JPS63319214A - Powder material for condenser - Google Patents

Powder material for condenser

Info

Publication number
JPS63319214A
JPS63319214A JP15441287A JP15441287A JPS63319214A JP S63319214 A JPS63319214 A JP S63319214A JP 15441287 A JP15441287 A JP 15441287A JP 15441287 A JP15441287 A JP 15441287A JP S63319214 A JPS63319214 A JP S63319214A
Authority
JP
Japan
Prior art keywords
powder
raw material
surface area
specific surface
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15441287A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Tokuo Matsuzaki
徳雄 松崎
Yasuo Bando
坂東 康夫
Yohachi Yamashita
洋八 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Ube Corp
Original Assignee
Marcon Electronics Co Ltd
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd, Ube Industries Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP15441287A priority Critical patent/JPS63319214A/en
Publication of JPS63319214A publication Critical patent/JPS63319214A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain powder material for condenser possible to form a thin film having easily-sinterability and high strength by specifying composition consisting of Pb, Ba, Sr, Ca, Mg, Zn, Ni, Nb, Ti and O and by grinding to powder having specified specific surface area. CONSTITUTION:The powder material is the powder having general formula Pb1-xAx(B1/3Nb2/3)yTi1-yO3, where A is at least one kind of Ba, Sr and Ca, B is at least one kind of Mg, Zn and Ni, x=0.1-0.9 and y=0.1-0.9, and 3-15m<2>/g specific surface area, and is suitable as powder raw material of composite perovskite structure compd. and its solid soln. for condenser. The powder raw material is obtd. as powder having about 0.05-0.5mum particle diameter, for example, by calcining the ppt. obtd. by bringing solutions of Pb, A, B, Nb and Ti component into multistage contact with a soln. for forming ppt. by the multistage wet method. The powder raw material above-mentioned has characteristics such as easily-sinterability, uniformity, low cost, high bulk density, etc., and furthermore, is possible to be easily made into a thin film having a thickness of about <=50mum and high strength.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コンデンサー材料用のペロブスカイトおよび
その固溶体の原料粉末に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a raw material powder of perovskite and its solid solution for capacitor materials.

ペロブスカイトおよびその固溶体は、コンデンサー材料
として広範囲に利用されている。最近はこの機能性をよ
り高度にすることが望まれており、その要請に対応でき
る易焼結性、均一・性、高嵩密度で、且つ低コストのペ
ロブスカイトおよびその固溶体の原料粉末が要望されて
いる。
Perovskites and their solid solutions are widely used as capacitor materials. Recently, it has been desired to further improve this functionality, and raw material powders for perovskites and their solid solutions that meet these demands are required, which are easy to sinter, have uniformity, have high bulk density, and are low cost. ing.

(従来技術およびその問題点) 従来、コンデンサー材料用のペロブスカイトおよびその
固溶体の原料粉末としては、酸化物等を混合、仮焼する
乾式法により製造されたものが、特開昭61−1014
60号公報、特開昭61−251563号公報、特開昭
6l−2515G4号公報等に記載されている。
(Prior art and its problems) Conventionally, raw material powders for perovskite and its solid solution for capacitor materials have been manufactured by a dry method in which oxides, etc. are mixed and calcined.
60, JP-A-61-251563, JP-A-61-2515G4, etc.

乾式法は構成原料成分の化合物を乾式で混合し、これを
仮焼する方法である。しかし、この方法では、得られる
原料粉末の粒子径が数μmと大きく、焼結性も十分では
ないため、優れた機能性を持つペロブスカイトを得難い
The dry method is a method in which compounds of constituent raw materials are mixed in a dry method and then calcined. However, with this method, the particle size of the obtained raw material powder is large, several μm, and the sinterability is not sufficient, so it is difficult to obtain perovskite with excellent functionality.

特に、コンデンサーの容量を増大させるためには、50
11m以下の薄膜で多M構造にすることが必要であるが
、乾式法で製造した粒子径の大きい粉末を積層コンデン
サーに使用した場合には、十分な機能を発揮しなかった
In particular, in order to increase the capacitance of the capacitor, 50
It is necessary to create a multi-M structure with a thin film of 11 m or less, but when powder with a large particle size produced by a dry process was used in a multilayer capacitor, it did not exhibit sufficient functionality.

(発明の目的) 本発明の目的は、易焼結性、均一性、低コスト、高嵩密
度の四つの要件を備え、しがち50μIn以下の薄膜形
成が容易なコンデンサー材料用ペロブスカイトおよびそ
の固溶体の原料粉末を提供することである。
(Object of the Invention) The object of the present invention is to develop a perovskite and its solid solution for capacitor materials, which meet the four requirements of easy sinterability, uniformity, low cost, and high bulk density, and which can easily form a thin film of 50μIn or less. The purpose is to provide raw material powder.

(問題点を解決するための技術的手段)本発明者等は前
記目的を達成すべく鋭意研究の結果、本発明に到った。
(Technical Means for Solving the Problems) The inventors of the present invention have conducted intensive research to achieve the above-mentioned object, and as a result, have arrived at the present invention.

本発明は一般式 %式% (ただし、AはBa、Sr、Caの少なくとも一種を示
し、BはMg、Zn、Niの少なくとも一種を示し、x
 = 0.1〜0.9、y = 0.1〜0.9の値で
ある。)で表されるペロブスカイトおよびその固溶体の
原料粉末であり、該粉末の比表面積が3〜15ば7gで
あることを特徴とするコンデンサー材料用粉末に関する
ものである。
The present invention is based on the general formula % (where A represents at least one of Ba, Sr, and Ca, B represents at least one of Mg, Zn, and Ni, and x
= 0.1-0.9, y = 0.1-0.9. The present invention relates to a powder for capacitor materials, which is a raw material powder of perovskite and its solid solution represented by the following formula, and has a specific surface area of 3 to 15 to 7 g.

本発明における一般式 %式% で表されるペロブスカイ1〜およびその同溶体のA成分
はBa、Sr、Caの少なくとも一種であり、B成分は
Mg、Zn、Niの少なくとも一種であり、Pb1xA
x(B1/3 ”b2/3)yTil−yo3における
Pb7−XAX成分と(R1/3 N b2/3)、T
 j 7□成分の原子比は通常1.0であるが、この原
子比を1.0より高い値、もしくは低い値にずらした不
定比性ペロブスカイトも含まれる。
In the present invention, the A component of perovsky 1 and its isosolutes represented by the general formula % is at least one of Ba, Sr, and Ca, the B component is at least one of Mg, Zn, and Ni, and Pb1xA
x(B1/3"b2/3)yPb7-XAX component in Til-yo3 and (R1/3 N b2/3), T
The atomic ratio of the j7□ component is usually 1.0, but non-stoichiometric perovskites in which this atomic ratio is shifted to a value higher or lower than 1.0 are also included.

また、前記一般式中のXおよびyはX = 0.1〜0
.9、y = 0.1〜0.9の数値であり、この範囲
をはずれると特性的に問題となるので好ましくない。
Moreover, X and y in the above general formula are X = 0.1 to 0
.. 9, y = a numerical value of 0.1 to 0.9, and if it deviates from this range, it is not preferable because it will cause problems in terms of characteristics.

前記組成のペロブスカイトおよびその固溶体の原料粉末
は、粒子径が0.05〜0.5μmの範囲であり、出来
るだけ球形に近いものが望ましい。そのためには、粉末
の比表面積が3〜15イ/gであることが必要である。
The raw material powder of perovskite and its solid solution having the above composition has a particle size in the range of 0.05 to 0.5 μm, and is preferably as close to spherical as possible. For this purpose, it is necessary that the powder has a specific surface area of 3 to 15 i/g.

粒子径が0.5μmよりも大きいと焼結性が良好でなく
、しがち薄膜形成が困難で、得られる薄膜も強度が低く
なる。また粒子径が0.05μm口よりも小さい薄膜形
成において、グリーンシート形成が難しく、またシー1
〜形成にバインダー等が多量に必要であって、得られる
焼結体も空孔が多数発生するので好ましくない。
If the particle size is larger than 0.5 μm, the sinterability is poor, it tends to be difficult to form a thin film, and the resulting thin film also has low strength. In addition, when forming a thin film with a particle size smaller than 0.05 μm, it is difficult to form a green sheet, and the sheet 1
-A large amount of binder and the like is required for formation, and the resulting sintered body also has many pores, which is not preferable.

本発明のペロブスカイトおよびその固溶体の原料粉末を
得るための方法としては、得られる粉末の形状が球形あ
るいは立方形に近く、しかも比表面積が3〜15rrr
/gの範囲であれば、特に限定されないが、例えばゾル
ゲル法、共沈法、多段湿式法、乾式−粉砕法等が挙げら
れる。
The method for obtaining the raw material powder of perovskite and its solid solution of the present invention is such that the shape of the obtained powder is close to spherical or cubic, and the specific surface area is 3 to 15 rrr.
As long as it is within the range of /g, there are no particular limitations, but examples include a sol-gel method, a coprecipitation method, a multi-stage wet method, a dry-pulverization method, and the like.

以下、多段湿式法、乾式−粉砕法について説明する。The multi-stage wet method and dry-pulverization method will be explained below.

多段湿式法においては、前記一般式 Pb1xAx(B1/3Nb2/3)yTil−yO3
で表されるペロブスカイトおよびその固溶体の構成成分
である、pb酸成分A成分、B成分、Nb成分およびT
i成分の各成分溶液を一種以上の沈澱形成液と多段に接
触させて、逐次的に沈澱を生成さぜな後、得られた沈澱
物を仮焼することにより、本発明のコンデンサー材料用
粉末が得られる。
In the multi-stage wet method, the general formula Pb1xAx(B1/3Nb2/3)yTil-yO3
The pb acid component A component, B component, Nb component and T
The powder for capacitor materials of the present invention can be prepared by bringing each component solution of component i into contact with one or more precipitate-forming liquids in multiple stages to sequentially form precipitates, and then calcining the obtained precipitates. is obtained.

ペロブスカイトおよびその固溶体の構成成分の金属元素
を含む化合物の溶液を調製するための各成分化合物とし
ては、特に限定されないが、それらの水酸化物、炭酸塩
、オキシ塩、硫酸塩、硝酸塩、塩化物等の$F、機塩、
酢酸塩、しゅう酸塩等の有機酸塩、酸化物等から適宜選
択される。これらは一般に水溶液として使用されるが水
に可溶でない場合には酸を添加して可溶させればよく、
不溶原料については懸濁溶液として使用してもよい。
Component compounds for preparing a solution of a compound containing a metal element as a component of perovskite and its solid solution include, but are not particularly limited to, their hydroxides, carbonates, oxysalts, sulfates, nitrates, and chlorides. etc. $F, machine salt,
It is appropriately selected from organic acid salts such as acetates and oxalates, oxides, and the like. These are generally used as aqueous solutions, but if they are not soluble in water, they can be made soluble by adding acid.
Insoluble raw materials may be used as a suspension solution.

また水溶液のかわりにアルコール溶液を使用してもよい
Also, an alcohol solution may be used instead of an aqueous solution.

沈澱形成液としては、アンモニア、炭酸アンモニウム、
炭酸水素アンモニウム、しゅう酸、しゆう酸アンモニウ
ム、苛性アルカリ、アルキルアミン等の溶液が挙げられ
る。アルキルアミンとしては、メチルアミン、エチルア
ミン、プロピルアミン、ブチルアミンなどの低級アルキ
ル基を有する第一アミン、シクロヘキシルアミンの如き
第一アミン、ジメチルアミン、ジエチルアミンなどの低
級アルキル基を有する第三アミン、トリエチルアミンの
如き低級アルキル基を有する第三アミンを挙げることが
できる。
Precipitation forming liquids include ammonia, ammonium carbonate,
Examples include solutions of ammonium hydrogen carbonate, oxalic acid, ammonium oxalate, caustic alkali, alkylamine, and the like. Examples of the alkylamine include primary amines having a lower alkyl group such as methylamine, ethylamine, propylamine, and butylamine, primary amines having a lower alkyl group such as cyclohexylamine, tertiary amines having a lower alkyl group such as dimethylamine and diethylamine, and triethylamine. Mention may be made of tertiary amines having lower alkyl groups such as

多段湿式法においては、構成成分の各溶液を一種以上の
沈澱形成液と多段に接触させて、逐次的に沈澱を生成さ
せることにより、各沈澱物の一次粒子の形状は不均一で
あるが、その凝集体である二次粒子の形状は均一・であ
り、しかも二次粒子の大きさはサブミクロン程度の適度
の粒子径となり分散性の良いものとなる。
In the multi-stage wet method, each solution of the constituent components is brought into contact with one or more precipitate-forming liquids in multiple stages to sequentially generate precipitates, so that the shape of the primary particles of each precipitate is non-uniform; The shape of the secondary particles, which are the aggregates, is uniform, and the size of the secondary particles is an appropriate particle size of about submicrons, resulting in good dispersibility.

構成成分の沈澱を生成するには沈澱形成液を撹拌しなが
ら、沈澱形成液に、各構成成分の溶液を添加してもよく
、その反対に添加してもよい。添加に際しては液を十分
に撹拌しながら行うことが好ましい。
To form a precipitate of the constituent components, a solution of each constituent component may be added to the precipitate forming liquid while stirring the precipitate forming liquid, or vice versa. The addition is preferably carried out while sufficiently stirring the liquid.

また沈澱の生成に際し、例えば一つの成分の沈澱を生成
した後、陰イオンを除去するために水洗。
Also, when forming a precipitate, for example, after forming a precipitate of one component, it is washed with water to remove anions.

した後、沈澱物を新しい水またはアルコール中に分散し
て、さらに他成分の溶液と沈澱形成液を添加して沈澱を
生成してもよい。
After that, the precipitate may be dispersed in fresh water or alcohol, and further a solution of other components and a precipitate forming liquid may be added to form a precipitate.

前記方法により得られた沈澱物は通常の洗浄方法により
水等で洗浄して、炉別、乾燥した後、仮焼する。乾燥は
、大気圧下で行っても減圧下で行つてもよい。
The precipitate obtained by the above method is washed with water or the like by a conventional washing method, separated in a furnace, dried, and then calcined. Drying may be performed under atmospheric pressure or under reduced pressure.

仮焼温度としては、過度に低いと沈澱物の脱水、熱分解
が不十分であり、また過度に高いと粉末が粗大化するの
で、通常、仮焼温度は500〜1200℃の範囲が好適
である。
If the calcination temperature is too low, the dehydration and thermal decomposition of the precipitate will be insufficient, and if it is too high, the powder will become coarse. be.

また、乾式−粉砕法においては、ペロブスカイトおよび
その固溶体の構成成分の各金属元素を含む化合物、例え
ば酸化物、炭酸塩等をボールミル等を用いて乾式で混合
し、この混合物を遠心流動ミル、あるいはアトライター
等で破砕混合し、それを500〜1200℃の温度で仮
焼した後、再度、遠心流動ミル等によって比表面積が3
〜15rrr/gの範囲になるように微粉化することに
より、本発明のコンデンサー材料用粉末が得られる。
In the dry-milling method, compounds containing each metal element of perovskite and its solid solution, such as oxides and carbonates, are mixed dry using a ball mill or the like, and this mixture is mixed using a centrifugal flow mill or After crushing and mixing with an attritor, etc., and calcining at a temperature of 500 to 1200°C, the specific surface area is reduced to 3 by using a centrifugal fluid mill, etc.
The powder for capacitor materials of the present invention can be obtained by pulverizing the powder to a range of 15 rrr/g.

(実施例) 以下に実施例および比較例を示し、さらに詳しく本発明
について説明する。
(Example) The present invention will be explained in more detail by showing Examples and Comparative Examples below.

実施例l PbO,73BaO,27[Zn1/3Nb2/310
.6T’0.4°3五塩化ニオブ(Nb CfJ5) 
10.81 gをエタノール100mρ中に溶解し、さ
らに6N−アンモニア水500mNを添加した。これに
硝酸鉛[Pb(No3)2124.18 gと硝酸バリ
ウム[Ba(NO3)2]7.06 gを300mj!
の水に溶解した溶液を加えて、沈澱を生成した。さらに
四塩化チタン(Ti Cj14) 7.5 gを水70
0mjlに溶解した溶液を加えて沈澱を生成させた。沈
澱物含有溶液を静置し、上澄液を除去し、新たに水を加
えて十分撹拌した後、再度静置して上澄液を除去すると
いう傾瀉操作を4回繰返した溶液に、ジエチルアミン1
0mNを水100m、Oに加えた溶液を加えた。
Example l PbO,73BaO,27[Zn1/3Nb2/310
.. 6T'0.4°3 Niobium pentachloride (Nb CfJ5)
10.81 g was dissolved in 100 mρ of ethanol, and 500 mN of 6N aqueous ammonia was added. Add to this 300mj of lead nitrate [Pb(No3) 2124.18 g and barium nitrate [Ba(NO3)2] 7.06 g!
A solution of the solution in water was added to form a precipitate. Furthermore, 7.5 g of titanium tetrachloride (Ti Cj14) was added to 70 g of water.
A solution dissolved in 0 mjl was added to form a precipitate. The solution containing the precipitate was allowed to stand still, the supernatant liquid was removed, fresh water was added, the mixture was thoroughly stirred, the solution was left to stand again, and the supernatant liquid was removed. 1
A solution of 0 mN in 100 m of water and O was added.

この液に硝酸亜鉛[Zn(No3)2・6H20] 5
゜95gを水100mjlに溶解した溶液を徐々に加え
て沈澱を生成させた。こ、の沈澱物を洗浄、濾過、乾燥
した後、組成分析したところ、仕込みの元素組成と同一
であった。さらにこの沈澱物を780℃で4時間仮焼し
た。得られた粉末をエタノール存在下、ボールミル処理
し、その一部を透過型電子顕微鏡により粒子を観察した
ところ、粒径は0゜2μm程度で均一であり、比表面積
は5.2rrr/gであった。またペロブスカイト構造
は98%以上であった。
Add zinc nitrate [Zn(No3)2.6H20] to this solution 5
A solution of 95 g dissolved in 100 ml of water was gradually added to form a precipitate. After washing, filtering, and drying this precipitate, the composition was analyzed, and the elemental composition was the same as that of the starting material. Further, this precipitate was calcined at 780°C for 4 hours. The resulting powder was ball milled in the presence of ethanol, and part of it was observed using a transmission electron microscope. The particle size was uniform at about 0.2 μm, and the specific surface area was 5.2 rrr/g. Ta. Moreover, the perovskite structure was 98% or more.

上記粉末にポリビニルアルコール(以下、PVAと略記
)を0.8重量%添加してIt/cJで成型し、鉛雰囲
気下、950℃で10時間焼結した結果、焼結体の密度
は理論密度の99%であった。
0.8% by weight of polyvinyl alcohol (hereinafter abbreviated as PVA) was added to the above powder, molded at It/cJ, and sintered at 950°C for 10 hours in a lead atmosphere. As a result, the density of the sintered body was the theoretical density. It was 99% of the total.

また電気特性を測定したところ、比誘電率12800、
tanδ0.9%、比抵抗1.lX1012Ω’onで
あった。
Also, when we measured the electrical properties, we found that the dielectric constant was 12,800,
tan δ 0.9%, specific resistance 1. It was 1×1012Ω'on.

実施例2〜4 実施例1と同様な方法により第1表に示す組成のものを
製造し、電気特性を測定した。その結果を第2表に示す
Examples 2 to 4 Products having the compositions shown in Table 1 were manufactured by the same method as in Example 1, and their electrical properties were measured. The results are shown in Table 2.

実施例5 PbO,73Ba0.27 [Zn1/3Nb2/31
0.6” ’0.403酸化鉛(pb o) 、炭酸バ
リウム(Ba Co3)、酸化亜鉛(zn o) 、酸
化ニオブ(Nb205)および酸化チタン(T i O
2)を上記組成となるように秤取し、これらをボールミ
ルで十分に混合した後、さらに、遠心流動ミルによって
粉砕混合した。こ14開0.463−319214  
(4)れを850℃で2時間仮焼した後、さらに遠心流
動ミルで粉砕処理を行った。得られた粉末の粒子径は0
.408℃程度であり、比表面積は3.6d/gであっ
た。得られた粉末にPVAを0.8重量%添加して1 
t /cxMで成型した後、1000℃で5時間焼結し
た。焼結体の密度は理論密度の989%であり、また電
気特性は比誘電率11600、tanδ0.7%、比抵
抗1.lX1013Ω・儂であった。
Example 5 PbO,73Ba0.27 [Zn1/3Nb2/31
0.6” '0.403 Lead oxide (pbo), barium carbonate (BaCo3), zinc oxide (zno), niobium oxide (Nb205) and titanium oxide (T i O
2) were weighed out to have the above composition, thoroughly mixed in a ball mill, and then pulverized and mixed in a centrifugal fluid mill. This 14 opening 0.463-319214
(4) After calcining the mixture at 850°C for 2 hours, it was further pulverized using a centrifugal fluid mill. The particle size of the obtained powder is 0
.. The temperature was approximately 408°C, and the specific surface area was 3.6 d/g. 0.8% by weight of PVA was added to the obtained powder to give 1
After molding at t/cxM, it was sintered at 1000°C for 5 hours. The density of the sintered body is 989% of the theoretical density, and the electrical properties are dielectric constant 11600, tan δ 0.7%, and resistivity 1. It was 1×1013Ω・me.

比較例l PbO,73Ba0.27 [7’1/3Nb2/3J
O,6′ri0.4°3酸化鉛(pb o) 、炭酸バ
リウム(Ba Co3)、酸化亜鉛(Zn O) 、酸
化ニオブ(Nb205)および酸化チタン(T i O
2)を上記組成となるように秤取し、これらを・ボール
ミルて十分に混合した後、これを900℃で2時間仮焼
した。得られた粉末の粒子径は1.0μm程度であり、
比表面積は1.5rr?/gであった。得られた粉末に
PVAを0.8重量%添加してit/cJで成型した後
、950℃で10時間焼結した。焼結体の密度は理論密
度の94.5%であり、また電気特性は比誘電率630
0、tanδ3.6%、比抵抗1.lX1011Ω−(
至)であった。
Comparative example l PbO, 73Ba0.27 [7'1/3Nb2/3J
O,6'ri0.4°3 Lead oxide (pbo), barium carbonate (BaCo3), zinc oxide (ZnO), niobium oxide (Nb205) and titanium oxide (T i O
2) were weighed out so as to have the above composition, and after thoroughly mixing them in a ball mill, this was calcined at 900° C. for 2 hours. The particle size of the obtained powder is about 1.0 μm,
Is the specific surface area 1.5rr? /g. After adding 0.8% by weight of PVA to the obtained powder and molding it at it/cJ, it was sintered at 950° C. for 10 hours. The density of the sintered body is 94.5% of the theoretical density, and the electrical properties are a dielectric constant of 630.
0, tan δ 3.6%, specific resistance 1. lX1011Ω-(
).

(発明の効果) 一般式 Pb1xAx(B1/3Nb2/3)yTil
−yO3(ただし、AはBa、Sr、Caの少なくとも
一種を示し、BはMg、Zn、Niの少なくとも一種を
示し、x = 0.1〜0.9、y = 0.1〜0.
9の値である。)で表されるペロブスカイトおよびその
固溶体の原料粉末の比表面積を3〜15nf/gにする
ことによって、易焼結性になり、しかも薄膜化において
高い強度のものが得られるようになり、積層コンデンサ
ー材料とて優れた性能を有する粉末が得られる。
(Effect of the invention) General formula Pb1xAx(B1/3Nb2/3)yTil
-yO3 (where A represents at least one of Ba, Sr, and Ca, B represents at least one of Mg, Zn, and Ni, x = 0.1 to 0.9, y = 0.1 to 0.
The value is 9. ) By setting the specific surface area of the raw material powder of perovskite and its solid solution to 3 to 15 nf/g, it becomes easy to sinter, and high strength can be obtained when thinning the film, making it possible to make multilayer capacitors. A powder with excellent performance as a material is obtained.

Claims (1)

【特許請求の範囲】[Claims] 一般式 Pb_1_xA_x(B_1_/_3Nb_2
_/_3)_yTi_1−_yO_3(ただし、AはB
a、Sr、Caの少なくとも一種を示し、BはMg、Z
n、Niの少なくとも一種を示し、x=0.1〜0.9
、y=0.1〜0.9の値である。)で表される複合ペ
ロブスカイト型構造化合物(以下ペロブスカイトという
)およびその固溶体の原料粉末であり、該粉末の比表面
積が3〜15m^2/gであることを特徴とするコンデ
ンサー材料用粉末。
General formula Pb_1_xA_x(B_1_/_3Nb_2
___/_3)_yTi_1-_yO_3 (However, A is B
a, Sr, and Ca, and B represents Mg, Z
n, represents at least one type of Ni, x = 0.1 to 0.9
, y=0.1 to 0.9. ) A powder for a capacitor material, which is a raw material powder of a compound with a composite perovskite structure (hereinafter referred to as perovskite) and a solid solution thereof, and has a specific surface area of 3 to 15 m^2/g.
JP15441287A 1987-06-23 1987-06-23 Powder material for condenser Pending JPS63319214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15441287A JPS63319214A (en) 1987-06-23 1987-06-23 Powder material for condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15441287A JPS63319214A (en) 1987-06-23 1987-06-23 Powder material for condenser

Publications (1)

Publication Number Publication Date
JPS63319214A true JPS63319214A (en) 1988-12-27

Family

ID=15583588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15441287A Pending JPS63319214A (en) 1987-06-23 1987-06-23 Powder material for condenser

Country Status (1)

Country Link
JP (1) JPS63319214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661244A2 (en) * 1993-09-28 1995-07-05 Texas Instruments Incorporated Fabrication of thin film materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128263A (en) * 1983-01-12 1984-07-24 株式会社村田製作所 Manufacture of ceramic raw material powder
JPS6153113A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPS6265907A (en) * 1985-09-17 1987-03-25 Ube Ind Ltd Production of easy-to-sinter perovskite powder
JPS6325272A (en) * 1986-07-17 1988-02-02 科学技術庁無機材質研究所長 Manufacture of high density psznt base ferroelectric ceramic
JPS63239125A (en) * 1987-03-26 1988-10-05 Seitetsu Kagaku Co Ltd Production of perovskite ceramic powder containing zirconium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128263A (en) * 1983-01-12 1984-07-24 株式会社村田製作所 Manufacture of ceramic raw material powder
JPS6153113A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPS6265907A (en) * 1985-09-17 1987-03-25 Ube Ind Ltd Production of easy-to-sinter perovskite powder
JPS6325272A (en) * 1986-07-17 1988-02-02 科学技術庁無機材質研究所長 Manufacture of high density psznt base ferroelectric ceramic
JPS63239125A (en) * 1987-03-26 1988-10-05 Seitetsu Kagaku Co Ltd Production of perovskite ceramic powder containing zirconium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661244A2 (en) * 1993-09-28 1995-07-05 Texas Instruments Incorporated Fabrication of thin film materials
EP0661244A3 (en) * 1993-09-28 1996-09-11 Texas Instruments Inc Fabrication of thin film materials.

Similar Documents

Publication Publication Date Title
JP2017178744A (en) Ferroelectric ceramic and method for producing the same
JP2598786B2 (en) Method for producing perovskite-based functional ceramic
JPH0559048B2 (en)
JPS63319214A (en) Powder material for condenser
JPS63265811A (en) Manufacture of feedstock powder of easily sinterable perovskite composite oxide
JPH0210089B2 (en)
JPH0688788B2 (en) Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder
JPH0210091B2 (en)
JP2663944B2 (en) Manufacturing method of dielectric resonator material
CN116789449B (en) High-energy-storage sodium niobate-based ferroelectric ceramic material with excellent temperature stability, and preparation method and application thereof
JPS6325223A (en) Production of ceramic raw material powder
JPS63285147A (en) Production of niobium-containing perovskite ceramic
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
JPH0456777B2 (en)
JPH0556287B2 (en)
JPS63285150A (en) Production of neodymium-containing dielectric material ceramic
JPS62202854A (en) Dielectric ceramic composition for high frequency
JPS63265822A (en) Manufacture of composite perovskite feedstock powder for low temperature sintering
JPS61232217A (en) Production of low-temperature sinterable powdery raw material for producing dielectric ceramic
JPH0457615B2 (en)
JPS63291305A (en) Manufacture of dielectric resonator material
JPH0449506B2 (en)
CN117285354A (en) Silver niobate-based relaxation type ternary solid solution ceramic material with high energy storage characteristic and preparation method thereof
JPH01122907A (en) Production of perovskite oxide powder
JPS6325265A (en) Manufacture of high density bznt base ferroelectric ceramic