JPH0457617B2 - - Google Patents

Info

Publication number
JPH0457617B2
JPH0457617B2 JP62018534A JP1853487A JPH0457617B2 JP H0457617 B2 JPH0457617 B2 JP H0457617B2 JP 62018534 A JP62018534 A JP 62018534A JP 1853487 A JP1853487 A JP 1853487A JP H0457617 B2 JPH0457617 B2 JP H0457617B2
Authority
JP
Japan
Prior art keywords
precipitate
component
solution
powder
containing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62018534A
Other languages
Japanese (ja)
Other versions
JPS63190720A (en
Inventor
Kyoji Oodan
Tokuo Matsuzaki
Masaru Kurahashi
Noriaki Arimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62018534A priority Critical patent/JPS63190720A/en
Publication of JPS63190720A publication Critical patent/JPS63190720A/en
Publication of JPH0457617B2 publication Critical patent/JPH0457617B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、圧電性の複合ペロブスカイト型構造
化合物およびその固溶体(以下ペロブスカイトと
いう)の原料粉末の製造方法に関するものであ
る。 圧電性のペロブスカイトはセラミツクフイルタ
ー、圧電音響素子、アクチユエーター、超音波素
子等の機能性セラミツクスとして広範囲に利用さ
れている。最近はこの機能性をより高度にするこ
とが望まれており、その要請に対応できる易焼結
性、均一性、高嵩密度で、且つ低コストのペロブ
スカイトの原料粉末が多量に効率的に製造できる
技術の開発が要望されている。 (従来技術およびその問題点) 従来、ペロブスカイトの原料粉末の製造方法と
しては、乾式法、共沈法および多段湿式法が知ら
れている。 乾式法は構成原料成分の化合物を乾式で混合
し、これを仮焼する方法である。しかし、この方
法では、均一組成の原料粉末が得難いため、優れ
た機能性を持つペロブスカイトを得難いし、また
焼結性も十分ではない。 共沈法はその構成成分のすべてを一緒にした混
合溶液を作り、これにアルカリ等の沈澱形成液を
添加して共沈させ、共沈物を乾燥、仮焼させる方
法である。 この共沈法によると、均一性の優れた粉末が得
易いが、その均一性なるが故に、沈澱生成時、乾
燥時または仮焼時に粒子が凝結して二次粒子を形
成し、易焼結性になりにくい欠点があつた。 また、共沈法では各成分の該沈澱形成液に対す
る沈澱形成能が同じでない場合は、例えば或成分
は実質的に100%沈澱を生成するが、他の成分は
実質的に全部沈澱を生成し得ないことが起り、所
望組成となし難いことがあり、特に、Mg成分、
Zn成分、Ni成分、Mn成分を実質的に100%沈澱
させるのは困難であつた。 多段湿式法は特開昭61−53113号公報、特開昭
61−53115号公報等に記載されているように、各
成分を段階的に沈澱させることにより、共沈法に
おける前記欠点を解決したものである。しかしな
がら、この製法により得られるペロブスカイトは
圧電特性が十分でないという難点があつた。 (発明の目的) 本発明の目的は、前記多段湿式法を改良し、圧
電特性が優れたペロブスカイトを製造する方法を
提供することである。 本発明の他の目的は、易焼結性、均一性、低コ
スト、高嵩密度の四つの要件を満足した圧電性ペ
ロブスカイトおよびその固溶体原料粉末を効率よ
く製造することができる方法を提供することであ
る。 (問題点を解決するための技術的手段) 本発明者らは前記目的を達成すべく鋭意研究の
結果、本発明に到つた。 本発明は一般式x[Pb(Zn1/3Nb2/3)O3]−y
(PbTiO3)−z(PbZrO3)−a(MnO2)−b(Al2
O3)(ただし、x、yおよびzはモル%を示し、
x+y+z=100であり、aおよびbはx+y+
z=100に対するモル比であり、a=0.05〜5、
b=0〜5である。)で表される圧電性の複合ペ
ロブスカイト原料粉末の製造に際し、Pb、Nb、
Ti、AlおよびZrの各成分溶液を沈澱形成液と接
触させて各成分の沈澱を段階的に生成させた後、
沈澱含有液中の沈澱形成剤から生成したイオンの
濃度が0.2モル/以下となるように調整し、次
いで、沈澱形成液で沈澱含有液のPHを11.5以下と
した後、MnおよびZnの各成分溶液を添加し、そ
れぞれの成分の沈澱を生成させ、得られた沈澱物
を仮焼することを特徴とする易焼結性の圧電性ペ
ロブスカイト原料粉末の製造方法に関するもので
ある。 本発明において、「溶液」とは可溶物を溶解さ
せた溶液または不溶物を分散させた懸濁液を意味
する。 前記一般式中のx,yおよびzの値は圧電材料
の用途に応じ種々の数値をとりうるが、通常、x
は5〜90、yは5〜80、zは5〜80モル%の範囲
から選択するのが好適である。この範囲をはずれ
ると圧電特性が悪くなるので好ましくない。aお
よびbはx+y+z=100に対するモル比であり、
aは0.05〜5、bは0〜5の範囲である。Mnお
よびAlはいずれも機械的品質係数Qmを向上させ
る効果があるが、過度の添加は誘電率を低下させ
るので好ましくない。 ペロブスカイトの構成成分であるPb成分、Nb
成分、Ti成分、Al成分およびZr成分の化合物の
溶液を調整するための各成分化合物としては、特
に限定されないが、それらの水酸化物、炭酸塩、
オキシ塩、硫酸塩、硝酸塩、塩化物等の無機塩、
酢酸塩、しゅう酸塩等の有機酸塩、酸化物等から
適宣選択される。またMnおよびZn成分の化合物
としては、それらの硝酸塩、塩化物、水酸化物等
が用いられる。これらは一般に水溶液として使用
されるが水に可溶でない場合には酸を添加して可
溶させればよく、不溶原料については懸濁溶液と
して使用してもよい。 沈澱形成液としては、アンモニア、炭酸アンモ
ニウム、苛性アルカリ、アミン、しゅう酸、アル
キルアミン等の溶液が挙げられる。アルキルアミ
ンとしては、メチルアミン、エチルアミン、プロ
ピルアミン、ブチルアミンなどの低級アルキル基
を有する第一アミン、シクロヘキシルアミンの如
き第一アミン、ジメチルアミン、ジエチルアミン
などの低級アルキル基を有する第二アミン、トリ
エチルアミンの如き低級アルキル基を有する第三
アミンを挙げることができる。 構成成分の沈澱を生成するには沈澱形成液を攪
拌しながら、沈澱形成液に、各構成成分の水溶液
を添加してもよく、その反対に添加してもよい。
添加に際しては液を十分に攪拌しながら行うこと
が好ましい。 Pb、Nb、Ti、AlおよびZrの各成分溶液を沈
澱形成液と接触させて各成分の沈澱を逐次段階的
に生成させる具体的な方法としては、(1)Zr、Al
およびPbの化合物を溶解または分散させた溶液
と、TiおよびNbの化合物の各溶液とから、沈澱
形成液を使用して各成分の沈澱を生成させる方
法、または(2)Nbの化合物を溶解または分散させ
た溶液およびPbの化合物、Zrの化合物、Alの化
合物の溶液とから、沈澱形成液を使用してNb成
分、Pb成分、Zr成分およびAl成分の沈澱を生成
させ、次いでTiの化合物の溶液を添加してTi成
分の沈澱を生成させる方法等を好適に挙げること
ができる。前記(1)または(2)の方法における、Pb
成分、Nb成分、Ti成分、Al成分およびZr成分の
沈澱を生成させるにあたつては、沈澱形成液を攪
拌しながら、沈澱形成液に各成分溶液を添加して
もよく、その反対に添加してもよい。また各成分
溶液を必要に応じて多段に、あるいは交互に沈澱
形成液と接触させてもよい。 前記方法により得られた沈澱物は、傾瀉法の如
き通常の洗浄方法により水等で洗浄して、沈澱含
有液中の沈澱形成剤から生成したイオンの濃度が
0.2モル/以下となるように調整する。沈澱形
成剤から生成したイオンの濃度を0.2モル/以
下とすることにより、好ましくない不純物である
溶液中のCl-,NO- 3イオンを除去することができ
る。 次いで沈澱形成液で沈澱含有液のPHを11.5以
上、好ましくは12.0〜12.5とし、MnおよびZnの
各成分溶液を添加し、それらの成分の沈澱を生成
させる。 前記方法により得られた沈澱物は、何ら洗浄す
ることなく、ろ別、乾燥した後、仮焼することが
できる。この方法によれば、従来問題になつてい
た洗浄によるMnおよびZn成分の沈澱物の溶出を
防止することができ、所望組成のペロブスカイト
の原料粉末を得ることができる。沈澱物の乾燥
は、大気圧下で行つても減圧下で行つてもよい。 仮焼温度としては、過度に低いと沈澱物の脱
水、熱分解が不十分であり、また過度に高いと粉
末が粗大化するので、通常、仮焼温度は500〜900
℃の範囲が好適である。 (実施例) 以下に実施例および比較例を示し、さらに詳し
く本発明について説明する。 実施例 1 25[Pb(Zn1/3Nb2/3)O3]−40(PbTiO3)−35
(PbZrO3)−2(MnO2)−0.5(Al2O3) 4.5N−アンモニア水溶液500mlに五酸化ニオブ
(Nb2O5)粉末4.34gを分散させた。 次にこの懸濁液に硝酸鉛[Pb(NO32]64.92g
と硝酸ジルコニル[ZrO(NO32・2H2O]18.34
gと硝酸アルミニウム[Al(NO33・9H2O]
3.75gを水1に溶解した溶液を滴下した後、さ
らに四塩化チタン(TiCl4)14.87gを水300mlに
溶解した溶液を滴下した。 次いで、生成した沈澱物を水で傾瀉を繰返し、
洗浄し、アンモニウムイオン濃度を0.1モル/
とした後、ジエチルアミン20mlを含む水溶液200
mlを加え、PHを12.0とした。この液に硝酸亜鉛
[Zn(NO32・6H2O]4.84gと硝酸マンガン
[Mn(NO32・6H2O]1.15gを水300mlに溶解し
た溶液を徐々に加えて沈澱を生成させた。この沈
澱物を洗浄することなくろ別、乾燥した後、組成
分析したところ、仕込みの元素組成と同一であつ
た。さらにこの沈澱を750℃で2時間仮焼した。 得られた仮焼粉の粒子径はTEM写真の観察に
よると0.21μm以下で均一であつた。 この仮焼粉にポリビニルアルコールを0.2%添
加して1mmt×16mmφの円板に成型した後、1050
℃で2時間焼成した。得られた焼結体の密度をア
ルキメデス法で測定したところ、7.93g/cm3と理
論密度に近いものであつた。この焼結体の円板の
両面にAg電極を焼付け140℃で10kV/cmの電界
で分極処理した後、圧電特性を測定したところ、
以下の結果が得られた。 比誘電率ε33/ε0 752 電気機械結合係数Kp 38% 機械的品質係数Qm 3250 実施例 2 実施例1において、ニオブ源として五酸化ニオ
ブに代えて五塩化ニオブ(NbCl5)を用い、仮焼
温度を750℃から700℃に代えたほかは実施例1と
同様の方法により、ペロブスカイト粉末を製造し
た。得られた仮焼粉末は粒子径が約0.1μmで均一
な粉末であつた。また焼結体の密度は7.96g/cm3
であり、圧電特性は、 比誘電率ε33/ε0 823 電気機械結合係数Kp 40% 機械的品質係数Qm 3380 であつた。 実施例 3〜6 実施例1の製造方法において、構成成分元素の
比率を第1表に示すように代えて、ペロブスカイ
ト粉末を製造した。仮焼粉末の平均粒子径および
焼結体の密度、圧電特性を第2表に示す。
(Industrial Application Field) The present invention relates to a method for producing a raw material powder of a piezoelectric composite perovskite structure compound and its solid solution (hereinafter referred to as perovskite). Piezoelectric perovskites are widely used as functional ceramics such as ceramic filters, piezoelectric acoustic devices, actuators, and ultrasonic devices. Recently, it has been desired to further improve this functionality, and it is possible to efficiently produce large quantities of perovskite raw material powder that is easy to sinter, has uniformity, has high bulk density, and is low cost to meet this demand. There is a need for the development of technology that can do this. (Prior Art and its Problems) Dry methods, coprecipitation methods, and multi-stage wet methods are conventionally known as methods for producing perovskite raw material powders. The dry method is a method in which compounds of constituent raw materials are mixed in a dry method and then calcined. However, with this method, it is difficult to obtain a raw material powder with a uniform composition, so it is difficult to obtain a perovskite with excellent functionality, and the sinterability is also not sufficient. The coprecipitation method is a method in which a mixed solution is prepared by combining all of the constituent components, a precipitate-forming liquid such as an alkali is added to the mixed solution to cause coprecipitation, and the coprecipitate is dried and calcined. According to this coprecipitation method, it is easy to obtain powder with excellent uniformity, but because of its uniformity, the particles coagulate to form secondary particles during precipitate formation, drying, or calcination, making it easy to sinter. I had a flaw that made it difficult to become sexually sensitive. In addition, in the coprecipitation method, if the precipitate forming ability of each component in the precipitate forming solution is not the same, for example, one component will form substantially 100% of the precipitate, while other components will form substantially all of the precipitate. In some cases, it may be difficult to obtain the desired composition, especially when the Mg component,
It was difficult to precipitate substantially 100% of the Zn component, Ni component, and Mn component. The multi-stage wet method is disclosed in JP-A No. 61-53113 and JP-A-Sho.
As described in Publication No. 61-53115, etc., the above-mentioned drawbacks of the coprecipitation method are solved by precipitating each component in stages. However, the perovskite obtained by this manufacturing method has a drawback in that it does not have sufficient piezoelectric properties. (Objective of the Invention) An object of the present invention is to provide a method for producing perovskite with excellent piezoelectric properties by improving the multi-stage wet method. Another object of the present invention is to provide a method for efficiently producing piezoelectric perovskite and its solid solution raw material powder that satisfies the four requirements of easy sinterability, uniformity, low cost, and high bulk density. It is. (Technical Means for Solving the Problems) The present inventors have conducted intensive research to achieve the above object, and as a result, have arrived at the present invention. The present invention uses the general formula x[Pb(Zn 1/3 Nb 2/3 )O 3 ]-y
( PbTiO3 )-z( PbZrO3 )-a( MnO2 )-b( Al2
O 3 ) (where x, y and z indicate mol%,
x+y+z=100, and a and b are x+y+
molar ratio to z=100, a=0.05 to 5,
b=0 to 5. ) Pb, Nb,
After contacting the solution of each component of Ti, Al and Zr with a precipitate forming solution to form a precipitate of each component in stages,
Adjust the concentration of ions generated from the precipitate-forming agent in the precipitate-containing liquid to 0.2 mol/or less, and then adjust the pH of the precipitate-containing liquid to 11.5 or less with the precipitate-forming liquid, and then add each component of Mn and Zn. The present invention relates to a method for producing an easily sinterable piezoelectric perovskite raw material powder, which is characterized by adding a solution, forming a precipitate of each component, and calcining the obtained precipitate. In the present invention, the term "solution" refers to a solution in which soluble substances are dissolved or a suspension in which insoluble substances are dispersed. The values of x, y and z in the above general formula can take various values depending on the use of the piezoelectric material, but usually x
is preferably selected from the range of 5 to 90, y of 5 to 80, and z of 5 to 80 mol%. If it is outside this range, the piezoelectric properties will deteriorate, which is not preferable. a and b are molar ratios to x + y + z = 100,
a ranges from 0.05 to 5, and b ranges from 0 to 5. Both Mn and Al have the effect of improving the mechanical quality factor Qm, but excessive addition is undesirable because it lowers the dielectric constant. Pb component, Nb component of perovskite
Component compounds for preparing solutions of compounds of Ti component, Al component, and Zr component are not particularly limited, but include their hydroxides, carbonates,
Inorganic salts such as oxysalts, sulfates, nitrates, chlorides,
Appropriate selection is made from organic acid salts such as acetate and oxalate, oxides, etc. Further, as compounds of Mn and Zn components, their nitrates, chlorides, hydroxides, etc. are used. These are generally used as an aqueous solution, but if they are not soluble in water, they can be made soluble by adding an acid, and insoluble raw materials may be used as a suspension solution. Examples of the precipitate-forming liquid include solutions of ammonia, ammonium carbonate, caustic alkali, amine, oxalic acid, alkylamine, and the like. Examples of alkylamines include primary amines having a lower alkyl group such as methylamine, ethylamine, propylamine, and butylamine, primary amines having a lower alkyl group such as cyclohexylamine, secondary amines having a lower alkyl group such as dimethylamine and diethylamine, and triethylamine. Mention may be made of tertiary amines having lower alkyl groups such as To form a precipitate of the constituent components, an aqueous solution of each constituent component may be added to the precipitate forming liquid while stirring the precipitate forming liquid, or vice versa.
It is preferable that the addition be carried out while sufficiently stirring the liquid. A specific method of contacting a solution of each component of Pb, Nb, Ti, Al, and Zr with a precipitate forming solution to form a precipitate of each component in a stepwise manner is as follows: (1) Zr, Al
A method in which a precipitate of each component is generated using a precipitation forming solution from a solution in which a compound of Ti and Nb is dissolved or dispersed, and a solution of a compound of Ti and Nb, or (2) a solution in which a compound of Nb is dissolved or dispersed. From the dispersed solution and the solutions of the Pb compound, Zr compound, and Al compound, a precipitate is used to form a precipitate of the Nb component, Pb component, Zr component, and Al component, and then the Ti compound is precipitated. Preferred examples include a method in which a solution is added to form a precipitate of the Ti component. In the method (1) or (2) above, Pb
In order to generate precipitates of Nb component, Ti component, Al component and Zr component, each component solution may be added to the precipitate forming liquid while stirring the precipitate forming liquid, or vice versa. You may. Further, each component solution may be brought into contact with the precipitate forming solution in multiple stages or alternately as necessary. The precipitate obtained by the above method is washed with water or the like by a normal washing method such as a decantation method to reduce the concentration of ions generated from the precipitate forming agent in the precipitate-containing liquid.
Adjust so that it is 0.2 mol/or less. By setting the concentration of ions generated from the precipitant to 0.2 mol/or less, Cl - and NO - 3 ions in the solution, which are undesirable impurities, can be removed. Next, the pH of the precipitate-containing solution is adjusted to 11.5 or higher, preferably 12.0 to 12.5, using a precipitate-forming solution, and solutions of Mn and Zn components are added to form precipitates of these components. The precipitate obtained by the above method can be filtered, dried, and then calcined without any washing. According to this method, it is possible to prevent the elution of precipitates of Mn and Zn components due to washing, which has been a problem in the past, and it is possible to obtain a perovskite raw material powder having a desired composition. The precipitate may be dried under atmospheric pressure or under reduced pressure. If the calcination temperature is too low, the dehydration and thermal decomposition of the precipitate will be insufficient, and if it is too high, the powder will become coarse, so the calcination temperature is usually 500 to 900.
A range of 0.degree. C. is preferred. (Example) The present invention will be explained in more detail by showing Examples and Comparative Examples below. Example 1 25 [Pb (Zn 1/3 Nb 2/3 ) O 3 ] −40 (PbTiO 3 ) −35
( PbZrO3 )-2( MnO2 )-0.5( Al2O3 ) 4.34g of niobium pentoxide ( Nb2O5 ) powder was dispersed in 500ml of a 4.5N ammonia aqueous solution. Next, 64.92 g of lead nitrate [Pb(NO 3 ) 2 ] was added to this suspension.
and zirconyl nitrate [ZrO(NO 3 ) 2・2H 2 O] 18.34
g and aluminum nitrate [Al(NO 3 ) 3・9H 2 O]
A solution prepared by dissolving 3.75 g of titanium tetrachloride (TiCl 4 ) in 1 part of water was added dropwise, and then a solution prepared by dissolving 14.87 g of titanium tetrachloride (TiCl 4 ) in 300 ml of water was added dropwise. Next, the formed precipitate was repeatedly decanted with water,
Wash and reduce ammonium ion concentration to 0.1 mol/
and then add 200ml of an aqueous solution containing 20ml of diethylamine.
ml was added to adjust the pH to 12.0. A solution of 4.84 g of zinc nitrate [Zn( NO 3 ) 2.6H 2 O] and 1.15 g of manganese nitrate [Mn(NO 3 ) 2.6H 2 O] dissolved in 300 ml of water was gradually added to this solution to precipitate it. generated. This precipitate was separated by filtration without washing, dried, and then analyzed for composition, and the elemental composition was found to be the same as that of the initial precipitate. Further, this precipitate was calcined at 750°C for 2 hours. The particle diameter of the obtained calcined powder was 0.21 μm or less and uniform, as observed by TEM photography. After adding 0.2% polyvinyl alcohol to this calcined powder and molding it into a disk of 1mmt x 16mmφ,
It was baked at ℃ for 2 hours. The density of the obtained sintered body was measured by the Archimedes method and was found to be 7.93 g/cm 3 , which is close to the theoretical density. After baking Ag electrodes on both sides of the disk of this sintered body and polarizing it with an electric field of 10 kV/cm at 140°C, the piezoelectric properties were measured.
The following results were obtained. Relative dielectric constant ε 330 752 Electromechanical coupling coefficient Kp 38% Mechanical quality factor Qm 3250 Example 2 In Example 1, niobium pentachloride (NbCl 5 ) was used instead of niobium pentoxide as the niobium source. Perovskite powder was produced in the same manner as in Example 1 except that the firing temperature was changed from 750°C to 700°C. The obtained calcined powder was a uniform powder with a particle size of about 0.1 μm. The density of the sintered body is 7.96g/cm 3
The piezoelectric properties were as follows: dielectric constant ε 330 823 electromechanical coupling coefficient Kp 40% mechanical quality coefficient Qm 3380. Examples 3 to 6 Perovskite powders were manufactured using the manufacturing method of Example 1 except that the ratios of the constituent elements were changed as shown in Table 1. Table 2 shows the average particle diameter of the calcined powder, the density of the sintered body, and the piezoelectric properties.

【表】【table】

【表】 比較例 1 25[Pb(Zn1/3Nb2/3)O3]−40(PbTiO3)−35
(PbZrO3)−2(MnO2)−0.5(Al2O3) 五酸化ニオブ(Nb2O5)22.2g、酸化鉛
(PbO)223.2g、酸化チタン(TiO2)32.0g、酸
化ジルコニウム(ZrO2)43.1g、酸化亜鉛
(ZnO)3.4g、酸化アルミニウム(Al2O3)0.51
gおよび酸化マンガン(MnO2)1.7gと少量の水
を添加して十分に擂潰混合した後、乾燥した。こ
れを750℃で2時間仮焼した。得られた仮焼粉末
の組成比は実施例1と同じであつたが、粒子の
TEM写真では1〜2μmの粒子径で不均一であつ
た。この仮焼粉末にポリビニルアルコールを0.2
%添加して成型した後、1100℃で2時間焼成した
ところ、焼結体の密度は7.46g/cm3であつた。実
施例1と同様な方法で分極処理をしたが、分極で
きなかつた。 比較例 2 比較例1において得られた仮焼粉末を同様な処
理により、成型後、1300℃で2時間焼成した。 焼結体の密度は7.71g/cm3であつた。分極処理後
の圧電特性を測定したところ、電気機械結合係数
Kpが31%であつた。機械的品質係数Qmは2380
であつた。 (発明の効果) 一般式x[Pb(Zn1/3Nb2/3)O3]−y(PbTiO3)−
z(PbZrO3)−a(MnO2)−b(Al2O3)(ただし、
x、yおよびzはモル%を示し、x+y+z=
100であり、aおよびbはx+y+z=100に対す
るモル比であり、a=0.05〜5、b=0〜5であ
る。)で表される圧電性の複合ペロブスカイトの
原料粉末の製造するに際し、公知の共沈法におけ
る全成分を同時に共沈させる方法とは異なり、
Pb、Nb、Ti、AlおよびZr成分の沈澱を逐次段
階的に生成させ、次いで前記沈澱物含有液中の沈
澱形成剤から生成したイオンの濃度およびPHを規
制した後、MnおよびZn成分を沈澱させるため、
共沈法では100%沈澱させることが困難であつた
成分を完全に沈澱させることができ、また二相以
上の相が高度に相互分散した状態の沈澱物が得ら
れる結果、沈澱生成時に凝集、もしくは乾燥、仮
焼時に凝結を起こしにくく、高嵩密度の易焼結性
の圧電粉末を再現性よく製造することができる。
また広く行われている乾式法による粉末と比べる
と焼結温度が150〜250℃も低下し、工業的には非
常に有利なものである。さらに圧電特性も良好で
ある。 また本プロセスでは各相が高度に相互分散して
おり、従つてこのものを仮焼したものは十分な均
一性が達成される。さらにプロセスが簡単である
ことに由来して、再現性良く低コストで易焼結性
の粉末が得られる等の優れた効果を有する。
[Table] Comparative example 1 25 [Pb (Zn 1/3 Nb 2/3 ) O 3 ] −40 (PbTiO 3 ) −35
(PbZrO3 ) -2( MnO2 )-0.5( Al2O3 ) Niobium pentoxide ( Nb2O5 ) 22.2g , lead oxide (PbO) 223.2g, titanium oxide ( TiO2 ) 32.0g, zirconium oxide ( ZrO 2 ) 43.1g, zinc oxide (ZnO) 3.4g, aluminum oxide (Al 2 O 3 ) 0.51
g, 1.7 g of manganese oxide (MnO 2 ) and a small amount of water were added, thoroughly crushed and mixed, and then dried. This was calcined at 750°C for 2 hours. The composition ratio of the obtained calcined powder was the same as in Example 1, but the particle
A TEM photograph showed that the particle size was 1 to 2 μm and nonuniform. Add 0.2% polyvinyl alcohol to this calcined powder.
% was added and molded, and then fired at 1100° C. for 2 hours, and the density of the sintered body was 7.46 g/cm 3 . Although polarization treatment was performed in the same manner as in Example 1, polarization could not be achieved. Comparative Example 2 The calcined powder obtained in Comparative Example 1 was molded by the same treatment and then calcined at 1300° C. for 2 hours. The density of the sintered body was 7.71 g/cm 3 . When we measured the piezoelectric properties after polarization treatment, we found that the electromechanical coupling coefficient was
Kp was 31%. Mechanical quality factor Qm is 2380
It was hot. (Effect of the invention) General formula x[Pb(Zn 1/3 Nb 2/3 )O 3 ]−y(PbTiO 3 )−
z( PbZrO3 ) -a ( MnO2 )-b( Al2O3 ) (however,
x, y and z indicate mol%, x+y+z=
100, a and b are molar ratios to x+y+z=100, a=0.05-5, b=0-5. ) When producing the raw material powder of piezoelectric composite perovskite represented by
Precipitates of Pb, Nb, Ti, Al and Zr components are generated in a sequential stepwise manner, and then, after regulating the concentration and pH of ions generated from the precipitant in the precipitate-containing liquid, Mn and Zn components are precipitated. In order to
It is possible to completely precipitate components that were difficult to precipitate 100% using the coprecipitation method, and as a result of obtaining a precipitate in which two or more phases are highly interdispersed, coagulation and coagulation occur during precipitate formation. Alternatively, it is possible to produce piezoelectric powder with high bulk density and easy sintering properties with good reproducibility and which does not easily cause aggregation during drying and calcining.
Furthermore, compared to powder produced by the widely used dry method, the sintering temperature is lowered by 150 to 250°C, making it very advantageous from an industrial perspective. Furthermore, the piezoelectric properties are also good. In addition, in this process, each phase is highly mutually dispersed, so that the calcined material achieves sufficient uniformity. Further, since the process is simple, it has excellent effects such as being able to obtain easily sinterable powder with good reproducibility and at low cost.

Claims (1)

【特許請求の範囲】[Claims] 1 一般式x[Pb(Zn1/3Nb2/3)O3]−y(PbTiO3
−z(PbZrO3)−a(MnO2)−b(Al2O3)(ただ
し、x、yおよびzはモル%を示し、x+y+z
=100であり、aおよびbはx+y+z=100に対
するモル比であり、a=0.05〜5、b=0〜5で
ある。)で表される圧電性の複合ペロブスカイト
型構造化合物およびその固溶体の原料粉末の製造
に際し、Pb、Nb、Ti、AlおよびZrの各成分溶
液を沈澱形成液と接触させて各成分の沈澱を段階
的に生成させた後、沈澱含有液中の沈澱形成剤か
ら生成したイオンの濃度が0.2モル/以下とな
るように調整し、次いで、沈澱形成液で沈澱含有
液のPHを11.5以下とした後、MnおよびZnの各成
分溶液を添加し、それらの成分の沈澱を生成さ
せ、得られた沈澱物を仮焼することを特徴とする
易焼結性の圧電性ペロブスカイト粉末の製造方
法。
1 General formula x[Pb(Zn 1/3 Nb 2/3 )O 3 ]-y(PbTiO 3 )
-z( PbZrO3 )-a( MnO2 )-b( Al2O3 ) (where x, y and z indicate mol%, x+y+z
=100, a and b are molar ratios to x+y+z=100, a=0.05-5, b=0-5. ) When producing the raw material powder of the piezoelectric composite perovskite structure compound and its solid solution, solutions of each component of Pb, Nb, Ti, Al, and Zr are brought into contact with a precipitation forming solution to precipitate each component in stages. After the precipitate-containing liquid is produced, the concentration of ions generated from the precipitate-forming agent in the precipitate-containing liquid is adjusted to 0.2 mol/or less, and then the PH of the precipitate-containing liquid is adjusted to 11.5 or less with the precipitate-containing liquid. A method for producing an easily sinterable piezoelectric perovskite powder, which comprises adding solutions of each of Mn and Zn, forming a precipitate of these components, and calcining the obtained precipitate.
JP62018534A 1987-01-30 1987-01-30 Production of easily sinterable piezoelectric perovskite powder Granted JPS63190720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62018534A JPS63190720A (en) 1987-01-30 1987-01-30 Production of easily sinterable piezoelectric perovskite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62018534A JPS63190720A (en) 1987-01-30 1987-01-30 Production of easily sinterable piezoelectric perovskite powder

Publications (2)

Publication Number Publication Date
JPS63190720A JPS63190720A (en) 1988-08-08
JPH0457617B2 true JPH0457617B2 (en) 1992-09-14

Family

ID=11974292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62018534A Granted JPS63190720A (en) 1987-01-30 1987-01-30 Production of easily sinterable piezoelectric perovskite powder

Country Status (1)

Country Link
JP (1) JPS63190720A (en)

Also Published As

Publication number Publication date
JPS63190720A (en) 1988-08-08

Similar Documents

Publication Publication Date Title
JP2598786B2 (en) Method for producing perovskite-based functional ceramic
JPH0559048B2 (en)
JPH0457617B2 (en)
JPH0210089B2 (en)
JPH0456778B2 (en)
JPS62187116A (en) Production of pzt type piezoelectric ceramic powder sinterable at low temperature
JPS6363511B2 (en)
JPH0159205B2 (en)
JPS61174116A (en) Production of perovskite type oxide
JPH0193419A (en) Production of piezoelectric ceramics raw material powder
JPS62241825A (en) Production of porcelain of lead titanate zirconate-lead niobate manganate type
JPH0457614B2 (en)
JPH0456777B2 (en)
JPS62202821A (en) Production of powdery raw material of easily sintering composite perovskite by multi-stage wet process
JPH0481528B2 (en)
JPS63265811A (en) Manufacture of feedstock powder of easily sinterable perovskite composite oxide
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPH05238735A (en) Production for perovskite type oxide powder
JPS6325223A (en) Production of ceramic raw material powder
JPS62235219A (en) Production of raw material powder of low-temperature sintered composite perovskite by multistep wet process
JPS63225523A (en) Production of powdery raw material for perovskite
JPH032818B2 (en)
JPS6265907A (en) Production of easy-to-sinter perovskite powder
JPS62226812A (en) Production of easy-to-sinter perovskite powder
JPH01122907A (en) Production of perovskite oxide powder