JPH0475850B2 - - Google Patents

Info

Publication number
JPH0475850B2
JPH0475850B2 JP61000305A JP30586A JPH0475850B2 JP H0475850 B2 JPH0475850 B2 JP H0475850B2 JP 61000305 A JP61000305 A JP 61000305A JP 30586 A JP30586 A JP 30586A JP H0475850 B2 JPH0475850 B2 JP H0475850B2
Authority
JP
Japan
Prior art keywords
precipitate
plzt
solution
raw material
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61000305A
Other languages
Japanese (ja)
Other versions
JPS62158117A (en
Inventor
Kyoji Oodan
Masaru Kurahashi
Noriaki Arimura
Shinichi Shirasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP61000305A priority Critical patent/JPS62158117A/en
Publication of JPS62158117A publication Critical patent/JPS62158117A/en
Publication of JPH0475850B2 publication Critical patent/JPH0475850B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、PLZTの仮焼粉末、詳しくは鉛、ラ
ンタン、ジルコニウム、チタンおよび酸素からな
るペロブスカイト型構造化合物(以下PLZTとい
う)およびその固溶体の原料である仮焼粉末を製
造する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to calcined powder of PLZT, specifically, a perovskite-type structure compound (hereinafter referred to as PLZT) consisting of lead, lanthanum, zirconium, titanium, and oxygen, and a solid solution thereof. This invention relates to a method for producing calcined powder as a raw material.

PLZTは、オプトエレクトロニクス材料、電歪
材料、圧電材料、センサー等の機能性セラミツク
スとして広範囲に利用されている。
PLZT is widely used as functional ceramics such as optoelectronic materials, electrostrictive materials, piezoelectric materials, and sensors.

最近は、このPLZTの機能を高度化する方向に
進展し、その要請に対応できる易焼結性、均一
性、低コストのPLZTの原料仮焼粉末が多量に効
率的に製造できる技術の開発が要望されている。
Recently, progress has been made in the direction of improving the functionality of PLZT, and technology has been developed to efficiently produce large amounts of calcined PLZT raw material powder that is easy to sinter, uniform, and low cost to meet these demands. It is requested.

〔従来技術およびその問題点〕[Prior art and its problems]

従来、PLZTの原料仮焼粉末の製造方法として
は、乾式法、共沈法、アルコキシド法、蓚酸法等
が知られている。
Conventionally, dry methods, coprecipitation methods, alkoxide methods, oxalic acid methods, and the like are known as methods for producing PLZT raw material calcined powder.

乾式法はPb、La、ZrおよびTiの構成原料成分
の化合物を乾式で混合し、これを仮焼する方法で
ある。しかし、この方法では、均一組成の原料仮
焼粉末が得難いため、優れた機能性を有する
PLZTを得難いし、また焼結性も十分ではない。
The dry method is a method in which compounds of the constituent raw materials Pb, La, Zr, and Ti are mixed in a dry method and the mixture is calcined. However, with this method, it is difficult to obtain a raw material calcined powder with a uniform composition, so
It is difficult to obtain PLZT, and the sinterability is not sufficient.

共沈法はその構成成分のすべてを一緒にした混
合溶液を作り、これにアルカリ等の沈殿形成液を
添加して共沈させ、この共沈物を乾燥、仮焼させ
る方法である。
The coprecipitation method is a method in which a mixed solution is prepared by combining all of the constituent components, a precipitate-forming liquid such as an alkali is added to the mixed solution to cause coprecipitation, and this coprecipitate is dried and calcined.

この共沈法によると、沈殿生成時、乾燥時に粒
子が凝結して二次粒子を形成し、仮焼粉末の粒子
が大きく、しかも不均一になつて易焼結性になり
にくい欠点があつた。また原料として安価な四塩
化チタンおよびオキシ塩化ジルコニウムを使用す
ることは、不溶性の塩化鉛を形成するため難し
い。
This coprecipitation method has the drawback that particles coagulate during precipitation and drying to form secondary particles, making the particles of the calcined powder large and non-uniform, making it difficult to sinter. . Furthermore, it is difficult to use inexpensive titanium tetrachloride and zirconium oxychloride as raw materials because they form insoluble lead chloride.

一方、アルコキシド法および蓚酸法において
も、原料および沈殿形成液が高価であり、安価に
PLZT仮焼粉末を製造することは難しい。また各
成分を共沈すると均一粒子は得られるが、粗大粒
子が形成されるなどの欠点があつた。
On the other hand, in the alkoxide method and oxalic acid method, the raw materials and precipitate forming solution are expensive, and
It is difficult to produce PLZT calcined powder. Furthermore, although uniform particles can be obtained by coprecipitating each component, there are drawbacks such as the formation of coarse particles.

〔発明の目的〕[Purpose of the invention]

本発明は従来の共沈法における欠点をなくすこ
とができる方法、さらには湿式法によつて、易焼
結性、均一性、低コストの要件を満足したPLZT
およびその固溶体の原料仮焼粉末を効率よく製造
できる方法を提供するにある。
The present invention uses a method that can eliminate the drawbacks of the conventional coprecipitation method, and furthermore, uses a wet method to produce PLZT that satisfies the requirements of easy sinterability, uniformity, and low cost.
It is an object of the present invention to provide a method for efficiently producing a raw material calcined powder of a solid solution thereof.

〔発明の構成〕[Structure of the invention]

本発明者らは前記目的を達成すべく鋭意研究の
結果、PLZTおよびその固溶体の原料仮焼粉末の
製造に際し、少なくともPb、Zr、Tiの各成分の
沈殿を遂次段階的に生成させた前記四成分含有の
沈殿物を仮焼して得られる原料仮焼粉末は、粒度
分布が狭く、粒度が揃つた微粒子からなつてお
り、しかも組成が均一であり、極めて工業的に有
利に易焼結性プロブスカイトの原料仮焼粉末を製
造できること等を知見し、本発明に到達した。
As a result of intensive research to achieve the above object, the present inventors have found that during the production of raw material calcined powder of PLZT and its solid solution, precipitation of at least Pb, Zr, and Ti components is sequentially and stepwise formed. The raw material calcined powder obtained by calcining a precipitate containing four components has a narrow particle size distribution, is composed of fine particles with uniform particle sizes, and has a uniform composition, making it easy to sinter and is extremely industrially advantageous. The inventors have discovered that it is possible to produce a raw material calcined powder of polyprovskite, and have arrived at the present invention.

本発明は、Pb、La、ZrおよびTiの各成分溶液
を沈殿形成液と接触させて沈殿を生成させ、生成
した前記四成分含有の沈殿物を仮焼して鉛、ラン
タン、ジルコニウム、チタンおよび酸素からなる
ペロブスカイト型構造化合物(以下PLZTとい
う)およびその固溶体の原料であるPLZTの仮焼
粉末を製造する方法において、少なくともPb、
Zr、Tiの各成分の沈殿を遂次段階的に生成させ
た前記四成分含有の沈殿物を仮焼することを特徴
とするPLZTの仮焼粉末の製造方法に関するもの
である。
In the present invention, a solution of each component of Pb, La, Zr, and Ti is brought into contact with a precipitate forming liquid to form a precipitate, and the precipitate containing the four components thus produced is calcined to produce lead, lanthanum, zirconium, titanium, and In a method for producing a calcined powder of PLZT, which is a raw material for a perovskite structure compound (hereinafter referred to as PLZT) consisting of oxygen and its solid solution, at least Pb,
The present invention relates to a method for producing a calcined powder of PLZT, which comprises calcining a precipitate containing the four components in which precipitates of each component, Zr and Ti, are successively produced in a stepwise manner.

本発明のPLZTおよびその固溶体は一般式
Pb1-xLax(ZryTi1-y1-x/4O3で表わされxおよびy
は用途に応じ種々の数をとりうるが、オプトエレ
クトロニクス材料、圧電材料などに使用される場
合、通常xは0.01〜0.15、yは0.2〜0.8が好適で
ある。
PLZT and its solid solution of the present invention have the general formula
Pb 1-x La x (Zr y Ti 1-y ) 1-x/4 O 3 x and y
can take various numbers depending on the application, but when used in optoelectronic materials, piezoelectric materials, etc., it is usually preferable that x be 0.01 to 0.15 and y be 0.2 to 0.8.

本発明のPLZTおよびその固溶体の構成成分で
あるPb、La、ZrおよびTi化合物を含有する各溶
液を調製するための成分化合物としては、特に限
定されないが、それらの水酸化物、炭酸塩、オキ
シ塩、硫酸塩、硝酸塩、塩化物等の無機塩、酢酸
塩、しゆう酸塩等の有機酸塩、酸化物などがあ
る。これらは一般に水溶液として使用される。水
に可溶でない場合には酸を添加して可溶にしても
よい。
Component compounds for preparing solutions containing Pb, La, Zr, and Ti compounds, which are the constituent components of PLZT and its solid solution of the present invention, are not particularly limited, but their hydroxides, carbonates, and oxy These include inorganic salts such as salts, sulfates, nitrates, and chlorides, organic acid salts such as acetates and oxalates, and oxides. These are generally used as aqueous solutions. If it is not soluble in water, an acid may be added to make it soluble.

沈殿形成液としては、アンモニア(水)、炭酸
アンモニウム、苛性アルカリ等が挙げられるが、
これらの中でも価格面あるいは得られた沈殿物の
洗浄の容易さなどからアンモニア(水)が好まし
い。
Examples of the precipitation forming liquid include ammonia (water), ammonium carbonate, caustic alkali, etc.
Among these, ammonia (water) is preferred from the viewpoint of cost and ease of washing the obtained precipitate.

Pb、La、ZrおよびTi化合物を含有する各溶液
は多段に沈殿形成液と接触させて沈殿を生成させ
るが、沈殿形成の順序は少なくともPb、Zr、Ti
の各成分の沈殿を遂次段階的に生成させることが
できれば特に限定する必要はない。La化合物は
他の成分化合物の1種と混合して沈殿形成させて
もよい。本発明においては、少なくともPb、Zr、
Tiの各成分を遂次段階的に沈殿を生成させる必
要があるが、遂次段階的に沈殿を生成させる具体
的な順序としては、例えばPb→La→Zr→Tiの
順、Pb→La→Ti→Zrの順、Zr→Ti→Pb→Laの
順、Zr→Pb+La→Tiの順、Ti→La→Pb→Zrの
順、Ti→Zr→La→Pbの順、Zr→Ti→Pb+Laの
順、Pb+La→Zr→Tiの順、Pb+La→Ti→Zrの
順などを好適に挙げることができる。
Each solution containing Pb, La, Zr, and Ti compounds is brought into contact with a precipitate forming solution in multiple stages to form a precipitate, but the order of precipitate formation is at least Pb, Zr, and Ti.
There is no need to specifically limit the method as long as the precipitates of each component can be formed in a stepwise manner. The La compound may be mixed with one of the other component compounds to form a precipitate. In the present invention, at least Pb, Zr,
It is necessary to sequentially generate precipitates of each component of Ti, but the specific order of sequentially forming precipitates is, for example, Pb→La→Zr→Ti, Pb→La→ Ti→Zr order, Zr→Ti→Pb→La order, Zr→Pb+La→Ti order, Ti→La→Pb→Zr order, Ti→Zr→La→Pb order, Zr→Ti→Pb+La order Preferred examples include the order of Pb+La→Zr→Ti, and the order of Pb+La→Ti→Zr.

また本発明では、安価で、入手容易なZr、Ti
の塩化物、オキシ塩化物を原料成分として使用し
た場合にも、従来問題となつていた塩化鉛の沈殿
が生起しないので好適なPLZTの原料仮焼粉末を
得ることができる。この場合、得られた沈殿物中
の塩素イオンの除去は十分に行なうことが好まし
い。
In addition, in the present invention, Zr and Ti are inexpensive and easily available.
Even when using chloride or oxychloride as a raw material component, a suitable raw material calcined powder for PLZT can be obtained since precipitation of lead chloride, which has been a problem in the past, does not occur. In this case, it is preferable to sufficiently remove chlorine ions from the obtained precipitate.

本発明により生成した沈殿物は極微小部分では
不均一であるが沈殿を形成した二次粒子において
は、均一性を保つている。このため共沈法の場合
にみられるような大きな凝集体は存在せず、仮焼
時において0.05〜0.5μmの径子径を有する均一な
粒子が生成する。
Although the precipitate produced according to the present invention is non-uniform in extremely small portions, the secondary particles forming the precipitate maintain uniformity. Therefore, there are no large aggregates as seen in the coprecipitation method, and uniform particles having a diameter of 0.05 to 0.5 μm are produced during calcination.

構成成分の沈殿を生成させるにあたつては、一
般には沈殿形成液に、各構成成分の水溶液を遂次
添加する方法が採用されるが、この方法だけに限
定されるものではない。添加に際しては液は十分
に撹拌しながら行なうことが好ましい。
In order to form a precipitate of the constituent components, a method is generally employed in which an aqueous solution of each constituent component is successively added to a precipitate forming solution, but the method is not limited to this method. It is preferable that the addition be carried out with sufficient stirring of the liquid.

また沈殿の生成に際し、例えば一つの成分の沈
殿を生成した後、以後の工程を妨害する陰イオン
を除去するために水洗した後、沈殿物を新しい水
中に分散して次の工程に進めることもできる。
In addition, when producing a precipitate, for example, after producing a precipitate of one component, it may be washed with water to remove anions that would interfere with subsequent steps, and then the precipitate may be dispersed in fresh water to proceed to the next step. can.

更にまた構成成分の沈殿を生成させるにあた
り、沈殿形成液の種類を適宜選択調節することに
より得られる粒子形状をコントロールすることが
できる。
Furthermore, when forming a precipitate of the constituent components, the shape of the resulting particles can be controlled by appropriately selecting and adjusting the type of precipitate forming liquid.

前記方法により得られた沈殿物は通常の方法に
より洗浄、ろ別、乾燥した後、仮焼する。乾燥
は、大気圧下で行なつても減圧下で行なつてもよ
い。
The precipitate obtained by the above method is washed, filtered, dried, and then calcined by a conventional method. Drying may be carried out under atmospheric pressure or under reduced pressure.

仮焼温度としては、過度に低いと沈殿物の脱
水、熱分解が不十分であり、また過度に高いと粉
末が粗大化するので、通常、仮焼温度は500〜
1200℃の範囲が好適である。
If the calcination temperature is too low, the dehydration and thermal decomposition of the precipitate will be insufficient, and if it is too high, the powder will become coarse.
A range of 1200°C is preferred.

〔実施例〕〔Example〕

以下に実施例および比較例を示し、さらに詳し
く本発明について説明する。
EXAMPLES The present invention will be explained in more detail by showing Examples and Comparative Examples below.

実施例 1 オキシ塩化ジルコニウム(ZrOCl2・8H2O)
40.92gを700mlの水に溶解し、6Nアンモニア水
1中に滴下して水酸化物を作り、次いで二段目
として四塩化チタン(TiCl4)12.99gを溶解した
水溶液300mlを滴下し、次いで三段目として硝酸
鉛〔Pb(NO32〕60.28gと硝酸ランタン〔La
(NO32・6H2O〕7.79gを含有する水溶液1を
滴下し、鉛、ランタン、ジルコニウム、チタンの
水酸化物の均密沈殿物を得た。この沈殿物を洗
浄、ろ別、乾燥した後、擂潰し、700℃で2時間
仮焼してPb0.91La0.09(Zr0.65Ti0.350.9775O3の組成
のPLZTの原料仮焼粉末を得た。この粉末を電子
顕微鏡により観察したところ、平均粒子径約0.1μ
mの均一な粒子からなつており、X線回析法によ
る組成変動の測定を行なつた結果、組成変動はほ
とんど観察されなかつた。
Example 1 Zirconium oxychloride (ZrOCl 2 8H 2 O)
Dissolve 40.92 g in 700 ml of water and drop it into 1 part of 6N ammonia water to make hydroxide. Then, as a second step, 300 ml of an aqueous solution in which 12.99 g of titanium tetrachloride (TiCl 4 ) is dissolved is added dropwise. As a step, 60.28 g of lead nitrate [Pb(NO 3 ) 2 ] and lanthanum nitrate [La
Aqueous solution 1 containing 7.79 g of (NO 3 ) 2 ·6H 2 O was added dropwise to obtain a homogeneous precipitate of hydroxides of lead, lanthanum, zirconium, and titanium. This precipitate was washed, filtered, dried, crushed, and calcined at 700°C for 2 hours to obtain a raw material calcined powder of PLZT with a composition of Pb 0.91 La 0.09 (Zr 0.65 Ti 0.35 ) 0.9775 O 3 . When this powder was observed using an electron microscope, the average particle size was approximately 0.1μ.
It consists of uniform particles of m, and as a result of measuring compositional fluctuations by X-ray diffraction, almost no compositional fluctuations were observed.

上記粉末にポリビニルアルコール(以下、
PVAと略記、重合度500)を0.8wt%加え1t/cm2
の圧力下で直径20mmφ、厚さ2mmに成型し、酸素
ガスと鉛蒸気の混合雰囲気下、常圧1100℃で24時
間焼結した。得られた焼結体の透過率を分光光度
計で測定した結果、波長630nmで72%(厚さ1.0
mm)であつた。
The above powder is mixed with polyvinyl alcohol (hereinafter referred to as
Add 0.8wt% of PVA (abbreviated as PVA, degree of polymerization 500) to 1t/cm 2
It was molded to a diameter of 20 mmφ and a thickness of 2 mm under the pressure of The transmittance of the obtained sintered body was measured using a spectrophotometer and was found to be 72% at a wavelength of 630 nm (thickness of 1.0 nm).
mm).

実施例 2 一段目に硝酸鉛、硝酸ランタン溶液を滴下、二
段目にオキシ塩化ジルコニウム溶液を滴下、三段
目に四塩化チタン溶液を滴下した以外は実施例1
と同様に行なつた。得られた焼結体の透過率は波
長630nmで70%(厚さ0.9mm)であつた。
Example 2 Example 1 except that the lead nitrate and lanthanum nitrate solutions were dropped in the first stage, the zirconium oxychloride solution was dropped in the second stage, and the titanium tetrachloride solution was dropped in the third stage.
I did the same thing. The transmittance of the obtained sintered body was 70% at a wavelength of 630 nm (thickness: 0.9 mm).

実施例 3 二段目に四塩化チタン溶液を滴下、三段目にオ
キシ硝酸ジルコニウム溶液を滴下した以外は実施
例2と同様に行なつた。得られた焼結体の透過率
は波長630nmで71%(厚さ1.1mm)であつた。
Example 3 The same procedure as in Example 2 was carried out except that a titanium tetrachloride solution was dropped in the second stage, and a zirconium oxynitrate solution was dropped in the third stage. The transmittance of the obtained sintered body was 71% (thickness: 1.1 mm) at a wavelength of 630 nm.

比較例 1 一段目として硝酸鉛と硝酸ランタン含有溶液を
滴下、二段目としてオキシ塩化ジルコニウムと四
塩化チタン含有溶液を滴下した以外は実施例1と
同様に行なつた。得られた焼結体の透過率は波長
630nmで35%(厚さ0.8mm)であつた。
Comparative Example 1 The same procedure as in Example 1 was carried out, except that a solution containing lead nitrate and lanthanum nitrate was dropped in the first stage, and a solution containing zirconium oxychloride and titanium tetrachloride was dropped in the second stage. The transmittance of the obtained sintered body is
It was 35% (thickness 0.8 mm) at 630 nm.

比較例 2 一段目としてオキシ塩化ジルコニウムと四塩化
チタンの含有溶液を滴下、二段目として硝酸鉛と
硝酸ランタンの含有溶液を滴下した以外は実施例
1と同様に行なつた。得られた焼結体の透過率は
波長630nmで45%(厚さ1.0mm)であつた。
Comparative Example 2 The same procedure as in Example 1 was carried out, except that in the first stage, a solution containing zirconium oxychloride and titanium tetrachloride was dropped, and in the second stage, a solution containing lead nitrate and lanthanum nitrate was dropped. The transmittance of the obtained sintered body was 45% at a wavelength of 630 nm (thickness: 1.0 mm).

〔発明の効果〕〔Effect of the invention〕

PLZTペロブスカイトおよびその固溶体の原料
仮焼粉末の製造に際し、従来の共沈法における全
成分を同時に共沈させる方法とは異なり、Pb、
Zr及びTiの各成分の沈殿を遂次段階的に生成さ
せる方法によると、微粒子で均一粒子が高度に相
互分散した状態の沈殿物が得られる結果、仮焼時
に微細でしかも凝結を起しにくく、易焼結性の粉
末を再現性良く製造することができる。
When producing raw material calcined powder of PLZT perovskite and its solid solution, Pb, Pb,
According to the method of producing precipitates of each component of Zr and Ti in a stepwise manner, a precipitate is obtained in which fine and uniform particles are highly interdispersed, and as a result, the precipitate is fine and difficult to cause agglomeration during calcination. , easily sinterable powder can be produced with good reproducibility.

また本プロセスでは各相が高度に相互分散して
おり、従つてこのものを仮焼したものは十分な均
一性が達成される。さらにプロセスが簡単である
ことに由来して、再現性良く低コストで易焼結性
の粉末が得られる等の優れた効果を有する。
In addition, in this process, each phase is highly mutually dispersed, so that the calcined material achieves sufficient uniformity. Further, since the process is simple, it has excellent effects such as being able to obtain easily sinterable powder with good reproducibility and at low cost.

本発明の原料粉末を焼結すると高い透光性の
PLZTペロブスカイトが得られるためオプトエレ
クトロニクス材料等に特に優れている。
When the raw material powder of the present invention is sintered, it has high translucency.
Since PLZT perovskite can be obtained, it is particularly suitable for optoelectronic materials.

Claims (1)

【特許請求の範囲】[Claims] 1 Pb、La、ZrおよびTiの各成分溶液を沈殿形
成液と接触させて沈殿を生成させ、生成した前記
四成分含有の沈殿物を仮焼して鉛、ランタン、ジ
ルコニウム、チタンおよび酸素からなるペロブス
カイト型構造化合物(以下PLZTという)および
その固溶体の原料であるPLZTの仮焼粉末を製造
する方法において、少なくともPb、Zr、Tiの各
成分の沈殿を遂次段階的に生成させた前記四成分
含有の沈殿物を仮焼することを特徴とするPLZT
の仮焼粉末の製造方法。
1 A solution of each component of Pb, La, Zr, and Ti is brought into contact with a precipitate forming solution to form a precipitate, and the precipitate containing the four components thus formed is calcined to form a precipitate consisting of lead, lanthanum, zirconium, titanium, and oxygen. In a method for producing a calcined powder of PLZT, which is a raw material for a perovskite structure compound (hereinafter referred to as PLZT) and its solid solution, precipitation of at least each of Pb, Zr, and Ti is sequentially and stepwise formed. PLZT characterized by calcining the containing precipitate
A method for producing calcined powder.
JP61000305A 1986-01-07 1986-01-07 Production of calcinated powder of plzt Granted JPS62158117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000305A JPS62158117A (en) 1986-01-07 1986-01-07 Production of calcinated powder of plzt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000305A JPS62158117A (en) 1986-01-07 1986-01-07 Production of calcinated powder of plzt

Publications (2)

Publication Number Publication Date
JPS62158117A JPS62158117A (en) 1987-07-14
JPH0475850B2 true JPH0475850B2 (en) 1992-12-02

Family

ID=11470187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000305A Granted JPS62158117A (en) 1986-01-07 1986-01-07 Production of calcinated powder of plzt

Country Status (1)

Country Link
JP (1) JPS62158117A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336035B2 (en) * 1992-04-27 2002-10-21 臼井国際産業株式会社 Metal honeycomb carrier
JP3858625B2 (en) 2000-07-27 2006-12-20 株式会社豊田中央研究所 Composite oxide and its production method, exhaust gas purification catalyst and its production method

Also Published As

Publication number Publication date
JPS62158117A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
JPS6214490B2 (en)
JPH0475850B2 (en)
JPH0159967B2 (en)
JPS6363511B2 (en)
JP2767584B2 (en) Method for producing fine perovskite ceramic powder
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
JPH0249251B2 (en)
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JP2607519B2 (en) Manufacturing method of optical ceramics
JPS63218514A (en) Production of perovskite ceramic powder containing zirconium
JPH0524089B2 (en)
JPH0159205B2 (en)
JPH0193419A (en) Production of piezoelectric ceramics raw material powder
JP2694851B2 (en) PLZT ceramic raw material powder manufacturing method
JPS6363512B2 (en)
JPS61251517A (en) Production of perovskite type oxide
JPH0367966B2 (en)
JPH0784345B2 (en) Manufacturing method of perovskite ceramics
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPS6140819A (en) Manufacture of lead titanate and zirconate
JPH0367965B2 (en)
JPH0481528B2 (en)
JPH0624978B2 (en) Method for producing raw material powder of ceramics having electro-optical characteristics
JPH0456777B2 (en)
JPH01224210A (en) Production of perovskite oxide powder