JPS63239125A - Production of perovskite ceramic powder containing zirconium - Google Patents

Production of perovskite ceramic powder containing zirconium

Info

Publication number
JPS63239125A
JPS63239125A JP7386887A JP7386887A JPS63239125A JP S63239125 A JPS63239125 A JP S63239125A JP 7386887 A JP7386887 A JP 7386887A JP 7386887 A JP7386887 A JP 7386887A JP S63239125 A JPS63239125 A JP S63239125A
Authority
JP
Japan
Prior art keywords
oxide
mol
powder
molar ratio
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7386887A
Other languages
Japanese (ja)
Inventor
Shinichi Shirasaki
信一 白崎
Makoto Sugawara
誠 菅原
Shuichi Araki
荒木 修市
Hideki Nakanishi
秀樹 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Japan Science and Technology Agency
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Research Development Corp of Japan
Seitetsu Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Research Development Corp of Japan, Seitetsu Kagaku Co Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP7386887A priority Critical patent/JPS63239125A/en
Publication of JPS63239125A publication Critical patent/JPS63239125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the ceramic powder having a prescribed structure by calcining a mixture of a coprecipitated body produced from a mixed soln. contg. water soluble Zr and Ti salts, a mixture of Ti oxide with Mg oxide, etc., and a mixture of Ti oxide with Pb monoxide, etc. CONSTITUTION:A mixed soln. contg. Z mol. water soluble Zr salt and (a) mol. water soluble Ti salt (a=0.01Z-0.6Z) is prepd. The mixed soln. is mixed with a precipitate forming soln. and a produced coprecipitated body is calcined at 700-1,300 deg.C. A mixture of (b) mol. Pb monoxide with (b-X) mol. Ti oxide, X/e mol. Mg oxide and X/3 mol. Nb oxide (b=X-Y-a) is calcined. Powders of the resulting two kinds of calcined bodies are mixed with [(X+Y)-(a+b)] mol. Ti oxide and (1-b) mol. Pb monoxide, etc., and the mixture is calcined to obtain perovskite ceramic powder represented by the formula (where X=0.875-0.01, Y=0.813-0, Z=0.95-0, X+Y+Z=1, W=0-0.2 and M is Ca, Sr or Ba).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、優れた圧電性を示すことが知られているPM
N−PT−PZ [PMNはPb  (MC1173轡
b273)o3.p’rはPb Ti 03 、 PZ
はPb Zr o3の略号]三成分系ペロブスカイト型
セラミックスの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is directed to PM, which is known to exhibit excellent piezoelectricity.
N-PT-PZ [PMN is Pb (MC1173轡b273)o3. p'r is Pb Ti 03 , PZ
is an abbreviation for PbZrO3] The present invention relates to a method for producing a ternary perovskite ceramic.

この系統のセラミックスは振動手、電磁波フィルター、
アクチュエーターなどとして広く使用されているが、製
造方法の改良によって一層諸特性を向上さぜることか望
まれているものである。
This type of ceramics is used for vibrating hands, electromagnetic wave filters,
Although it is widely used as an actuator, it is desired to further improve its various characteristics by improving the manufacturing method.

(従来の技術) このようなペロブスカイト型セラミックス原料粉末は鉛
、マグネシウム、ニオブ、チタン、ジルコニウムの各々
の酸化物を所定比率で混合し仮焼。
(Prior art) Such perovskite ceramic raw material powder is prepared by mixing oxides of lead, magnesium, niobium, titanium, and zirconium in a predetermined ratio and calcining the mixture.

粉砕する、所謂、酸化物原料乾式法が最も一般的な製法
として知られている。
The most common manufacturing method is known as the so-called dry method of pulverizing oxide raw materials.

この方法は、最も操作が簡単でおるがこれによって得ら
れる粉末はこれを成型、焼結する場合高い焼結温度が必
要なだけでなく、得られるセラミックスの密度、圧電特
性などが不十分でおる。
This method is the easiest to operate, but the powder obtained by this method not only requires a high sintering temperature when molding and sintering, but also the density and piezoelectric properties of the resulting ceramics are insufficient. .

これに対してもう1つの一般的方法でおる湿式法は、そ
の構成成分のすべての混合溶液を作り、これをアルカリ
等の沈殿形成液に添加して共沈させ、この共沈物を屹燥
、仮焼させる方法(以下共沈法と言う)である。
On the other hand, the wet method, which is another common method, involves making a mixed solution of all the constituent components, adding this to a precipitate-forming solution such as an alkali to cause coprecipitation, and then drying this coprecipitate. , a calcining method (hereinafter referred to as coprecipitation method).

この共沈法にJ:ると、均一性の優れた粉末が得易いが
その均一性なるが故に吃燥時または仮焼時に粒子が凝集
して二次粒子を形成し、易焼結性でない場合が多いとい
う欠点がおる。
When using this coprecipitation method, it is easy to obtain powder with excellent uniformity, but because of this uniformity, particles aggregate during drying or calcination to form secondary particles, making it difficult to sinter. The disadvantage is that there are many cases.

また、共沈法では各成分の沈殿形成能が一定でなく、例
えばある成分は100%沈殿を形成するが、他の成分は
全部沈殿を形成し得ない場合等があり、所望組成の沈殿
が得難いことがおる。
In addition, in the coprecipitation method, the precipitate forming ability of each component is not constant; for example, a certain component may form 100% precipitate, but other components may not be able to form a precipitate at all. There are things that are difficult to obtain.

共沈法のもつこれらの問題点を解決するために、本発咀
者らは先に一般式ABO3で示されるベロアスカイト型
構造を有する固溶体の原料粉末の製造に際し、A成分の
水溶液またはアルコール溶液と沈殿形成液とにより、該
A成分の沈殿を形成し、次いでB成分の沈殿を形成させ
るか、あるいは、A成分とB成分の沈殿物の形成を前記
と順序を変えて沈殿物を形成さぜ、得られた沈殿物を乾
燥後400〜1200℃で仮焼することを特徴とする、
いわゆる多段湿式法によるペロブスカイト型構造を有す
る固溶体の原料粉末の製造方法を発明し、特許を出願し
た。(特願昭59−171244)上記の方法によれば
B成分として用いられるチタン原料として、安価な四塩
化チタンを使用することが可能となり、高価なオキシ硝
酸チタン(Ti O(NO3) 2 >を使用すること
なく安価に易焼結性のペロブスカイト型構造を有する固
溶体の原料粉末を製造することが可能でめる。
In order to solve these problems with the coprecipitation method, the present inventors previously prepared a raw material powder of a solid solution having a velorskite structure represented by the general formula ABO3 by using an aqueous solution or alcohol of component A. Forming a precipitate of the A component and then forming a precipitate of the B component using a solution and a precipitate forming liquid, or forming a precipitate by changing the order of forming the precipitates of the A component and the B component. After drying, the obtained precipitate is calcined at 400 to 1200°C.
He invented a method for producing raw material powder of a solid solution having a perovskite structure using a so-called multi-stage wet process, and filed a patent application. (Japanese Patent Application No. 59-171244) According to the above method, it becomes possible to use inexpensive titanium tetrachloride as the titanium raw material used as component B, and replaces expensive titanium oxynitrate (TiO(NO3) 2 >). It is possible to produce a raw material powder of a solid solution having a perovskite structure that is easy to sinter at low cost without using the powder.

本発明者らは、この方法を本願発明に係るジルコニウム
を含むベロアスカイトセラミックスに直接適用しようと
したが、原料の一部構成元素であるマグネシウム、カル
シウム、バリウムおよびストロンチウム(IIA族元素
)を水溶液中で完全に沈殿せしめることが必要であると
いう問題に遭遇した。
The present inventors attempted to directly apply this method to the velorskite ceramics containing zirconium according to the present invention, but they were unable to do so by dissolving magnesium, calcium, barium, and strontium (group IIA elements), which are some constituent elements of the raw materials, in an aqueous solution. A problem was encountered in that it was necessary to allow complete precipitation.

そこで沈殿形成液について鋭意検討を加え、有機アミン
水溶液が最も好適でおることを見出して問題を解決し、
その粉末を成型焼結して極めて高い圧電特性を示すセラ
ミックスを1q、それを改良多段湿式法として出願した
。(特願昭61−030159>(発明が解決しようと
する問題点) しかしながら、この方法では微mながら廃水中に鉛が存
在し、しかも廃水も相当量発生するため、公害防止上の
対策を講じなりればならないという問題がある。
Therefore, we conducted extensive research on precipitate-forming liquids and found that an organic amine aqueous solution was the most suitable solution, solving the problem.
The powder was molded and sintered to produce 1q of ceramics with extremely high piezoelectric properties, and an application was filed for this as an improved multi-stage wet process. (Patent Application No. 61-030159> (Problems to be Solved by the Invention) However, with this method, lead is present in the wastewater, albeit in minute amounts, and a considerable amount of wastewater is also generated, so measures are taken to prevent pollution. The problem is that it has to be.

一方、先に本願発明者の一人はジルコニウムを含むベロ
アスカイトセラミックスのyA造方法として、従来の乾
式法、共沈法の持つ欠点を解消する技術を見出し、特願
昭60−210771として昭和60年9月24日に出
願した。その発明の要旨は、特許請求の範囲記載の如く
、 (1)  ペロブスカイト化合物を構成するジルコニウ
ム以外の少なくとも一成分の適量と、ジルコニウム溶液
との混合液(水溶液またはアルコール溶液)を作り、こ
れと沈殿形成液とを混合して共沈体を形成し、乾燥後7
00〜1300℃で仮焼する工程、 (2)  この仮焼物と、目的とするペロブスカイ1へ
組成の残りの構成成分の化合物を混合して500〜13
00℃で仮焼する工程、(3)  得られた仮焼粉末を
成型して700〜1700℃で焼結する工程とからなる
ことを特徴とするジルコニウムを含むペロブスカイトセ
ラミックスの製造方法。
On the other hand, one of the inventors of the present invention previously discovered a technique for solving the drawbacks of the conventional dry method and coprecipitation method as a method for producing velourskite ceramics containing zirconium, and published the patent application No. 60-210771 in 1986. The application was filed on September 24th. The gist of the invention is as stated in the claims: (1) A mixture (aqueous solution or alcohol solution) of a suitable amount of at least one component other than zirconium constituting a perovskite compound and a zirconium solution is prepared, and this is mixed with a precipitate. Mix with the forming liquid to form a coprecipitate, and after drying 7
(2) A step of calcining at 00 to 1300°C, (2) mixing this calcined product and the remaining constituent compounds of the target perovskie 1 to give a temperature of 500 to 1300°C;
A method for producing perovskite ceramics containing zirconium, comprising the steps of: (3) molding the obtained calcined powder and sintering it at 700 to 1700°C.

というものである。That is what it is.

特願昭60−210771の方法はジルコニウムを含む
ペロブスカイトセラミックスの製造方法としては、適用
範囲の広い優れたものであるが、本願発明に係る特許請
求の範囲に記載の組成のセラミックスに限定して考える
と、上記方法の第2段の工程である固溶反応の技術は未
だ改良の余地がある。
Although the method of Japanese Patent Application No. 60-210771 is an excellent method for producing perovskite ceramics containing zirconium in a wide range of applications, it is considered limited to ceramics having the composition described in the claims of the present invention. However, there is still room for improvement in the solid solution reaction technology, which is the second step of the above method.

本発明はその目的とする所望の組成のジルコニウムを含
むペロブスカイトセラミックスを得るためにざらに特願
昭60−210771の方法の一層の改良と同時に特願
昭6l−030159)廃水の問題を解消しようとして
なされたものである。
The present invention aims to further improve the method disclosed in Japanese Patent Application No. 60-210771 in order to obtain perovskite ceramics containing zirconium with a desired composition, which is the object of the present invention, and at the same time to solve the problem of wastewater. It has been done.

一般に同相反応で固溶体の微細粒子を得るためには先ず
、原料の粒子は酸化鉛のように低融点で反応時の拡散の
速いものを除いて微細であることが必要条件の一つであ
る。
Generally, in order to obtain fine particles of a solid solution through an in-phase reaction, one of the requirements is that the raw material particles be fine, except for materials such as lead oxide, which have a low melting point and diffuse rapidly during the reaction.

例えばPt) O,T ! 02t Zr 02. N
b 205゜M(l Oを一度に混合し、仮焼を行なう
と先ずPb O,M(] O,Nb 20s からPM
N [Pb(Mg173  Nb273 ) 03の略
号]の生成が起こり、引き続きPT (Pb Ti 0
3の略号)。
For example, Pt) O,T! 02t Zr 02. N
b 205゜M(l) When O is mixed at once and calcined, Pb O, M(] O, Nb 20s first becomes PM
The formation of N [abbreviation for Pb(Mg173 Nb273) 03] occurs, followed by the formation of PT (Pb Ti 0
3 abbreviation).

PZ(PbZrO3の略号)が生成し、これらとPMN
との固溶反応により、PMN−PT−PZ体が生成する
PZ (abbreviation for PbZrO3) is generated, and these and PMN
A PMN-PT-PZ body is produced by a solid solution reaction with.

しかしながらMCI Oは微細な粒子として得難いため
、それを原料として得られたPMNはPT。
However, since MCIO is difficult to obtain as fine particles, PMN obtained using it as a raw material is PT.

PZに比べて粒子径が大きく、結果的にPMN−PT−
PZ体の粒子も大きくなる。一方、PTの原料でおる酸
化チタンは微細で凝集性のないものが市販されており、
これとPbOの固溶体でおるPTは十分微細粒子で得ら
れる。またPZはその原料のジルコニアがチタンの水溶
性塩との共沈法(特願昭60−210771 )で十分
微細な粒子の形で得られ灸ため、これもPbOと固溶反
応させた場合、微細な形で生成させることが可能である
The particle size is larger than that of PZ, and as a result, PMN-PT-
The particles of the PZ body also become larger. On the other hand, titanium oxide, which is the raw material for PT, is commercially available in fine and non-agglomerated form.
PT, which is a solid solution of this and PbO, can be obtained in sufficiently fine particles. In addition, PZ can be obtained in the form of sufficiently fine particles by co-precipitation with a water-soluble titanium salt (Japanese Patent Application No. 60-210771), so when PZ is also subjected to a solid solution reaction with PbO, It is possible to generate it in a fine form.

そこそ本発明者らはPMNをできるだけ微細な形で生成
させ、それをPT、PZと固溶化させれば成分が均一に
混合された微細なPMN−PT−PZ体が得られるので
はないかと考え、鋭意検討した結果、PMNに代えてP
MN−PTを用いれば所期の目的を達することを見出し
、本発明に到達した。
The present inventors thought that if PMN is generated in as fine a form as possible and then made into a solid solution with PT and PZ, a fine PMN-PT-PZ body in which the components are uniformly mixed may be obtained. As a result of careful consideration, P instead of PMN
It was discovered that the intended purpose could be achieved by using MN-PT, and the present invention was achieved.

(問題点を解決するための手段) すなわら本発明の要旨はPMNを別途工程で生成させる
際に固溶体粒子の微細化に有効な微粒子の酸化チタンを
共存させ、PMN−PTという型の固溶体を生成させ、
これを共沈法により得られたチタニア含有ジルコニア、
酸化チタンおよびPbOを所望のセラミックスの組成と
なるよう配合し、混合、仮焼、粉砕、乾燥することによ
り、微細なジルコニウムを含むペロブスカイトセラミッ
クス粉末を得ることにある。
(Means for Solving the Problems) In other words, the gist of the present invention is to coexist fine particle titanium oxide, which is effective in refining solid solution particles, when producing PMN in a separate process, and to form a PMN-PT type solid solution. generate,
Titania-containing zirconia obtained by coprecipitation method,
The purpose is to obtain perovskite ceramic powder containing fine zirconium by blending titanium oxide and PbO to have a desired ceramic composition, mixing, calcining, pulverizing, and drying.

前述のようにPMNは微細な粒子では得難いのでおるが
PMN−PTの型では磨砕すれば平均粒径0.35μm
以下とすることが可能で、これを用いて上述の方法でP
MN−PT−PZ体を製造したところ、最終的に平均粒
径的0.3μmのセラミックス原料粉末が得られた。
As mentioned above, it is difficult to obtain PMN in fine particles, but with the PMN-PT type, if ground, the average particle size is 0.35 μm.
It is possible to do the following, and using this, P
When the MN-PT-PZ body was manufactured, ceramic raw material powder with an average particle size of 0.3 μm was finally obtained.

本発明の実施態様を以下に説明する。すなわち一般式 %式% で表わされるペロブスカイトセラミックス粉末を製造す
るに際し、次の三つの工程からなっているものでおる。
Embodiments of the invention are described below. That is, the production of perovskite ceramic powder represented by the general formula % consists of the following three steps.

(I>  ジルコニウムの水溶性塩とチタニウムの水溶
性塩の混合液をつくり、これと沈殿形成液を混合して共
沈体を形成させ、乾燥。
(I> Create a mixed solution of a water-soluble salt of zirconium and a water-soluble salt of titanium, mix this with a precipitate forming solution to form a coprecipitate, and dry.

仮焼し、粉砕してジルコニアと酸化チタンの固溶体の微
細な粒子をつくる工程。
A process of calcining and crushing to create fine particles of a solid solution of zirconia and titanium oxide.

(n)  Pb O,MgO,Nb 205に酸化チタ
ンを共存させて仮焼し、PMN−PT固溶体を生成させ
た後、PMN−PTの微細粒子をつくる工程。
(n) A step in which Pb O, MgO, and Nb 205 are made to coexist with titanium oxide and calcined to generate a PMN-PT solid solution, and then fine particles of PMN-PT are created.

(III)  上記(I)および(If>で得られた仮
焼粉末と酸化チタンおよびPb O(Pb Oの一部が
3r、3a、Caの酸化物の少なくとも一種であっても
よい。)を混合、仮焼して粉砕し、目的とするペロブス
カイトセラミックスをつくる工程。
(III) The calcined powder obtained in (I) and (If> above, titanium oxide and PbO (a part of PbO may be at least one of oxides of 3r, 3a, and Ca). The process of mixing, calcining, and pulverizing to create the desired perovskite ceramics.

工程(I>で用いるジルコニウムの水溶性塩としては、
オキシ塩化ジルコニウム。
As the water-soluble salt of zirconium used in step (I>,
Zirconium oxychloride.

オキシ硝酸ジルコニウム、塩化ジルコニウム、硝酸ジル
コニウムが挙げられる。
Examples include zirconium oxynitrate, zirconium chloride, and zirconium nitrate.

また、チタニウムの水溶性塩としては四塩化チタン、硝
酸チタンが挙げられる。
Further, water-soluble salts of titanium include titanium tetrachloride and titanium nitrate.

沈殿形成剤としては通常アンモニアで十分でおるが、そ
の他に炭酸アンモニウム、苛性アルカリ、しゆう酸、シ
ゆう酸アンモニウム、アミン、オキシン等も使用できる
Ammonia is usually sufficient as the precipitating agent, but ammonium carbonate, caustic alkali, oxalic acid, ammonium oxalate, amines, oxine, etc. can also be used.

また、工程(I>においてはチタニウムの水溶性塩のモ
ル比率をaとする時、 0.01 2<a< 0.6 2にとることができるが
、この工程で生成する混合酸化物(変成ジルコニア)の
粒子を微細かつ非凝集性のものとするためには0.05
Y < a <0.25Yの範囲がざらに好ましい。ま
た工程(III)で使用する酸化チタンの比率(Y−a
−b)の値があまり小さくならないよう考慮することも
好ましい。(bはPbOのモル比率)また、この工程で
の乾燥に当っては一般にセラミックス原料粉末において
慣用されているように、粒子に付着している水はアルコ
ール等の有機溶媒によって予め置換しておくことが凝集
を防ぐ上で有効である。
In addition, in step (I>), when the molar ratio of the water-soluble titanium salt is a, it can be set to 0.01 2 < a < 0.6 2, but the mixed oxide (modified 0.05 to make the particles of zirconia fine and non-agglomerated.
A range of Y<a<0.25Y is roughly preferred. Also, the ratio of titanium oxide used in step (III) (Ya
It is also preferable to consider so that the value of -b) does not become too small. (b is the molar ratio of PbO) In addition, during drying in this step, water adhering to the particles is replaced in advance with an organic solvent such as alcohol, as is commonly used for ceramic raw powder. This is effective in preventing agglomeration.

工程(II>においては、 x<b< (Y−a)にとることができる。In step (II>), It can be taken that x<b< (Ya).

bは大ぎい方が、PMN−PTの粒子の微細化には有効
であるが、工程(III)に使用するPbOおよび酸化
チタンの比率 (1−b)および(x十y)−(a十b)の値が小さく
なるため、あまり大きくすることはその点からは好まし
くない。
The larger b is, the more effective it is in refining PMN-PT particles, but the ratio of PbO and titanium oxide used in step (III) (1-b) and (x0y)-(a00) Since the value of b) becomes small, it is not preferable to make it too large from that point of view.

そのため1.1 x<b<1.5 xの間はとるのが適
当である。
Therefore, it is appropriate to take a range of 1.1 x<b<1.5 x.

工程(III)においては、固溶反応がほぼ完結し、し
かも粒成長が殆んど起こらないようにする必要がある。
In step (III), it is necessary to ensure that the solid solution reaction is almost completed and grain growth hardly occurs.

そのため仮焼温度は800〜1100℃の範囲を選ぶの
が好ましい。
Therefore, it is preferable to select a calcination temperature in the range of 800 to 1100°C.

また、この系統の圧電性セラミックスでは焼結性や機械
的および電気的特性を改善するために酸化マンガン、酸
化ニッケル、。
In addition, this family of piezoelectric ceramics uses manganese oxide and nickel oxide, to improve sinterability and mechanical and electrical properties.

酸化けい素などの微量の助剤を添加するのが通例であり
、これらの助剤またはその前駆体は、工程(I>、(I
I)、(DI)の何れかに固体状または溶液状で適当に
添加すればよい。
It is customary to add trace amounts of auxiliaries such as silicon oxide, and these auxiliaries or their precursors are used in steps (I>, (I
It may be appropriately added to either I) or (DI) in solid or solution form.

また本願中、金属酸化物と記したものは炭酸化物など酸
化物の前駆体であきかえることができる。
Further, in this application, the term "metal oxide" can be replaced with a precursor of an oxide such as a carbonate.

以下実施例で本発明をより詳細に説明する。The present invention will be explained in more detail in the following examples.

(実施例) 組11 Pb(”’1/3 Nb2/3 )  0.125 ”
0.447’ 0.43503セラミツクスの製造。
(Example) Group 11 Pb("'1/3 Nb2/3) 0.125"
0.447' 0.43503 Production of ceramics.

工程(I >  1.120 mol#lオキシ塩化ジ
ルコニウム水溶液3887d (0,435モル=Zモ
ル相当)と1.322mol/ρ四塩化チタン水溶液6
5.8 d (0,087モル=aモル相当)とを混合
した。一方沈殿形成液と して用いた6N−アンモニア水2.59を攪拌し、そこ
へ混合液を徐々に添加 してTi”&Zr’+の水酸化物共沈体を形成させた。
Step (I > 1.120 mol#l zirconium oxychloride aqueous solution 3887d (0,435 mol = Z mol equivalent) and 1.322 mol/ρ titanium tetrachloride aqueous solution 6
5.8 d (equivalent to 0,087 mol=a mol). On the other hand, 2.5 g of 6N ammonia water used as a precipitate forming liquid was stirred, and the mixed liquid was gradually added thereto to form a hydroxide coprecipitate of Ti''&Zr'+.

これを水洗後、エタノール で洗浄し、乾燥した1多、1100’Cで仮焼して(T
io、2Zro4 ) 02の粉末を得た。この粉末の
平均粒径は0.32μmであった。
This was washed with water, washed with ethanol, dried, and calcined at 1100'C (T
io, 2Zro4) 02 powder was obtained. The average particle size of this powder was 0.32 μm.

工程(II>  純度99.9%のPb O33,51
g(0,15+−/L、= b モ/L、相当)、純度
99.0%のMgO1,70g(0,0417モルーX
/3モル相当)および純度99.9%(7)Nb 20
522.179 (0,0417−E/1z=X/3モ
ル相当)に純度98.8%の酸化チタン2゜02g(0
,025モル(b−x)モル相当)を共存させてボ ールミル中で一昼夜混合した後、850℃で1時間仮焼
した。次いでアセトン 中でボールミルで、−昼夜粉砕後、乾 燥し平均粒径0635μmの Pb()fo 1/3 N1)2/3 ) 03 ・0
.2Pb Ti O3の微粉末を得た。
Step (II> Pb O33,51 with a purity of 99.9%
g (0,15+-/L, = b mo/L, equivalent), 1,70 g of MgO with a purity of 99.0% (0,0417 mole
/3 mole equivalent) and purity 99.9% (7) Nb 20
522.179 (equivalent to 0,0417-E/1z=X/3 moles) and 2.02 g of titanium oxide with a purity of 98.8%
. Next, Pb()fo 1/3 N1) 2/3 ) 03 ・0 with an average particle size of 0635 μm was pulverized in a ball mill in acetone, day and night, and then dried.
.. A fine powder of 2Pb Ti O3 was obtained.

工程(III)  工程(I)おにび工程(II>で得
られた仮焼粉と純度99.9%のPbO 190,17g(0,85モル−=:(1−b)モル相
当)および純度98.8%の酸化チタン27.339 
(0,338モル= [(x+Y)−(a+b)]モル相当)をボールミルで
一昼夜混合した後、円 柱状にプレス成型し、850℃で2時間仮焼し、再びボ
ールミルで粉砕して圧 電性セラミックス原料粉末237gを得た。その平均粒
径は0.30μmであった。
Step (III) Step (I) Calcined powder obtained in Onibi step (II>) and 190.17 g of PbO with a purity of 99.9% (equivalent to 0.85 mol-: (1-b) mol) and Titanium oxide 27.339 with purity 98.8%
(0,338 mol = [(x+Y)-(a+b)] mole equivalent) was mixed in a ball mill for a day and night, then press-molded into a cylindrical shape, calcined at 850°C for 2 hours, and ground again in a ball mill to form a piezoelectric 237 g of ceramic raw material powder was obtained. Its average particle size was 0.30 μm.

このようにして得られた粉末に助剤 として平均粒径2μmの酸化けい素 0、24 gを配合して500句/dでプレス成型し、
鉛蒸気、酸素ガス共存雰囲気 下で1220℃で2時間焼結し、直径約10履、厚さ約
11Ivr1の圧電セラミックス円板を得た。
The powder thus obtained was mixed with 0.24 g of silicon oxide with an average particle size of 2 μm as an auxiliary agent, and press-molded at 500 pieces/d.
Sintering was carried out at 1220° C. for 2 hours in an atmosphere containing lead vapor and oxygen gas to obtain a piezoelectric ceramic disk having a diameter of about 10 and a thickness of about 11 Ivr1.

ル校豊ユ 市販のPb O,Ti 02.Zrα、MgO。Le School Feng Yu Commercially available Pb O, Ti 02. Zrα, MgO.

Nb2O5の粉末を実施例1の目的粉末と同じ組成にな
るように配合し、ボールミルで一昼夜混合した後、円柱
状にプレス成型し900℃で2時間仮焼し、再びボール
ミルで粉砕して、圧電性セラミックス原料粉末を得た。
Nb2O5 powder was blended to have the same composition as the target powder in Example 1, mixed overnight in a ball mill, press-molded into a cylindrical shape, calcined at 900°C for 2 hours, and ground again in a ball mill to form a piezoelectric A ceramic raw material powder was obtained.

平均粒径は0.36μmであった。これに助剤として平
均粒径2μmの酸化けい素0.24 ’jを配合して5
00 K’J/ciでプレス成型し、鉛蒸気、酸素ガス
共存雰囲気下、1260℃で2時間焼結し、実施例1と
同寸法の圧電セラミックス円板を1qだ。
The average particle size was 0.36 μm. To this, 0.24'j of silicon oxide with an average particle size of 2 μm was added as an auxiliary agent.
00 K'J/ci and sintered at 1260° C. for 2 hours in an atmosphere coexisting with lead vapor and oxygen gas to produce a piezoelectric ceramic disc having the same dimensions as Example 1 and weighing 1 q.

ル校y<特願昭60−210771の方法)実施例1 
工程(I>の方法で (丁! 02  Zr O,8>αの粉末を合成し、こ
れと市販(7)Pb O,T! Ch、 M(] O,
Nb 20s 、 酸化(プい素の粉末を実施例1の目
的粉末と同じ組成になるよう配合し、゛ボールミルで一
昼夜混合した後、円柱状にプレス成型し850℃で2時
間仮焼し、再びボールミルで粉砕して、圧電性セラミッ
クス原料粉末を得た。平均粒径は0.36μmであった
Example 1
Synthesize the powder of (Ding! 02 Zr O, 8>α by the method of step (I), and combine this with commercially available (7) Pb O, T! Ch, M(] O,
Nb 20s, oxidized (P) powder was blended to have the same composition as the target powder in Example 1, mixed in a ball mill for a day and night, then press-molded into a cylinder shape, calcined at 850°C for 2 hours, and then heated again. A piezoelectric ceramic raw material powder was obtained by pulverizing with a ball mill.The average particle size was 0.36 μm.

このようにして得られた粉末に助剤として平均粒径2μ
mの酸化けい素0.249を配合し、実施例1と同じ条
件でプレス成型、焼結し、直径約10m・厚さ約11r
IIrIの圧電性セラミックス円板を得た。
The powder thus obtained was added with an auxiliary agent having an average particle size of 2 μm.
0.249 m of silicon oxide was blended, press molded and sintered under the same conditions as Example 1, and the diameter was about 10 m and the thickness was about 11 r.
A piezoelectric ceramic disk of IIrI was obtained.

実施例1と比較例1.2で得られたセラミックスの特性
を比較して第1表に示した。実施例1で得られたセラミ
ックスはKl)  (径方向電気機械結合係数)、O3
1(横方向等価圧電係数)。
Table 1 shows a comparison of the characteristics of the ceramics obtained in Example 1 and Comparative Example 1.2. The ceramic obtained in Example 1 had Kl) (radial electromechanical coupling coefficient), O3
1 (lateral equivalent piezoelectric coefficient).

g31(横方向電圧出力係数)とも構成成分を一度に焼
成して得られたもの、あるいは特願昭60−21077
.1の方法で得られたものよりも優れた圧電特性を示し
た。
g31 (lateral voltage output coefficient) is obtained by firing the constituent components at once, or the patent application No. 60-21077
.. It exhibited piezoelectric properties superior to those obtained by method 1.

失凰■2 PbO,94” 0.038aO,03(Hg1/3 
Nb2/3 )  0.375” 0.375 ” 0
.2503  セラミックスの製造。
Loss of fire ■2 PbO,94" 0.038aO,03 (Hg1/3
Nb2/3) 0.375"0.375" 0
.. 2503 Manufacture of ceramics.

工程(I >  1.120 mol/、11のオキシ
塩化ジルコニウム水溶液の量を223d (0,250
50モル=b相当)とし、1.322m01/ 、11
 (7)四塩化チタン水溶液の量を47.3d (0,
0625モル=aモル相当)とし、また沈殿形成用の6
N−アンモニア水の量を1.5gにした以外は実施例1
と同様に操作して、平均粒径0.32μmの (Ti   zr   )02の粉末を得た。
Step (I > 1.120 mol/, the amount of the zirconium oxychloride aqueous solution of 11 was 223d (0,250
50 moles = equivalent to b), 1.322 m01/, 11
(7) The amount of titanium tetrachloride aqueous solution was 47.3d (0,
0625 mol = equivalent to a mol), and 6 for precipitate formation.
Example 1 except that the amount of N-ammonia water was 1.5 g
A powder of (T zr )02 having an average particle size of 0.32 μm was obtained by operating in the same manner as above.

0.2  0.8 工程(II>  純度99.9%のPb 0 83.7
89(0,45モル=bモル相当)、純度99.0%の
MgO5,09g(0,125モル=X/3モル相当)
および純度99.9%のNb 20s  33.2(5
’J (0,125モル=X/3モル相当)に純度98
.8%の酸化チタン2.02g(0,0,25モル(b
−x)モル相当)を共存させてボ ールミル中で一昼夜混合した後、850°Cで1時間仮
焼した。その後実施例1と同じ操作を行なって平均粒径
0.35μmの Pb(Hg1/3 Nb2/3 )03・0.2Pb 
Ti 03の微粉末を得た。
0.2 0.8 Step (II> 99.9% purity Pb 0 83.7
89 (equivalent to 0.45 moles = b moles), 5.09 g of MgO with a purity of 99.0% (equivalent to 0.125 moles = X/3 moles)
and Nb 20s 33.2 (5
'J (equivalent to 0,125 moles = X/3 moles) with a purity of 98
.. 2.02 g of 8% titanium oxide (0,0,25 mol (b
-x) molar equivalent) were allowed to coexist and mixed in a ball mill for a day and night, and then calcined at 850°C for 1 hour. Thereafter, the same operation as in Example 1 was performed to obtain Pb(Hg1/3 Nb2/3)03.0.2Pb with an average particle size of 0.35 μm.
A fine powder of Ti 03 was obtained.

工程(III)  工程(I>および工程(II)で得
られた仮焼粉と純度99.9%のPbO 109,48g(0,49モル)、純度99.9%のS
r CO34,43g(0,03モル)および純度99
.83%の13a CO35,93g(0,03モル) (上記3者の合計は0.55モルで (1−b)モルに相当〉に純度98.8%の酸化チタン
19.219 (0,2375−Eル= [(x十Y)
−(a十b)Jモルに相当)を添加し、ボールミル中で
一昼 夜混合した後、円柱状にプレス成型し 850℃で2時間仮焼した。その後再びボールミルで粉
砕して平均粒径0.31μmのセラミックス原料粉末2
19gを得た。
Step (III) The calcined powder obtained in step (I> and step (II), 109.48 g (0.49 mol) of PbO with a purity of 99.9%, and S with a purity of 99.9%
r CO34,43 g (0,03 mol) and purity 99
.. 83% 13a CO35.93g (0.03 mol) (total of the above three is 0.55 mol, equivalent to (1-b) mol) and titanium oxide 19.219 (0.2375 mol) with a purity of 98.8% −E le = [(x 10 Y)
- (equivalent to a and b) J moles) were added and mixed in a ball mill for a day and night, then press-molded into a cylinder and calcined at 850°C for 2 hours. Afterwards, it is ground again in a ball mill to produce ceramic raw material powder 2 with an average particle size of 0.31 μm.
19g was obtained.

このようにして1@られた粉末に助剤 として酸化ニッケル0.24 gを配合し、500Kg
/cr/lでプレス成型し、鉛蒸気。
0.24 g of nickel oxide was added as an auxiliary agent to the powder thus prepared, and 500 kg
/cr/l press molding and lead vapor.

酸素ガス共存雰囲気下で1220’Cで2時間焼結し、
直径約10IM1.厚さ約1#の圧電性セラミックス円
板を得た。
Sintered at 1220'C for 2 hours in an atmosphere coexisting with oxygen gas,
Diameter approximately 10IM1. A piezoelectric ceramic disk with a thickness of about 1# was obtained.

土校拠ユ 市販のPI) 0.3r CO3,Ba CO3,T!
 02゜Zr O2,VI’J O,Nb 20s 、
 Wi化(プい素の粉末を実施例2の目的粉末と同じ組
成になるように配合し、ボールミルで一昼夜混合した後
、円柱状にプレス成型し、900℃で2時間仮焼し、再
びボールミルで粉砕して圧電性セラミックス原料粉末を
得た。平均粒径は0837μmであった。この粉末に助
剤として0.24 tの酸化ニッケルを配合し、比較例
2と同じ条件でプレス成型、焼結し、直径約10M、厚
さ約1mの圧電セラミックス円板を得た。
Commercially available PI) 0.3r CO3,Ba CO3,T!
02゜Zr O2, VI'J O, Nb 20s,
Wi-forming (P) powder was blended to have the same composition as the target powder in Example 2, mixed in a ball mill for a day and night, then press-molded into a cylindrical shape, calcined at 900°C for 2 hours, and again ball-milled. A raw material powder for piezoelectric ceramics was obtained by pulverization.The average particle size was 0,837 μm.This powder was mixed with 0.24 t of nickel oxide as an auxiliary agent, and press-molded and baked under the same conditions as Comparative Example 2. A piezoelectric ceramic disk having a diameter of about 10 m and a thickness of about 1 m was obtained.

ル較M4  (特願昭60−210771の方法)実施
例2 第1工程の方法で (T! o、2Zr04 ) O7の粉末を合成し、こ
れと市販(7)Pb 0.3r CO3,Ba CO3
,T! 02. MgO。
Example 2 (T!o, 2Zr04) O7 powder was synthesized by the method of the first step, and this and commercially available (7) Pb 0.3r CO3, Ba CO3
,T! 02. MgO.

Nb 205の粉末を実施例2の目的粉末と同じ組成に
なるように配合し、ボールミルで一昼夜混合した後、円
柱状にプレス成型し、850℃で2時間仮焼し、再びボ
ールミルで粉砕して圧電セラミックス粉末を得た。
Nb 205 powder was blended to have the same composition as the target powder in Example 2, mixed overnight in a ball mill, press-molded into a cylinder, calcined at 850°C for 2 hours, and ground again in a ball mill. A piezoelectric ceramic powder was obtained.

この粉末に助剤として0.249の酸化ニッケルを配合
し、実施例2と同条件でプレス成型、焼成し、直径約1
0#、厚さ約1#の圧電セラミックス円板を得た。
This powder was mixed with 0.249 nickel oxide as an auxiliary agent, press-molded and fired under the same conditions as in Example 2, and was made into a powder with a diameter of about 1 mm.
A piezoelectric ceramic disk having a thickness of about 1# and a thickness of about 1# was obtained.

実施例2と比較例3,4で得られたセラミックスの特性
を比較して第2表に示した。実施例2で1qられたセラ
ミックスは、Kp、d31. g3.とも構成成分を一
度に焼成して得られたもの、あるいは特願昭60−21
0771の方法で得られたものよりも優れた圧電特性を
示した。
Table 2 shows a comparison of the characteristics of the ceramics obtained in Example 2 and Comparative Examples 3 and 4. The ceramics prepared by 1q in Example 2 had Kp, d31. g3. Those obtained by firing all the constituent components at once, or
It exhibited piezoelectric properties superior to those obtained by the method of No. 0771.

(発明の効果) 予めPb O,MFO,Nb 205を混合し、酸化チ
タンを共存させてから焼成、粉砕した結果、PMN−P
T固溶体の微細粒子が得られた。これと十分微細粒子で
得られるPT、PZを混合、仮焼、粉砕し最終的に平均
粒径が約0.3μmの微細なジルコニウムを含むペロブ
スカイトセラミックス原料粉末を得ることができた。こ
の粉末を成型焼結した結果、乾式法、共沈法で得られる
よりも優れた圧電特性を示すセラミックスを得ることが
できた。
(Effect of the invention) As a result of mixing Pb O, MFO, and Nb 205 in advance and coexisting titanium oxide, firing and pulverizing, PMN-P
Fine particles of T solid solution were obtained. By mixing this with sufficiently fine particles of PT and PZ, calcining and pulverizing, it was possible to finally obtain a perovskite ceramic raw material powder containing fine zirconium with an average particle size of about 0.3 μm. As a result of molding and sintering this powder, we were able to obtain ceramics that exhibit piezoelectric properties superior to those obtained by dry methods or coprecipitation methods.

Claims (1)

【特許請求の範囲】 ペロブスカイト型構造を持つ一般式 Pb_1_−_WM_w(Mg_1_/_3Nb_2_
/_3)_XTi_YZr_ZO_3〔但し、モル比率
でX=0.875〜0.01、Y=0.813〜0(0
を含まない。)、 Z=0.950〜0(0を含まない。) X+Y+Z=1、W=0〜0.20 MはCa、Sr、Baの少なくとも1つを示す。〕で表
わされるペロブスカイトセラミックス粉末を製造するに
際し、次の三つの工程からなることを特徴とするジルコ
ニウムを含むペロブスカイトセラミックス粉末の製造方
法。 ( I )ジルコニウムの水溶性塩Z(モル比率)とチタ
ニウムの水溶性塩a(モル比率)と から0.01Z≦a≦0.60Zであ る混合液をつくり、これと沈殿形成液とを 混合して共沈体を形成し、乾燥後700〜1300℃で
仮焼し粉砕する工程。 (II)一酸化鉛b(モル比率)、酸化チタン(b−x)
(モル比率)、酸化マグネシウ ムX/3(モル比率)、酸化ニオブX/3 (モル比率)をx<b<(Y−a)の範囲 で混合して500〜1100℃で仮焼し、粉砕する工程
。 (III)( I )および(II)の工程で得られた仮焼粉末
と酸化チタン [(x+Y)−(a+b)](モル比率) および一酸化鉛もしくはSr、Ba、Ca からなる群の少なくとも一種の金属酸化物 を含む一酸化鉛(1−b)(モル比率)と を混合し、500〜1300℃で仮焼し粉砕する工程。
[Claims] General formula Pb_1_-_WM_w(Mg_1_/_3Nb_2_
/_3)_XTi_YZr_ZO_3 [However, in molar ratio X = 0.875 to 0.01, Y = 0.813 to 0 (0
Does not include. ), Z=0.950-0 (not including 0) X+Y+Z=1, W=0-0.20 M represents at least one of Ca, Sr, and Ba. ] A method for producing perovskite ceramic powder containing zirconium, which comprises the following three steps. (I) Create a mixed solution of 0.01Z≦a≦0.60Z from water-soluble salt Z of zirconium (molar ratio) and water-soluble salt a of titanium (molar ratio), and mix this with the precipitate-forming solution. A process of forming a coprecipitate, drying, calcining at 700 to 1300°C, and pulverizing. (II) Lead monoxide b (molar ratio), titanium oxide (b-x)
(molar ratio), magnesium oxide X/3 (molar ratio), and niobium oxide The process of doing. (III) The calcined powder obtained in steps (I) and (II) and at least one of the group consisting of titanium oxide [(x+Y)-(a+b)] (molar ratio) and lead monoxide or Sr, Ba, and Ca. A process of mixing lead monoxide (1-b) (molar ratio) containing a type of metal oxide, calcining at 500 to 1300°C, and pulverizing.
JP7386887A 1987-03-26 1987-03-26 Production of perovskite ceramic powder containing zirconium Pending JPS63239125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7386887A JPS63239125A (en) 1987-03-26 1987-03-26 Production of perovskite ceramic powder containing zirconium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7386887A JPS63239125A (en) 1987-03-26 1987-03-26 Production of perovskite ceramic powder containing zirconium

Publications (1)

Publication Number Publication Date
JPS63239125A true JPS63239125A (en) 1988-10-05

Family

ID=13530593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7386887A Pending JPS63239125A (en) 1987-03-26 1987-03-26 Production of perovskite ceramic powder containing zirconium

Country Status (1)

Country Link
JP (1) JPS63239125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63319214A (en) * 1987-06-23 1988-12-27 Ube Ind Ltd Powder material for condenser
CN102757233A (en) * 2012-07-17 2012-10-31 西北工业大学 Preparation method of zirconium doped lead magnesio-niobate ceramic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63319214A (en) * 1987-06-23 1988-12-27 Ube Ind Ltd Powder material for condenser
CN102757233A (en) * 2012-07-17 2012-10-31 西北工业大学 Preparation method of zirconium doped lead magnesio-niobate ceramic

Similar Documents

Publication Publication Date Title
JPS63156057A (en) Manufacture of high density perovskite ceramics
JP2598786B2 (en) Method for producing perovskite-based functional ceramic
US4990324A (en) Method for producing two-component or three-component lead zirconate-titanate
JPS63239125A (en) Production of perovskite ceramic powder containing zirconium
JPS6051664A (en) Manufacture of lead zirconate titanate ceramic
JPH0818871B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPS6363511B2 (en)
JPH0769645A (en) Production of lead-containing multiple oxide
JPH02184524A (en) Production of piezoelectric perovskite-type compound
JP2841347B2 (en) Manufacturing method of piezoelectric ceramics
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPH09278535A (en) Production of ceramic
JPS63156065A (en) Manufacture of perovskite ceramics containing zirconium
JPS63239123A (en) Production of perovskite ceramic powder containing zirconium
JPS63239126A (en) Production of perovskite ceramic powder containing zirconium
JPH032818B2 (en)
JPS63291305A (en) Manufacture of dielectric resonator material
JPH0262496B2 (en)
JPS63239122A (en) Production of perovskite ceramic powder containing zirconium
JP2899755B2 (en) Method for producing PZT powder
JPH05105511A (en) Production of piezoelectric
JP2538438B2 (en) Method for producing lead-based dielectric ceramic composition
JPS6126514A (en) Preparation of piezoelectric ceramic powder
JPS63248704A (en) Production of powder as starting material for multicomponent ceramic
JPH0216245B2 (en)