Info

Publication number
JPS6311520A
JPS6311520A JP61155632A JP15563286A JPS6311520A JP S6311520 A JPS6311520 A JP S6311520A JP 61155632 A JP61155632 A JP 61155632A JP 15563286 A JP15563286 A JP 15563286A JP S6311520 A JPS6311520 A JP S6311520A
Authority
JP
Japan
Prior art keywords
precipitate
mixed
solution
forming liquid
pzt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61155632A
Other languages
Japanese (ja)
Inventor
Shinichi Shirasaki
信一 白崎
Soichiro Sugano
総一郎 菅野
Hiromichi Okamura
岡村 博道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Nippon Soda Co Ltd
Original Assignee
National Institute for Research in Inorganic Material
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Nippon Soda Co Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP61155632A priority Critical patent/JPS6311520A/en
Publication of JPS6311520A publication Critical patent/JPS6311520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce a perovskite type oxide powder contg. Pb for producing the dielectric porcelain having a low temp. sintering property by mixing each solutions of Pb, Zr and Ti compds. and a calcined composite oxide to a solution capable of forming a precipitate, followed by calcining the obtd. precipitate. CONSTITUTION:The each solutions of the Pb, Zr and Ti compds. and the composite oxide which is shown by AO.B2O5 (wherein A is >=one kind of Mg, Ni, Zn and Mn, B is Nb and Ta) and is obtd. by previously calcining, are mixed to the solution capable of forming the precipitate such as an aqueous solution of ammonia, etc. The obtd. precipitate is optionally aged, and washed, followed by calcining it. By the method as mentioned above, the perovskite type piezoelectric ceramic particle composed of the oxide shown by the formula Pb(ZrtTi1-t)O3 (wherein t=0.1-0.9) and the oxide shown by the formula PbA1/3B2/3O3 is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低温焼結性で高性能のPZT系圧電セラミッ
クス原料粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing PZT-based piezoelectric ceramic raw material powder that is low-temperature sinterable and has high performance.

PZT系セラミックスは、高周波フィルター、超音波振
動子、共振子エレメント(ピックアップエレメント、着
火素子メカニカルフィルタ、遅延線用変換素子、バイモ
ルフ素子等)として広範囲に利用されている。
PZT ceramics are widely used as high frequency filters, ultrasonic vibrators, and resonator elements (pickup elements, ignition element mechanical filters, delay line conversion elements, bimorph elements, etc.).

〔従来技術〕[Prior art]

従来のPZT系セラミックスの原料粉末の製造方法とし
ては、乾式法と湿式共沈法が知られている。
A dry method and a wet co-precipitation method are known as conventional methods for producing raw material powder for PZT-based ceramics.

乾式法は、構成成分の酸化物又は炭酸塩等の粉末を混合
し、これを仮焼する方法である。湿式共沈法は、PZT
の構成成分の全ての混合液を作り、これにアルカリ等の
沈殿形成液を添加して共沈させ、乾燥、仮焼する方法で
ある。
The dry method is a method in which powders of constituent oxides or carbonates are mixed and calcined. In the wet coprecipitation method, PZT
In this method, a mixed solution of all the constituent components is prepared, a precipitate-forming liquid such as an alkali is added thereto to cause co-precipitation, followed by drying and calcining.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来から知られている乾式法では、均一な組成の原料粉
末が得難く、またPZTの生成反応を完遂させるために
仮焼温度を高くすることが必要であるので、粒子が粗大
化して易焼結性になりにくい欠点があった。
In the conventionally known dry method, it is difficult to obtain raw material powder with a uniform composition, and it is necessary to increase the calcination temperature to complete the PZT production reaction, so the particles become coarse and easily sintered. The drawback was that it was difficult to form a bond.

また、湿式共沈法では、均一性の優れた粉末が得やすい
が、沈殿形成液の添加時の濃度が一定であるため、各成
分の沈殿形成能が異なる場合には、ある成分は100%
沈殿を生成するが、他の成分は100%沈殿を生成しえ
ないことがあり、所望組成のものを得にくい欠点がある
。更に、PZTは鉛とチタンとを含有しているので、こ
れを共沈法で製造する場合、チタン原料として安価な四
塩化チタンを使用すると、四塩化チタンの塩素イオンが
鉛イオンと反応して白色沈殿を生成するため、四塩化チ
タンは使用できない。この場合、オキシ硝酸チタンを使
用すればこの沈殿の生成を防ぐことができるが、高価で
あるため実用的でない。
In addition, with the wet co-precipitation method, it is easy to obtain powder with excellent uniformity, but since the concentration of the precipitate forming liquid is constant when added, if the precipitate forming ability of each component is different, a certain component may be 100%
Although it produces a precipitate, other components may not produce 100% precipitate, which has the disadvantage that it is difficult to obtain a desired composition. Furthermore, since PZT contains lead and titanium, when producing it by coprecipitation method, if cheap titanium tetrachloride is used as the titanium raw material, the chlorine ions of titanium tetrachloride will react with the lead ions. Titanium tetrachloride cannot be used because it produces a white precipitate. In this case, the formation of this precipitate can be prevented by using titanium oxynitrate, but it is not practical because it is expensive.

また、湿式法として、有機金属化合物を用いる方法もあ
り、この場合、有害な陰イオンの生成はないが、原料が
高価であり工業的生産には適していない。
In addition, as a wet method, there is also a method using an organometallic compound, and in this case, no harmful anions are generated, but the raw materials are expensive and it is not suitable for industrial production.

更に、Mg + N r + Zn + Mnは、共通
の沈殿形成液を用い、同−pH領域内で沈殿を形成させ
ることが困難であり、Nb、Taは、水系溶媒に溶解す
る塩が少なく、そのため、これらの金属を含有するPZ
T系セラミックス粉末を、水系溶液から沈殿形成させる
方法で、正しい化学量論比を持つペロプスカイト系酸化
物として得ることは困難であった。
Furthermore, it is difficult for Mg + N r + Zn + Mn to form a precipitate within the same pH range using a common precipitate-forming solution, and Nb and Ta have few salts dissolved in an aqueous solvent. Therefore, PZ containing these metals
It has been difficult to obtain T-based ceramic powder as a perovskite-based oxide having a correct stoichiometric ratio by precipitation formation from an aqueous solution.

本発明の目的は、Mg、Ni、Zn、Mn、Nb、Ta
等の金属を含有するPZT系圧電セラミックスの原料粉
末の製法における従来法の欠点を解消し、チタン原料と
して安価な四塩化チタンも使用でき、高密度で電気特性
の優れたPZT系圧電セラミックスの製造に適した、低
温焼結性の粉末を製造する方法を提供するにある。
The object of the present invention is to use Mg, Ni, Zn, Mn, Nb, Ta
Eliminates the drawbacks of conventional methods for producing raw material powder for PZT-based piezoelectric ceramics containing metals such as metals, allows the use of inexpensive titanium tetrachloride as a titanium raw material, and produces PZT-based piezoelectric ceramics with high density and excellent electrical properties. The object of the present invention is to provide a method for producing a low-temperature sinterable powder suitable for

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、一般式 Pb(Zrz Ti+−t)Os(
但し、【・0.1〜0.9)で表される酸化物と、−i
式PbA+zJz/5Oz(但し、AはMg、 Ni、
Zn及びMnからなる群から選ばれた1種又は2種以上
を、BはNb及び又はTaを表す)で表される酸化物と
からなるペロプスカイト構造を持つPZT系圧電セラミ
ックス粉末の製造において、鉛、ジルコニウム及びチタ
ニウム化合物の各溶液並びに予め仮焼して得られた八〇
・B2O5で表される複合酸化物を沈殿形成液と混合し
、得られた沈殿を仮焼することからなる鉛含有ペロプス
カイト系酸化物の製造法である。
The present invention is based on the general formula Pb(Zrz Ti+-t)Os(
However, oxides represented by [・0.1 to 0.9) and -i
Formula PbA+zJz/5Oz (where A is Mg, Ni,
In the production of a PZT-based piezoelectric ceramic powder having a perovskite structure consisting of one or more selected from the group consisting of Zn and Mn and an oxide represented by (B represents Nb and or Ta), A lead-containing method consisting of mixing each solution of lead, zirconium, and titanium compounds and a composite oxide represented by 80.B2O5 obtained by pre-calcination with a precipitate forming solution and calcining the obtained precipitate. This is a method for producing perovskite-based oxides.

本発明において、PZT系圧電セラミックスとは、前記
一般式のpbの原子比を1.0より高くあるいは低くず
らしたもの、また微量の他金属元素を添加した系をも含
むものである。
In the present invention, PZT-based piezoelectric ceramics include those in which the atomic ratio of pb in the above general formula is shifted higher or lower than 1.0, and systems in which trace amounts of other metal elements are added.

本発明方法において、PZT成分の沈殿形成は、共沈法
、逐次沈殿法で行うが、下記の方法が好ましい。
In the method of the present invention, precipitation of the PZT component is carried out by a coprecipitation method or a sequential precipitation method, but the following method is preferred.

(1)ジルコニウム及びチタニウム化合物の混合水溶液
を過剰の沈殿形成液に混合して沈殿を形成させた後、得
られた混合水酸化物を十分水洗し、再び過剰の沈殿形成
液に分散し、鉛化合物水溶液を混合してPZT成分の沈
殿を形成させる方法、(2)ジルコニウム化合物水溶液
を過剰の沈殿形成液に混合して沈殿形成した後、チタニ
ウム化合物水溶液を混合して混合水酸化物を形成させ、
得られた混合水酸化物を十分洗浄し、再び過剰の沈殿形
成液に分散し、鉛化合物水溶液を混合してPZT成分の
沈殿を形成させる方法、 (3)ジルコニウム及び鉛化合物混合水溶液を沈殿形成
液に混合して沈殿を形成させた後、チタニウム化合物水
溶液を混合してPZT成分の沈殿を形成させる方法。
(1) After mixing an aqueous mixed solution of zirconium and titanium compounds with an excess precipitate-forming liquid to form a precipitate, the obtained mixed hydroxide is thoroughly washed with water, and dispersed again in the excess precipitate-forming liquid. A method of mixing an aqueous compound solution to form a precipitate of a PZT component, (2) mixing an aqueous zirconium compound solution to an excess precipitate forming solution to form a precipitate, and then mixing an aqueous titanium compound solution to form a mixed hydroxide. ,
A method of thoroughly washing the obtained mixed hydroxide, dispersing it again in an excess precipitate forming liquid, and mixing it with an aqueous lead compound solution to form a precipitate of the PZT component. (3) Precipitating the mixed aqueous solution of zirconium and lead compound A method in which a titanium compound aqueous solution is mixed with a liquid to form a precipitate, and then a titanium compound aqueous solution is mixed to form a precipitate of the PZT component.

原料化合物として使用するP b + Z r + T
 i化合物としては、水酸化物、オキシ塩化物、炭酸塩
、オキシ硝酸塩、硫酸塩、硝酸塩、酢酸塩、ギ酸塩、蓚
酸塩、塩化物、酸化物等が挙げられる。これらが水に可
溶でない場合は、鉱酸等を添加して可溶とするができる
が、最も安価で、本発明方法に適したものは、オキシ塩
化ジルコニウムまたはオキシ硝酸シルコニニウム、四塩
化チタンおよび硝酸鉛である。
P b + Z r + T used as raw material compound
Examples of the i-compound include hydroxides, oxychlorides, carbonates, oxynitrates, sulfates, nitrates, acetates, formates, oxalates, chlorides, oxides, and the like. If these are not soluble in water, mineral acids etc. can be added to make them soluble, but the cheapest and most suitable for the method of the present invention are zirconium oxychloride or silconinium oxynitrate, titanium tetrachloride and It is lead nitrate.

また、八及びB成分は、予め、両成分原料化合物を混合
した後、400〜1000℃、好ましくは700〜10
00℃で仮焼して得られた、不溶性複合酸化物AO−B
gosを粉砕し、通常、縣濁液として添加する。添加時
期は、PZT成分の沈殿形成の前後、あるいは中間のい
ずれでも良い。A及びB成分の原料化合物としては、水
酸化物、オキシ塩化物、炭酸塩、オキシ硝酸塩、硝酸塩
、酢酸塩、ギ酸塩、硝酸塩、酸化物等が挙げられる。A
O・B20.粉末は、原料、仮焼温度、粉砕工程等を制
御することにより、粒径分布が均一で粒径が小さいもの
とする必要がある。粒径は、通常1.0μm以下とする
ことが好ましい。
In addition, components 8 and B are prepared at 400-1000°C, preferably at 700-100°C, after mixing the raw material compounds of both components in advance.
Insoluble composite oxide AO-B obtained by calcining at 00°C
The gos is ground and usually added as a suspension. The addition time may be before or after the formation of a precipitate of the PZT component, or in the middle. The raw material compounds for components A and B include hydroxides, oxychlorides, carbonates, oxynitrates, nitrates, acetates, formates, nitrates, oxides, and the like. A
O・B20. The powder needs to have a uniform particle size distribution and a small particle size by controlling the raw materials, calcination temperature, pulverization process, etc. The particle size is usually preferably 1.0 μm or less.

沈殿形成液としては、例えば、アンモニア、苛性アルカ
リ、炭酸ソーダ、蓚酸アンモニウム、アミン等の溶液が
挙げられるが、微量の混入が電気特性に影響するナトリ
ウム、カリウムを含まず、仮焼段階で容易に分解し、か
つ安価なアンモニア水が好ましい。
Examples of the precipitate-forming solution include solutions of ammonia, caustic alkali, soda carbonate, ammonium oxalate, amines, etc., but they do not contain sodium or potassium, which can affect electrical properties if mixed in trace amounts, and are easily formed during the calcination stage. Aqueous ammonia, which decomposes and is inexpensive, is preferred.

沈殿の洗浄としては、最終沈殿の洗浄の他、中間洗浄を
行うが、特に、チタン原料として四塩化チタンを使用す
る場合、中間洗浄として鉛化合物の添加前に十分な洗浄
を行い陰イオン、特に塩素イオンを除去する必要がある
。洗浄は、通常、水またはアンモニア水を使用し、リパ
ルプ水洗を繰り返すことが好ましい。該中間洗浄が十分
でないと、最終洗浄では除去困難な塩化鉛等を生成し焼
結時に重量減少し、焼結性および電気特性が低下する。
In addition to cleaning the final precipitate, intermediate cleaning is performed to clean the precipitate. In particular, when titanium tetrachloride is used as a titanium raw material, sufficient cleaning is performed as an intermediate cleaning before adding lead compounds to remove anions, especially It is necessary to remove chloride ions. For washing, it is preferable to use water or aqueous ammonia and repeat repulp washing with water. If the intermediate cleaning is not sufficient, lead chloride, etc., which are difficult to remove in the final cleaning, will be produced, resulting in weight loss during sintering, and sinterability and electrical properties will deteriorate.

また、より性能の優れた粉末を得るためには、沈殿生成
後、熟成を行うことが好ましい。熟成は、低温の場合は
長時間、高温の場合は短時間であり、通常、10〜80
℃で30分以上、好ましくは1〜24時間である。
Further, in order to obtain a powder with better performance, it is preferable to perform aging after precipitation. Aging is carried out for a long time at low temperatures and for a short time at high temperatures, and is usually aged between 10 and 80
℃ for 30 minutes or more, preferably 1 to 24 hours.

本発明における沈殿形成は、水系溶媒、例えば、水又は
水−アルコール中で行われる。
Precipitation formation in the present invention is carried out in an aqueous solvent, such as water or water-alcohol.

本発明において、PZT系セラミックスの焼結性や特性
を制御するために、微量成分、例えば、Ba、 Ca、
 Sr、Sn、 Mn+ AI、 La+ Nb、 C
s、 Ge、 V、 Y、 Bit Fe、 CrtN
i、 Ir、 Rh、 Na、 Sc、 In+ K+
 Ga、 TI、 W、 Th等の元素の化合物を添加
してもよい。
In the present invention, in order to control the sinterability and properties of PZT ceramics, trace components such as Ba, Ca,
Sr, Sn, Mn+ AI, La+ Nb, C
s, Ge, V, Y, Bit Fe, CrtN
i, Ir, Rh, Na, Sc, In+ K+
Compounds of elements such as Ga, TI, W, and Th may be added.

上記の方法により得られた混合沈殿を、400〜100
0℃、好ましくは7QQ〜1000℃で仮焼することに
より、本発明のペロブスカイト系酸化物を得ることが出
来る。
The mixed precipitate obtained by the above method was
The perovskite oxide of the present invention can be obtained by calcining at 0°C, preferably 7QQ to 1000°C.

本発明により得られるPZT系圧電セラミックス原料粉
末は、800〜1220’Cで焼結することにより、高
密度で電気特性の優れたPZT系圧電セラミックス焼結
体を得ることのできる、低温焼結性の粉末である。
The PZT-based piezoelectric ceramic raw material powder obtained by the present invention has low-temperature sintering properties, allowing a PZT-based piezoelectric ceramic sintered body with high density and excellent electrical properties to be obtained by sintering at 800 to 1220'C. powder.

以下、実施例を挙げ本発明を更に詳細に説明するが、本
発明はこれら実施例によりなんら限定されるものではな
い。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1゜ オキシ塩化ジルコニウム0.0135モルを水50ol
111中に溶解し、この溶液を、60℃に保持攪拌して
いる3Nアンモニア水11中に徐々に滴下した後、60
℃で1時間攪拌をmmし反応を熟成した。
Example 1゜0.0135 mol of zirconium oxychloride in 50 ol of water
After gradually dropping this solution into 3N ammonia water 11 which was maintained at 60°C and stirred, 60°C
The reaction was aged by stirring for 1 hour at °C.

攪拌を続行しながらこの分散液に、四塩化チタン0.0
365モルを水500m it中に溶解した水溶液を滴
下し、ZrとTiとの混合水酸化物をさせ、室温下、−
昼夜攪拌を継続し沈殿を熟成させた。
While continuing to stir, add 0.0% titanium tetrachloride to this dispersion.
An aqueous solution of 365 mol dissolved in 500 ml of water was added dropwise to form a mixed hydroxide of Zr and Ti, and at room temperature -
Stirring was continued day and night to ripen the precipitate.

濾過後、濾過ケーキを再び希アンモニア水に分散させて
濾過する方法(リパルプ洗浄)を数回繰り返し、塩素イ
オンを十分除去した。尚、リパルプ洗浄時の濾紙への付
着による各成分の量論比が変わることを防ぐため、常に
同じ濾紙上で濾過を行った。
After filtration, the filter cake was again dispersed in dilute ammonia water and filtered (repulp washing) several times to sufficiently remove chlorine ions. In addition, in order to prevent the stoichiometric ratio of each component from changing due to adhesion to the filter paper during repulp washing, filtration was always performed on the same filter paper.

濾過ケーキをアンモニア水IAに再分散させ、攪拌を行
いながら、硝酸鉛0.1モルを水300m lに溶解し
た溶液を滴下し、Zr、 Ti及びpbの水酸化物の混
合沈殿を作った。
The filter cake was redispersed in aqueous ammonia IA, and while stirring, a solution of 0.1 mol of lead nitrate dissolved in 300 ml of water was added dropwise to form a mixed precipitate of Zr, Ti, and PB hydroxides.

一方、Mg00.0167モルとNb、o、0.016
7モルとをボールミルで混合した後、900°Cで約2
時間仮焼し、再びボールミルで粉砕して調製したMg−
Nb仮焼粉末をスラリー状に分散した分散液を、前記の
PZT混合水酸化物のスラリーに加え、濾過、洗浄、乾
燥後、800℃で約2時間仮焼し、得られた仮焼粉末を
ボールミルで粉砕し、Pb(Mg+7Jbzzx)。、
、。
On the other hand, Mg00.0167 mol and Nb, o, 0.016
After mixing with 7 mol in a ball mill, about 2
Mg-
A slurry-like dispersion of Nb calcined powder was added to the PZT mixed hydroxide slurry, and after filtration, washing, and drying, it was calcined at 800°C for about 2 hours, and the resulting calcined powder was Grind with a ball mill to give Pb (Mg+7Jbzzx). ,
,.

o Zro、 +3sTio、 xb、ox組成のセラ
ミックス粉末を得た。
Ceramic powders having the following compositions were obtained: o Zro, +3sTio, xb, ox.

実施例2゜ 硝酸鉛0.1モルとオキシ硝酸ジルコニウム0.013
5モルを水300ts 1に溶解した水溶液を、5Nア
ンモニアll中に滴下して共沈物を作った。該共沈物の
分散液を撹拌しながら、四塩化チタン0.0365モル
を水30011!!に溶解した水溶液に徐々に滴下し、
Zr、 Ti及びpbの水酸化物の混合沈殿を作った。
Example 2゜0.1 mol of lead nitrate and 0.013 mol of zirconium oxynitrate
An aqueous solution prepared by dissolving 5 mol in 300 ts 1 of water was dropped into 1 liter of 5N ammonia to form a coprecipitate. While stirring the coprecipitate dispersion, 0.0365 mol of titanium tetrachloride was added to 30011 mol of water! ! Gradually drop it into an aqueous solution dissolved in
A mixed precipitate of Zr, Ti and PB hydroxides was prepared.

以下、実施例1と同様に処理し、Pb(Mg+7Jbz
zx)0.500 Zro、 +3sTio、 5b5
0z組成のセラミックス粉末を得た。
Hereinafter, the same process as in Example 1 was carried out, and Pb(Mg+7Jbz
zx) 0.500 Zro, +3sTio, 5b5
A ceramic powder having a 0z composition was obtained.

比較例 市販のPbO、Ti0z、ZrO□、MgO、Nb2O
5の粉末をPb(Mg+7Jbzzx)o、 5G。Z
ro、 IzsTio、 3bsOyの組成になるよう
に配合し、ボールミルで混合した後、800℃で約2時
間仮称し、再びボールミルで粉砕した後乾燥し、Pb(
Mg+7Jbzzx) O,So。Zrol:+5Ti
o。
Comparative examples Commercially available PbO, Ti0z, ZrO□, MgO, Nb2O
Pb(Mg+7Jbzzx)o, 5G. Z
ro, IzsTio, 3bsOy, mixed in a ball mill, tentatively heated at 800°C for about 2 hours, ground again in a ball mill, dried, and Pb(
Mg+7Jbzzx) O, So. Zrol: +5Ti
o.

3bsos’a成のセラミックス粉末を得た。A ceramic powder having a composition of 3 bsos'a was obtained.

(評価試験) (A)原料粉末の特性 粒度分布は遠心沈降式粒度分布測定機(話法製作所・5
A−CP型)を用いて測定した。
(Evaluation test) (A) The characteristic particle size distribution of the raw material powder was measured using a centrifugal sedimentation type particle size distribution measuring machine (Kaho Seisakusho 5).
A-CP type).

(A−1)平均粒径り、。:累積重量百分率が5oχを
示す粒径 (A−2)粒度分布り、。/貼。:累積重量百分率が9
oχを示す粒径り、。を累積重量百分率が10χを示す
粒径DI+1で除した値 (A−3)比表面積:比表面積自動測定装置(話法マイ
クロメリティクス2200型)を用いて測定した。
(A-1) Average particle size. : Particle size (A-2) particle size distribution exhibiting a cumulative weight percentage of 5oχ. / pasted. : Cumulative weight percentage is 9
The particle size is 0x. (A-3) Specific surface area: Measured using an automatic specific surface area measuring device (Koho Micromeritics Model 2200).

(B)誘電体磁器の特性 実施例及び比較例で得られた粉末を使用して圧電体磁器
を製造した。
(B) Characteristics of dielectric porcelain Piezoelectric porcelain was manufactured using the powders obtained in the Examples and Comparative Examples.

原料粉末1gを直径2011111+の金型に入れ、2
ton/cmzの圧力で加圧成形し成形体を得た。この
成形体をマグネシアルツボに入れ蓋をし、焼成炉で焼結
し圧電体磁器を得た。
Put 1g of raw material powder into a mold with a diameter of 2011111+,
A molded article was obtained by pressure molding at a pressure of ton/cmz. This molded body was placed in a magnesia crucible, covered with a lid, and sintered in a firing furnace to obtain piezoelectric porcelain.

(B−1)焼結密度:水中置換法により測定した。(B-1) Sintered density: Measured by an underwater displacement method.

(B−2)誘電特性ε及びtan δ: LCZメータ
ー(横河ヒューレットパッカード製4276^)を使用
し、20℃、lKH2の条件で比誘電率ε及び誘電正接
tanδを測定した。
(B-2) Dielectric properties ε and tan δ: Using an LCZ meter (4276^ manufactured by Yokogawa Hewlett-Packard), the relative dielectric constant ε and the dielectric loss tangent tan δ were measured at 20° C. and 1KH2.

結果を第1表に記載した。The results are listed in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明の方法で製造された原料粉末は、組成が均一で、
低温焼結性であり、該粉末の焼結により得られるPZT
系圧電セラミックス焼結体は、高密度で電気特性に優れ
ている。 また本発明方法は、原料形態及び沈殿形成順
序の選択により、同一沈殿形成液中で混合沈殿を形成さ
せることができ、工業的方法としても優れたものである
The raw material powder produced by the method of the present invention has a uniform composition,
PZT is sinterable at low temperatures and is obtained by sintering the powder.
The piezoelectric ceramic sintered body has high density and excellent electrical properties. Furthermore, the method of the present invention is excellent as an industrial method, since a mixed precipitate can be formed in the same precipitate forming liquid by selecting the raw material form and the order of precipitate formation.

特許出願人 科学技術庁 無機材質研究所(430)日
本曹達株式会社 代 理 人 (6286)  伊藤 晴之(7125)
  横巾 吉美
Patent applicant Science and Technology Agency Inorganic Materials Research Institute (430) Nippon Soda Co., Ltd. Agent (6286) Haruyuki Ito (7125)
Yoshimi Yokotoba

Claims (4)

【特許請求の範囲】[Claims] (1)一般式Pb(Zr_tTi_1_−_t)O_3
(但し、t=0.1〜0.9)で表される酸化物と、一
般式 PbA_1_/_3B_2_/_3O_3(但し、Aは
Mg、Ni、Zn及びMnからなる群から選ばれた1種
又は2種以上を、BはNb及び又はTaを表す)で表さ
れる酸化物とからなるペロブスカイト系圧電セラミック
ス粉末の製造において、鉛、ジルコニウム及びチタニウ
ム化合物の各溶液並びに予め仮焼して得られたAO・B
_2O_5で表される複合酸化物を沈殿形成液と混合し
、得られた沈殿を仮焼することを特徴とする鉛含有ペロ
ブスカイト複合酸化物の製造法。
(1) General formula Pb(Zr_tTi_1_-_t)O_3
(However, t = 0.1 to 0.9) and the general formula PbA_1_/_3B_2_/_3O_3 (However, A is one selected from the group consisting of Mg, Ni, Zn, and Mn or In the production of perovskite piezoelectric ceramic powder consisting of two or more oxides (B represents Nb and/or Ta), each solution of lead, zirconium, and titanium compounds and the oxide obtained by pre-calcination. AO・B
A method for producing a lead-containing perovskite composite oxide, which comprises mixing a composite oxide represented by _2O_5 with a precipitate forming liquid and calcining the obtained precipitate.
(2)ジルコニウム及びチタニウム化合物の混合水溶液
を過剰の沈殿形成液に混合して沈殿を形成させた後、得
られた混合水酸化物を十分水洗し、再び過剰の沈殿形成
液に分散し、鉛化合物水溶液を混合してPZT成分の沈
殿を形成させる特許請求の範囲第(1)項記載の方法。
(2) After mixing an aqueous mixed solution of zirconium and titanium compounds with an excess precipitate forming liquid to form a precipitate, the obtained mixed hydroxide is sufficiently washed with water, dispersed again in the excess precipitate forming liquid, and The method according to claim 1, wherein the aqueous compound solution is mixed to form a precipitate of the PZT component.
(3)ジルコニウム化合物水溶液を過剰の沈殿形成液に
混合して沈殿形成した後、チタニウム化合物水溶液を混
合して混合水酸化物を形成させ、得られた混合水酸化物
を十分洗浄し、再び過剰の沈殿形成液に分散し、鉛化合
物水溶液を混合してPZT成分の沈殿を形成させる特許
請求の範囲第(1)項記載の方法。
(3) After mixing the zirconium compound aqueous solution with the excess precipitate-forming liquid to form a precipitate, the titanium compound aqueous solution is mixed to form a mixed hydroxide, the obtained mixed hydroxide is thoroughly washed, and the excess precipitate is again mixed. The method according to claim 1, wherein the PZT component is dispersed in a precipitate forming liquid and mixed with an aqueous lead compound solution to form a precipitate of the PZT component.
(4)ジルコニウム及び鉛化合物混合水溶液を沈殿形成
液に混合して沈殿を形成させた後、チタニウム化合物水
溶液を混合してPZT成分の沈殿を形成させる特許請求
の範囲第(1)項記載の方法。
(4) The method according to claim (1), in which a zirconium and lead compound mixed aqueous solution is mixed with a precipitate forming liquid to form a precipitate, and then a titanium compound aqueous solution is mixed to form a PZT component precipitate. .
JP61155632A 1986-07-02 1986-07-02 Production of ceramics powder capable of easily sintering for producing dielectric porcelain Pending JPS6311520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155632A JPS6311520A (en) 1986-07-02 1986-07-02 Production of ceramics powder capable of easily sintering for producing dielectric porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155632A JPS6311520A (en) 1986-07-02 1986-07-02 Production of ceramics powder capable of easily sintering for producing dielectric porcelain

Publications (1)

Publication Number Publication Date
JPS6311520A true JPS6311520A (en) 1988-01-19

Family

ID=15610228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155632A Pending JPS6311520A (en) 1986-07-02 1986-07-02 Production of ceramics powder capable of easily sintering for producing dielectric porcelain

Country Status (1)

Country Link
JP (1) JPS6311520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133152A (en) * 1993-11-04 1995-05-23 Nec Corp Production of piezoelectric porcelain composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133152A (en) * 1993-11-04 1995-05-23 Nec Corp Production of piezoelectric porcelain composition

Similar Documents

Publication Publication Date Title
GB2163142A (en) A process for producing a composition which includes perovskite compound
JPS62230610A (en) Production of zirconium sol and gel and production of zirconia using said sol and gel
JPS6214489B2 (en)
JPS6214490B2 (en)
JPH0346407B2 (en)
JPS62187116A (en) Production of pzt type piezoelectric ceramic powder sinterable at low temperature
JPH0159967B2 (en)
JPS6311520A (en) Production of ceramics powder capable of easily sintering for producing dielectric porcelain
JPS6363511B2 (en)
JPS6311522A (en) Production of ceramics powder capable of easily sintering for producing dielectric porcelain
JPS6311521A (en) Production of ceramics powder capable of easily sintering for producing dielectric porcelain having high density
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPS6311523A (en) Production of easily-sinterable piezoelectric ceramic powder
JP2767584B2 (en) Method for producing fine perovskite ceramic powder
JP3245905B2 (en) Conductive crystal oriented zinc oxide powder and method for producing the same
KR960004400B1 (en) Process for the preparation of ba1-x pbx tio3
JPH0457615B2 (en)
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
JPH07112928B2 (en) Manufacturing method of ceramic raw material powder
JPS63285146A (en) Production of perovskite ceramic
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPH0651570B2 (en) Method for manufacturing piezoelectric ceramic raw material powder
JPS61232217A (en) Production of low-temperature sinterable powdery raw material for producing dielectric ceramic
JPH0629139B2 (en) Method for producing raw material powder for producing dielectric porcelain
JPH0624978B2 (en) Method for producing raw material powder of ceramics having electro-optical characteristics