JPS6325265A - Manufacture of high density bznt base ferroelectric ceramic - Google Patents

Manufacture of high density bznt base ferroelectric ceramic

Info

Publication number
JPS6325265A
JPS6325265A JP61168793A JP16879386A JPS6325265A JP S6325265 A JPS6325265 A JP S6325265A JP 61168793 A JP61168793 A JP 61168793A JP 16879386 A JP16879386 A JP 16879386A JP S6325265 A JPS6325265 A JP S6325265A
Authority
JP
Japan
Prior art keywords
precipitate
aqueous solution
bznt
tantalum
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61168793A
Other languages
Japanese (ja)
Other versions
JPH0643266B2 (en
Inventor
信一 白崎
英男 黒田
孝幸 古澤
多木 宏光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
National Institute for Research in Inorganic Material
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
National Institute for Research in Inorganic Material
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, National Institute for Research in Inorganic Material, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP61168793A priority Critical patent/JPH0643266B2/en
Publication of JPS6325265A publication Critical patent/JPS6325265A/en
Publication of JPH0643266B2 publication Critical patent/JPH0643266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘電体共振器用の機能性セラミック、マイク
ロ波集積回路などに使用される媒体用セラミック等多く
の用途に利用し得る高密度BZNT系強銹電体セラミッ
クの製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides high-density BZNT that can be used in many applications such as functional ceramics for dielectric resonators and ceramics for media used in microwave integrated circuits. The present invention relates to a method for manufacturing a highly galvanic ceramic.

〔従来の技術〕[Conventional technology]

従来、BZNT系強誘電体セラミックの原料粉末は、乾
式法または湿式共沈法で製造されていた。乾式法は構成
成分の化合物粉末を混合し、これを仮焼する方法である
。しかし、この方法では均一な組成の原料粉末が得難く
、またBZNTの生成反応を完遂させるために仮焼温度
を高くすることが必要であるので、これにより粒子が粗
大化して易焼結性になりにくい欠点があった。
Conventionally, raw material powder for BZNT-based ferroelectric ceramics has been produced by a dry method or a wet co-precipitation method. The dry method is a method in which the constituent compound powders are mixed and calcined. However, with this method, it is difficult to obtain raw material powder with a uniform composition, and it is necessary to increase the calcination temperature to complete the BZNT production reaction, which causes the particles to become coarser and make them easier to sinter. It had some drawbacks.

湿式共沈法はBZNTの構成成分のすべての混合液を作
り、これにアルカリ等の沈殿形成液を添加して共沈させ
、乾燥、仮焼する方法である。しかし、この方法は均一
性の優れた粉末が得やすいが、その均一性なるが故に沈
殿形成時、乾燥時、また仮焼時に凝結して二次粒子を形
成し、易焼結性となりにくい欠点がある。
The wet coprecipitation method is a method in which a mixed solution of all the constituent components of BZNT is prepared, a precipitate forming liquid such as an alkali is added thereto to cause coprecipitation, followed by drying and calcining. However, although this method makes it easy to obtain powder with excellent uniformity, the drawback is that because of its uniformity, it tends to coagulate during precipitation, drying, and calcination to form secondary particles, making it difficult to sinter. There is.

更にまた、BZNTはバリウムとニオブ及びタンタルを
含有しているので、これを共沈させる場合、ニオブ及び
タンタル原料として工業的に利用可能なフッ化ニオブ、
フッ化タンタルの水溶液を使用すると、フッ化ニオブ、
フッ化タンタルのフッ素イオンがバリウムと反応してフ
ッ化バリウムの白色沈殿を生成するため、フッ化ニオブ
、フッ化タンタルを使用し得ない、このため、特性の優
れた湿式共沈法によるBZNT系強誘電体セラミックが
製造できないという問題があった。
Furthermore, since BZNT contains barium, niobium, and tantalum, when co-precipitating it, niobium fluoride, which is industrially available as a raw material for niobium and tantalum, is used.
When using an aqueous solution of tantalum fluoride, niobium fluoride,
Because the fluorine ions of tantalum fluoride react with barium to produce white precipitates of barium fluoride, niobium fluoride and tantalum fluoride cannot be used. There was a problem that ferroelectric ceramics could not be manufactured.

〔発明の解決すべき問題点〕[Problems to be solved by the invention]

本発明は、従来の問題点を解決し、タンタル原料として
工業的に利用可能なフッ化タンタルを使用し得、高密度
でしかも特性の優れたBZNT系強誘電体セラミックを
製造し得る方法を提供することにある。
The present invention solves the conventional problems and provides a method for manufacturing a BZNT-based ferroelectric ceramic with high density and excellent properties by using industrially available tantalum fluoride as a tantalum raw material. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本願の第1の発明の高密度BZNT系強誘電体セ
ラミックの製造方法は、式3B ao・xZno@ (
1−y)Nb205 * yTa205(但し、0.6
≦X≦2.0、  o<y<tの範囲である。)におけ
るBa/(Zn+Nb+Ta)のモル比が1.0近傍の
組成のBZNT系強FJ、電体を製造するに際し、バリ
ウム、亜鉛、ニオブ、タンタルの各水溶液を調製し、こ
れら4種の水溶液とするかあるいは亜鉛水溶液をバリウ
ム水溶液、ニオブ水溶液、タンタル水溶液またはニオブ
とタンタルの混合水溶液のいずれかに混合して2aまた
は3種の水溶液とし、この内の1種の水溶液に過剰の沈
殿形成液を均一に混合して沈殿を形成させた後、この沈
殿の分散した水溶液と残りの他の水溶液とを順次均一に
混合して全成分の均密沈殿を形成し、該沈殿物を500
〜1200℃に仮焼した後、成形物を空気中又は酸素雰
囲気中、1000〜1600℃で焼結、または不活性雰
囲気で熱間静水圧加圧により高密度化し更に大気中で焼
結せしめることを特徴とするものである。
That is, the method for manufacturing a high-density BZNT-based ferroelectric ceramic according to the first invention of the present application is based on the formula 3B ao x Zno@ (
1-y) Nb205 * yTa205 (however, 0.6
The range is ≦X≦2.0 and o<y<t. ) When manufacturing a BZNT-based strong FJ and electric body with a composition in which the molar ratio of Ba/(Zn+Nb+Ta) is around 1.0, aqueous solutions of barium, zinc, niobium, and tantalum are prepared, and these four aqueous solutions and Alternatively, the zinc aqueous solution is mixed with either a barium aqueous solution, a niobium aqueous solution, a tantalum aqueous solution, or a mixed aqueous solution of niobium and tantalum to form a 2a or 3 aqueous solution, and an excess of the precipitate forming liquid is added to one of these aqueous solutions. After uniformly mixing to form a precipitate, the aqueous solution in which this precipitate was dispersed and the remaining aqueous solution were sequentially uniformly mixed to form a homogeneous precipitate of all components, and the precipitate was
After calcining at ~1200°C, the molded product is sintered at 1000~1600°C in air or an oxygen atmosphere, or densified by hot isostatic pressing in an inert atmosphere, and further sintered in air. It is characterized by:

また1本願の第2の発明の高密度BZNT系強誘電体セ
ラミックの製造方法は、前記組成のBZNT系強誘電体
セラミックを製造するに際し、バリウム、ニオブまたは
タンタルを含む化合物粉末の分散液を調製し、この分散
液に残りの他の水溶液とを順次均一に混合して全成分の
均密沈殿を形成し、該沈殿物を500−1200℃に仮
焼した後、成形物を空気中又は酸素雰囲気中、1000
〜1600℃で焼結、または不活性雰囲気で熱間静水圧
加圧により高密度化し更に大気中で焼結せしめることを
特徴とする特徴とするものである。
In addition, the method for manufacturing a high-density BZNT-based ferroelectric ceramic according to the second invention of the present application includes preparing a dispersion of a compound powder containing barium, niobium, or tantalum when manufacturing the BZNT-based ferroelectric ceramic having the above composition. Then, this dispersion liquid is uniformly mixed with the remaining other aqueous solutions in order to form a homogeneous precipitate of all components, and after calcining the precipitate at 500-1200°C, the molded product is exposed to air or oxygen. In the atmosphere, 1000
It is characterized in that it is sintered at ~1600°C or densified by hot isostatic pressing in an inert atmosphere, and then sintered in the atmosphere.

本願の第1の発明を具体的に実施するには、例えば第1
図(A)〜(F)に示した沈殿形成の順序で均密沈殿を
作ることができる。ニオブ又は/及びタンタルを先に沈
殿せしめ沈殿分散液にFイオンが残留する場合は、これ
を除去してからバリウムの沈殿を形成せしめる必要があ
る。
In order to specifically implement the first invention of the present application, for example, the first invention
A homogeneous precipitate can be formed in the order of precipitate formation shown in Figures (A) to (F). If niobium and/or tantalum are precipitated first and F ions remain in the precipitation dispersion, it is necessary to remove them before forming barium precipitates.

また、本願の第2の発明を具体的に実施するには1例え
ば、第1図(A)〜(F)に示した沈殿形成において、
例えば最先の沈殿形成をこの成分化合物粉末の分散液の
調製で置き換えて実施することができる。
In addition, in order to specifically implement the second invention of the present application, for example, in the precipitation formation shown in FIGS. 1(A) to (F),
For example, the initial precipitation formation can be replaced by the preparation of a dispersion of the component compound powder.

本発明におけるBZNT系強誘電体セラミックに、その
焼結性や特性を制御するために、微量成分、例えば、C
a、Sr、Ti 、Sn、Mn。
In order to control the sinterability and characteristics of the BZNT-based ferroelectric ceramic in the present invention, trace components such as C
a, Sr, Ti, Sn, Mn.

Al 、Cs、Ge、V、Bi、Fe、Cr。Al , Cs, Ge, V, Bi, Fe, Cr.

Nt、Ir、Rh、Na、In、に、Ga。Nt, Ir, Rh, Na, In, Ga.

TI、W、Th、希土類などの化合物を添加してもよい
、この場合、水溶液中に共存させてもよく、BZNT系
粉末の作製後、乾式または湿式により添加してもよい。
Compounds such as TI, W, Th, and rare earth elements may be added. In this case, they may be made to coexist in the aqueous solution, or may be added in a dry or wet manner after the BZNT-based powder is prepared.

BZNT系の構成成分の水溶液を作る成分化合物として
は、それら成分の水酸化物、オキシ塩化物、炭酸塩、オ
キシ硝酸塩、硫酸塩、硝酸塩、酢酸塩、フッ化物、ギ酸
塩、シュウ酸塩、塩化物、酸化物等が挙げられる。これ
らが水に可溶でない場合は、鉱酸等を添加して可溶とす
ることができる。
The component compounds that make up the aqueous solution of the BZNT system components include their hydroxides, oxychlorides, carbonates, oxynitrates, sulfates, nitrates, acetates, fluorides, formates, oxalates, and chlorides. Examples include substances, oxides, etc. If these are not soluble in water, mineral acids or the like can be added to make them soluble.

沈殿形成剤としては、アンモニア、炭酸アンモニウム、
苛性ソーダ、苛性カリ、炭酸ソーダ。
Precipitation agents include ammonia, ammonium carbonate,
Caustic soda, caustic potash, carbonated soda.

シュウ酸、シュウ酸アンモニウム及びオキシンやアミン
等の有機試薬等の水溶液が挙げられる。アンモニアガス
を用いてもよい。
Examples include aqueous solutions of oxalic acid, ammonium oxalate, and organic reagents such as oxins and amines. Ammonia gas may also be used.

構成成分の沈殿を形成するには、液を攪拌しながら行な
うことが望ましい、また、ある沈殿の生成後、口液を除
き、後で妨害する陰イオンを除去するため洗浄した後、
この沈殿を再分散する沈殿形成液の種類や濃度を残り成
分に適したものに変えて沈殿させてもよい。
In order to form a precipitate of the constituent components, it is desirable to stir the solution, and after the formation of a certain precipitate, the oral fluid is removed and washed to remove interfering anions.
The precipitate may be precipitated by changing the type and concentration of the precipitate forming liquid used to redisperse the precipitate to those suitable for the remaining components.

沈殿物の洗浄に関しては、エタノール等のアルコール類
を用いると、以後の乾燥、仮焼工程で沈殿の凝結が抑制
されて好結果が得られる。
As for washing the precipitate, if alcohol such as ethanol is used, good results can be obtained since coagulation of the precipitate is suppressed in the subsequent drying and calcination steps.

得られた沈殿物を乾燥し、500〜1200℃で仮焼す
る。仮焼温度500℃未満ではBZNTの生成反応や脱
ガスが完結せず、また、得られるBZNT粉末の嵩密度
が低くなる。1200℃を越えるとBZNT粉末粒子が
粗大化して焼結性が悪くなる。
The obtained precipitate is dried and calcined at 500 to 1200°C. If the calcination temperature is less than 500° C., the BZNT production reaction and degassing will not be completed, and the bulk density of the obtained BZNT powder will be low. If the temperature exceeds 1200° C., the BZNT powder particles become coarse and the sinterability deteriorates.

次に、成形・焼結する。焼結は空気中か酸素雰囲気中で
、ホット・プレスか常圧焼結する。焼結温度は1000
℃より低いと焼結が不十分であり、1600℃を越える
とZnOなどの飛散が顕著になるので、1000−16
00℃で行なうのが望ましい、尚、焼結は、不活性雰囲
気で熱間静水圧加圧により高密度化した後、大気中で焼
成することにより行なうこともできる。
Next, it is molded and sintered. Sintering is done in air or oxygen atmosphere, using hot press or pressureless sintering. Sintering temperature is 1000
If it is lower than 1600°C, sintering will be insufficient, and if it exceeds 1600°C, scattering of ZnO etc. will become noticeable.
It is preferable to carry out the sintering at 00° C. However, the sintering can also be carried out by densifying the material by hot isostatic pressing in an inert atmosphere and then firing it in the air.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、BZNTの原料成分のうち、バリウム
とニオブ又は/及びタンタルを共沈させないので、ニオ
ブ、タンタル原料として、工業的に安価なフッ化物水溶
液が使用でき、従って、安価な工業的生産の実用化が成
し得る。また、BZNTの構成成分の全部を共沈させな
いで、多重沈殿を生成させるため、これらの沈殿は相互
分散された状態となり、高嵩密度の易焼結性のものが得
られる。更に、多重沈殿生成を行なうため、各成分に適
した沈殿剤の種類及び濃度を選択でき、目的成分のBZ
NTが容易に得られる。そして、従来の乾式法における
ような組成成分の不均一性のない、高密度で均一なりZ
NTが容易に得られる。
According to the present invention, among the raw material components of BZNT, barium and niobium and/or tantalum are not co-precipitated, so an industrially inexpensive fluoride aqueous solution can be used as the raw material for niobium and tantalum. Practical production can be achieved. Moreover, since multiple precipitates are generated without co-precipitating all of the constituent components of BZNT, these precipitates are in a mutually dispersed state, resulting in a product with high bulk density and easy sinterability. Furthermore, since multiple precipitation is performed, the type and concentration of precipitant suitable for each component can be selected, and the BZ of the target component can be
NT is easily obtained. And, it has a high density and uniformity without the non-uniformity of the composition as in the conventional dry method.
NT is easily obtained.

〔実施例〕〔Example〕

以下に実施例を示して、本発明を更に詳しく説明する。 The present invention will be explained in more detail by showing examples below.

実施例1 Ba (NO3)239.9g、Zn (N03)21
0.6g (Znは以下の沈殿操作により10%が損失
することが分っている。このため理論量の1.1倍量を
用いた。)を含有する水溶液11を調製し、これを攪拌
した重炭酸アンムニラム25gを含有する5Nアンモニ
ア0.11中に滴下して炭酸塩及び水酸化物の共沈物を
作製した。この共沈物の感温した水溶液を攪拌しつつ、
これにTa2 o518 、Og、Nb2O52,7g
をフッ化水素酸に溶解した水溶液11を添加し、更に重
炭酸アンモニウム5gを含有する5Nアンモニア水0.
21を加えて、バリウム、亜鉛、タンタル、ニオブの炭
酸塩、水酸化物の均密沈殿物を得た0口過、水洗、乾燥
後、1100℃た。得られた仮焼粉末を電子顕微鏡で観
察したところ、平均0.2gmの均一微粒子であること
が認められた。該粉末を1 t / c m2の圧力下
で直径30mm、厚み3mmに成形し、空気中で常圧、
1400℃、2時間焼結した。
Example 1 Ba (NO3) 239.9g, Zn (N03) 21
An aqueous solution 11 containing 0.6 g (It is known that 10% of Zn is lost in the following precipitation operation. Therefore, 1.1 times the theoretical amount was used) was stirred. A coprecipitate of carbonate and hydroxide was prepared by dropping 25 g of ammonium bicarbonate into 0.11 of 5N ammonia. While stirring the temperature-sensitive aqueous solution of this coprecipitate,
To this, Ta2O518, Og, Nb2O52, 7g
11 of an aqueous solution of hydrofluoric acid dissolved in hydrofluoric acid, and 0.0.5 N aqueous ammonia containing 5 g of ammonium bicarbonate.
21 was added thereto to obtain a homogeneous precipitate of barium, zinc, tantalum, niobium carbonates, and hydroxide. After filtration, washing with water, and drying, the mixture was heated to 1100°C. When the obtained calcined powder was observed under an electron microscope, it was found to be uniform fine particles with an average size of 0.2 gm. The powder was molded to a diameter of 30 mm and a thickness of 3 mm under a pressure of 1 t/cm2, and then heated in air at normal pressure.
Sintering was performed at 1400°C for 2 hours.

比較例1 市販のBaCO3、ZnO,Nb205゜ボールミルで
混合後、1100℃で2時間仮焼後、再びボールミルで
粉砕した。この粉末を電子顕微鏡で観察したところ、二
次粒子を含んだ平均粒径約1.8Bmの不揃いの粒子か
ら構成されていた。該粉末をl t / c m2の圧
力下で直径30mm、厚み3mmに成形し、空気中で常
圧、1400℃、2時間焼結した。
Comparative Example 1 After mixing commercially available BaCO3, ZnO, and Nb in a 205° ball mill, the mixture was calcined at 1100° C. for 2 hours, and then ground again in a ball mill. When this powder was observed under an electron microscope, it was found to be composed of irregular particles containing secondary particles and having an average particle diameter of about 1.8 Bm. The powder was molded to a diameter of 30 mm and a thickness of 3 mm under a pressure of lt/cm2, and sintered in air at normal pressure at 1400° C. for 2 hours.

上記実施例1、比較例1について、特性を比較した結果
を第1表に示した。この結果、本発明方法により調製し
た粉末を用いた焼結体は、従来法により得られた焼結体
よりQ値が大きく、誘電率も比較的大きいことが明らか
で、従来に比べ大幅に改善され優れたものであることが
分る。
Table 1 shows the results of comparing the characteristics of Example 1 and Comparative Example 1. As a result, it is clear that the sintered body using the powder prepared by the method of the present invention has a larger Q value and a relatively higher dielectric constant than the sintered body obtained by the conventional method, which is a significant improvement compared to the conventional method. It turns out that it is excellent.

第       1      表No. 1 Table

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(F)は、夫々本発明方法を具体的に実
施する場合の沈殿形成の順序を示した説明図である。
FIGS. 1(A) to 1(F) are explanatory views showing the order of precipitation formation when the method of the present invention is specifically carried out.

Claims (1)

【特許請求の範囲】 (1)式3BaO・xZnO・(1−y) Nb_2O_5・yTa_2O_5(但し、0.6≦x
≦2.0、0<y<1 の範囲である。)における Ba/(Zn+Nb+Ta)のモル比が 1.0近傍の組成のBZNT系強誘電体 を製造するに際し、バリウム、亜鉛、ニ オブ、タンタルの各水溶液を調製し、こ れら4種の水溶液とするかあるいは亜鉛 水溶液をバリウム水溶液、ニオブ水溶 液、タンタル水溶液またほニオブとタン タルの混合水溶液のいずれかに混合して 2種または3種の水溶液とし、この内の 1種の水溶液に過剰の沈殿形成液を均一 に混合して沈殿を形成させた後、この沈 殿の分散した水溶液と残りの他の水溶液 とを順次均一に混合して全成分の均密沈 殿を形成し、該沈殿物を500〜 1200℃に仮焼した後、成形物を空気 中又は酸素雰囲気中、1000〜1600 ℃で焼結、または不活性雰囲気で熱間静 水圧加圧により高密度化し更に大気中で 焼結せしめることを特徴とする高密度 BZNT系強誘電体セラミックの製造方 法。 (2)式3BaO・xZnO・(1−y) Nb_2O_5・yTa_2O_5(但し、0.6≦x
≦2.0、0<y<1 の範囲である。)における Ba/(Zn+Nb+Ta)のモル比が 1.0近傍の組成のBZNT系強誘電体 を製造するに際し、バリウム、ニオブ またはタンタルを含む化合物粉末の分散 液を調製し、この分散液に残りの他の水 溶液とを順次均一に混合して全成分の均 密沈殿を形成し、該沈殿物を500〜 1200℃に仮焼した後、成形物を空気 中又は酸素雰囲気中、1000〜1600 ℃で焼結、または不活性雰囲気で熱間静 水圧加圧により高密度化し更に大気中で 焼結せしめることを特徴とする高密度 BZNT系強誘電体セラミックの製造方 法。
[Claims] (1) Formula 3BaO・xZnO・(1-y) Nb_2O_5・yTa_2O_5 (however, 0.6≦x
The range is ≦2.0, 0<y<1. ) When producing a BZNT-based ferroelectric material with a composition in which the molar ratio of Ba/(Zn+Nb+Ta) is around 1.0, aqueous solutions of barium, zinc, niobium, and tantalum are prepared, and these four types of aqueous solutions are prepared. Alternatively, a zinc aqueous solution is mixed with either a barium aqueous solution, a niobium aqueous solution, a tantalum aqueous solution, or a mixed aqueous solution of niobium and tantalum to form two or three aqueous solutions, and an excess of the precipitate forming solution is added to one of these aqueous solutions. After uniformly mixing to form a precipitate, the aqueous solution in which this precipitate was dispersed and the remaining aqueous solution are sequentially uniformly mixed to form a homogeneous precipitate of all components, and the precipitate is heated at 500 to 1200°C. After calcination, the molded product is sintered at 1000 to 1600°C in air or an oxygen atmosphere, or densified by hot isostatic pressing in an inert atmosphere, and further sintered in the air. A method for producing a high-density BZNT-based ferroelectric ceramic. (2) Formula 3BaO・xZnO・(1-y) Nb_2O_5・yTa_2O_5 (however, 0.6≦x
The range is ≦2.0, 0<y<1. ), a dispersion of a compound powder containing barium, niobium or tantalum is prepared, and the remaining amount is added to this dispersion. After uniformly mixing all components with other aqueous solutions in order to form a homogeneous precipitate, and calcining the precipitate at 500 to 1200°C, the molded product is heated at 1000 to 1600°C in air or an oxygen atmosphere. A method for producing a high-density BZNT-based ferroelectric ceramic, which comprises sintering or densifying it by hot isostatic pressing in an inert atmosphere, and further sintering in the air.
JP61168793A 1986-07-17 1986-07-17 High-density BZNT-based ferroelectric ceramic manufacturing method Expired - Lifetime JPH0643266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61168793A JPH0643266B2 (en) 1986-07-17 1986-07-17 High-density BZNT-based ferroelectric ceramic manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168793A JPH0643266B2 (en) 1986-07-17 1986-07-17 High-density BZNT-based ferroelectric ceramic manufacturing method

Publications (2)

Publication Number Publication Date
JPS6325265A true JPS6325265A (en) 1988-02-02
JPH0643266B2 JPH0643266B2 (en) 1994-06-08

Family

ID=15874576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168793A Expired - Lifetime JPH0643266B2 (en) 1986-07-17 1986-07-17 High-density BZNT-based ferroelectric ceramic manufacturing method

Country Status (1)

Country Link
JP (1) JPH0643266B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722299A (en) * 1994-06-30 1998-03-03 Fuji Kiko Co., Ltd. Adjustable steering column assembly for a vehicle
JP2014516333A (en) * 2011-02-04 2014-07-10 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Pure-phase multi-component production method, ceramic material based on pure-phase multi-component system, and molded bodies and composites formed therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623005A (en) * 1985-06-28 1987-01-09 Ube Ind Ltd Production of easily sintering perovskite raw material powder by powder dispersing
JPS623004A (en) * 1985-06-28 1987-01-09 Ube Ind Ltd Production of easily sintering perovskite raw material powder by wet method
JPS62143859A (en) * 1985-12-17 1987-06-27 科学技術庁無機材質研究所長 Manufacture of high density ba(zn1/3(ta and/or nb)2/3)03 perovskite ceramics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623005A (en) * 1985-06-28 1987-01-09 Ube Ind Ltd Production of easily sintering perovskite raw material powder by powder dispersing
JPS623004A (en) * 1985-06-28 1987-01-09 Ube Ind Ltd Production of easily sintering perovskite raw material powder by wet method
JPS62143859A (en) * 1985-12-17 1987-06-27 科学技術庁無機材質研究所長 Manufacture of high density ba(zn1/3(ta and/or nb)2/3)03 perovskite ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722299A (en) * 1994-06-30 1998-03-03 Fuji Kiko Co., Ltd. Adjustable steering column assembly for a vehicle
JP2014516333A (en) * 2011-02-04 2014-07-10 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Pure-phase multi-component production method, ceramic material based on pure-phase multi-component system, and molded bodies and composites formed therefrom
US9309158B2 (en) 2011-02-04 2016-04-12 H.C. Starck Gmbh Process for producing a pure-phase multisubstance system, a ceramic material based on the pure-phase multisubstance system, a shaped body, and a composite formed therefrom
JP2016222536A (en) * 2011-02-04 2016-12-28 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck GmbH Manufacturing method of multicomponent of pure phase, ceramic material based on multicomponent of pure phase and molded body and composite formed therefrom

Also Published As

Publication number Publication date
JPH0643266B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US5096642A (en) Process for producing a high density ceramic of perovskite
JPS6214489B2 (en)
JPS6325265A (en) Manufacture of high density bznt base ferroelectric ceramic
JPH0559048B2 (en)
JPH03252313A (en) Production of a2b2o7-type oxide powder
JPS6325263A (en) Manufacture of high density bzt base ferroelectric ceramic
JPS6363511B2 (en)
JPS6325264A (en) Manufacture of high density bzn base ferroelectric ceramic
JPS6325261A (en) Manufacture of high density pmn base ferroelectric ceramic
JPH0556287B2 (en)
JPS6325262A (en) Manufacture of high density bbt base ferroelectric ceramic
JPS6325223A (en) Production of ceramic raw material powder
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
JPS6325272A (en) Manufacture of high density psznt base ferroelectric ceramic
JPS62230622A (en) Production of perovskite-type compound
JP2653789B2 (en) Manufacturing method of dielectric resonator material
JPH0456777B2 (en)
JPH08191002A (en) Barium titanate system semiconductor ceramics and its manufacturing method
JPS63292508A (en) Manufacture of dielectric resonator material
JPS6221759A (en) Manufacture of ferroelectric ceramic by multi-stage wet process
JPS62235251A (en) Manufacture of dielectric ceramic
JPH0784349B2 (en) Method for producing dielectric ceramics containing neodymium
JPS62226812A (en) Production of easy-to-sinter perovskite powder
JPH0784346B2 (en) Method for producing perovskite ceramics containing niobium
JPH08213205A (en) Barium titanate semiconductor ceramics and manufacture thereof