JPH0643266B2 - High-density BZNT-based ferroelectric ceramic manufacturing method - Google Patents

High-density BZNT-based ferroelectric ceramic manufacturing method

Info

Publication number
JPH0643266B2
JPH0643266B2 JP61168793A JP16879386A JPH0643266B2 JP H0643266 B2 JPH0643266 B2 JP H0643266B2 JP 61168793 A JP61168793 A JP 61168793A JP 16879386 A JP16879386 A JP 16879386A JP H0643266 B2 JPH0643266 B2 JP H0643266B2
Authority
JP
Japan
Prior art keywords
compound
precipitate
aqueous solution
niobium
tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61168793A
Other languages
Japanese (ja)
Other versions
JPS6325265A (en
Inventor
信一 白崎
英男 黒田
孝幸 古澤
宏光 多木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
National Institute for Research in Inorganic Material
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
National Institute for Research in Inorganic Material
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, National Institute for Research in Inorganic Material, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP61168793A priority Critical patent/JPH0643266B2/en
Publication of JPS6325265A publication Critical patent/JPS6325265A/en
Publication of JPH0643266B2 publication Critical patent/JPH0643266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘電体共振器用の機能性セラミック、マイクロ
波集積回路などに使用される媒体用セラミック等多くの
用途に利用し得る高密度BZNT系強誘電体セラミック
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is a high density BZNT system that can be used in many applications such as functional ceramics for dielectric resonators and ceramics for media used in microwave integrated circuits. The present invention relates to a method for manufacturing a ferroelectric ceramic.

〔従来の技術〕[Conventional technology]

従来、BZNT系強誘電体セラミックの原料粉末は、乾
式法又は湿式共沈法で製造されていた。
Conventionally, the raw material powder of the BZNT-based ferroelectric ceramic has been manufactured by a dry method or a wet coprecipitation method.

乾式法は構成成分の化合物粉末を混合し、これを仮焼す
る方法である。しかし、この方法では均一な組成の原料
粉末が得難く、またBZNTの生成反応を完逐させるた
めに仮焼温度を高くすることが必要であるので、これに
より粒子が粗大化して易焼結性になりにくい欠点があっ
た。
The dry method is a method in which compound powders of the constituents are mixed and calcined. However, with this method, it is difficult to obtain a raw material powder having a uniform composition, and since it is necessary to raise the calcination temperature in order to complete the reaction for producing BZNT, this causes the particles to become coarse and easily sinterable. There was a drawback that it was hard to become.

湿式共沈法はBZNTの構成成分のすべての混合液を作
り、これにアルカリ等の沈殿形成液を添加して共沈さ
せ、乾燥、仮焼する方法である。しかし、この方法は均
一性の優れた粉末が得やすいが、その均一性なるが故に
沈殿形成時、乾燥時、また仮焼時に凝結して二次粒子を
形成し、易焼結性となりにくい欠点がある。
The wet coprecipitation method is a method in which a mixed solution of all constituents of BZNT is prepared, and a precipitation forming solution such as an alkali is added to the mixture to coprecipitate, followed by drying and calcination. However, although this method makes it easy to obtain a powder with excellent uniformity, it is difficult to form a secondary particle by condensing to form secondary particles during precipitation formation, drying, and calcination because of its uniformity. There is.

更にまた、BZNTはバリウムとニオブ及びタンタルを
含有しているので、これを共沈させる場合、ニオブ及び
タンタル原料として工業的に利用可能なフッ化ニオブ、
フッ化タンタルの水溶液を使用すると、フッ化ニオブ、
フッ化タンタルのフッ素イオンがバリウムと反応してフ
ッ化バリウムの白色沈殿を生成するため、フッ化ニオ
ブ、フッ化タンタルを使用し得ない。このため、特性の
優れた湿式共沈法によるBZNT系強誘電体セラミック
が製造できないという問題があった。
Furthermore, since BZNT contains barium, niobium and tantalum, when coprecipitating this, niobium and niobium fluoride industrially usable as a tantalum raw material,
Using an aqueous solution of tantalum fluoride, niobium fluoride,
Niobium fluoride and tantalum fluoride cannot be used because the fluorine ion of tantalum fluoride reacts with barium to produce a white precipitate of barium fluoride. Therefore, there is a problem that a BZNT-based ferroelectric ceramic having excellent characteristics cannot be manufactured by the wet coprecipitation method.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、上記のような従来の諸問題を解決し、ニオブ
及びタンタル原料として工業的に利用可能なフッ化ニオ
ブ、フッ化タンタルを使用し、高密度でしかも特性の優
れたBZNT系強誘電体セラミックを製造し得る方法を
提供することにある。
The present invention solves the above-described conventional problems, uses niobium fluoride and tantalum fluoride that are industrially applicable as raw materials for niobium and tantalum, and has a high density and excellent characteristics. It is to provide a method by which a body ceramic can be produced.

〔課題を解決するための手段〕[Means for Solving the Problems]

即ち、本発明の高密度BZNT系強誘電体セラミックの
製造方法は、組成式 3BaO・xZnO・(1−y)Nb25・yTa25 (但し、0.6≦x≦2.0、0<y<1の範囲である。) におけるBa/(Zn+Nb+Ta)のモル比が1.0近
傍の組成を有するBZNT系強誘電体を製造するに際
し、バリウム化合物水溶液、亜鉛化合物水溶液,フッ化
ニオブ水溶液及びフッ化タンタル水溶液を調製し、これ
ら4種の水溶液とするかあるいは亜鉛化合物水溶液をバ
リウム化合物水溶液、フッ化ニオブ水溶液、フッ化タン
タル水溶液またはフッ化ニオブとフッ化タンタルの混合
水溶液のいずれかに混合して3種または2種の水溶液と
し、それらの水溶液と過剰の沈殿形成液とを均一に混合
することによりニオブ化合物及びタンタル化合物を逐次
沈殿させるかまたは共沈させ、その後フッ素イオンを除
去し、更にその後、ニオブ化合物及びタンタル化合物沈
殿物の存在下でバリウム化合物を含む水溶液と過剰の沈
殿形成液とを均一に混合して沈殿物を形成させ、亜鉛化
合物を含む水溶液と過剰の沈殿形成液との均一混合をニ
オブ化合物沈殿物またはタンタル化合物沈殿物の形成
前、ニオブ化合物沈殿物またはタンタル化合物沈殿物の
形成と同時、フッ素イオンの除去前、バリウム化合物沈
殿物の形成前、バリウム化合物沈殿物の形成と同時又は
バリウム化合物沈殿物の形成後の任意の段階で実施して
全成分の均密沈殿物を形成し、該沈殿物を500〜12
00℃で仮焼した後、成形物を空気中又は酸素雰囲気
中、1000〜1600℃で焼結させるか、又は不活性
雰囲気で熱間静水圧加圧により高密度化し、更に大気中
で焼結させることを特徴とする。
That is, the manufacturing method of high density BZNT based ferroelectric ceramics of the present invention, the composition formula 3BaO · xZnO · (1-y ) Nb 2 O 5 · yTa 2 O 5 ( where, 0.6 ≦ x ≦ 2.0,0 <y In the case of producing a BZNT-based ferroelectric substance having a composition in which the molar ratio Ba / (Zn + Nb + Ta) in <1) is around 1.0, an aqueous barium compound solution, an aqueous zinc compound solution, an aqueous niobium fluoride solution, and tantalum fluoride are used. An aqueous solution is prepared, and these four types of aqueous solutions are prepared, or the zinc compound aqueous solution is mixed with either a barium compound aqueous solution, a niobium fluoride aqueous solution, a tantalum fluoride aqueous solution, or a mixed aqueous solution of niobium fluoride and tantalum fluoride. Or two kinds of aqueous solutions, and the niobium compound and the tantalum compound are sequentially precipitated by uniformly mixing the aqueous solution and the excess precipitation-forming solution. Or coprecipitate the solution, and then remove the fluoride ion. Then, in the presence of the niobium compound and tantalum compound precipitates, the aqueous solution containing the barium compound and the excess precipitate forming solution are uniformly mixed to form precipitates. A uniform mixture of an aqueous solution containing a zinc compound and an excess precipitation-forming solution is formed before the formation of the niobium compound precipitate or the tantalum compound precipitate, and at the same time as the formation of the niobium compound precipitate or the tantalum compound precipitate, the removal of the fluorine ion. Before the formation of the barium compound precipitate, at the same time as the formation of the barium compound precipitate, or at any stage after the formation of the barium compound precipitate to form a homogeneous precipitate of all components, ~ 12
After calcination at 00 ° C, the molded product is sintered at 1000 to 1600 ° C in air or oxygen atmosphere, or densified by hot isostatic pressing in an inert atmosphere, and further sintered in air. It is characterized by

本発明においては、フッ化バリウムの白色沈殿の生成を
防止するためには、ニオブ化合物及びタンタル化合物を
先に沈殿せしめ、沈殿分散液に存在するフッ素イオンを
除去してからバリウム化合物の沈殿を形成せしめること
が必須である。しかし、亜鉛化合物の沈殿を形成させる
段階は任意である。本発明においては、具体的には、例
えば、第1図(A)〜(D)に示した沈殿形成の順序で
均密沈殿を作ることができる。
In the present invention, in order to prevent the formation of a white precipitate of barium fluoride, the niobium compound and the tantalum compound are precipitated first, and the fluoride ions present in the precipitate dispersion are removed, and then the barium compound precipitate is formed. It is indispensable to do it. However, the step of forming a precipitate of the zinc compound is optional. In the present invention, specifically, for example, a uniform precipitate can be produced in the order of precipitate formation shown in FIGS. 1 (A) to (D).

本発明においては、高密度BZNT系強誘電体セラミッ
クの焼結性や特性を制御するために、微量成分、例え
ば、Ca、Sr、Ti、Sn、Mn、Al、Cs、G
e、V、Bi、Fe、Cr、Ni、Ir、Rh、Na、
In、K、Ga、Tl、W、Th、希土類などの化合物
を添加してもよい。この場合、水溶液中に共存させても
よく、BZNT系粉末の作製後、乾式または湿式により
添加してもよい。
In the present invention, in order to control the sinterability and characteristics of the high-density BZNT-based ferroelectric ceramic, trace components such as Ca, Sr, Ti, Sn, Mn, Al, Cs, and G are used.
e, V, Bi, Fe, Cr, Ni, Ir, Rh, Na,
Compounds such as In, K, Ga, Tl, W, Th, and rare earths may be added. In this case, they may be allowed to coexist in an aqueous solution, or may be added by a dry method or a wet method after the BZNT-based powder is prepared.

BZNT系の構成成分の水溶液を作るのに用いる成分化
合物としては、それら成分の水酸化物、オキシ塩化物、
炭酸塩、オキシ硝酸塩、硫酸塩、硝酸塩、酢酸塩、フッ
化物、ギ酸塩、シュウ酸塩、塩化物、酸化物等が挙げら
れる。これらが水に可溶でない場合は、鉱酸等を添加し
て可溶とすることができる。
The component compounds used to make an aqueous solution of BZNT-based constituent components include hydroxides, oxychlorides,
Examples thereof include carbonates, oxynitrates, sulfates, nitrates, acetates, fluorides, formates, oxalates, chlorides and oxides. When these are not soluble in water, mineral acid or the like can be added to make them soluble.

沈殿形成剤としては、アンモニア、炭酸アンモニウム、
苛性ソーダ、苛性カリ、炭酸ソーダ、シュウ酸、シュウ
酸アンモニウム及びオキシンやアミン等の有機試薬等の
水溶液が挙げられる。アンモニアガスを用いてもよい。
Precipitating agents include ammonia, ammonium carbonate,
Examples thereof include aqueous solutions of caustic soda, caustic potash, sodium carbonate, oxalic acid, ammonium oxalate, and organic reagents such as oxine and amine. Ammonia gas may be used.

構成成分の沈殿を形成するには、液を攪拌しながら行な
うことが望ましい。また、フッ素イオンを除去するため
に、沈殿物の生成後にロ液を分離し、沈殿物を洗浄した
後、この沈殿物を再分散させ、残りの成分を沈殿させ
る。
In order to form a precipitate of the constituents, it is desirable to carry out the stirring of the liquid. Further, in order to remove the fluorine ions, the filtrate is separated after the precipitate is formed, the precipitate is washed, and then the precipitate is redispersed to precipitate the remaining components.

沈殿物の洗浄に関しては、エタノール等のアルコール類
を用いると、以後の乾燥、仮焼工程で沈殿物の凝結が抑
制されて好結果が得られる。
Regarding the washing of the precipitate, if alcohols such as ethanol are used, coagulation of the precipitate is suppressed in the subsequent drying and calcination steps, and good results are obtained.

得られた沈殿物を乾燥し、500〜1200℃で仮焼す
る。仮焼温度が500℃未満の場合にはBZNTの生成
範囲や脱ガスが完結せず、また、得られるBZNT粉末
の嵩密度が低くなる。仮焼温度が1200℃を越えると
BZNT粉末粒子が粗大化して焼結性が悪くなる。
The obtained precipitate is dried and calcined at 500 to 1200 ° C. If the calcination temperature is lower than 500 ° C., the production range of BZNT and degassing will not be completed, and the bulk density of the BZNT powder obtained will be low. If the calcination temperature exceeds 1200 ° C., the BZNT powder particles become coarse and the sinterability deteriorates.

次に、成形・焼結する。焼結は空気中か酸素雰囲気中
で、ホット・プレスか常圧で焼結する。焼結温度が10
00℃より低いと焼結が不十分であり、1600℃を越
えるとZnOなどの飛散が顕著になるので、1000〜
1600℃で行なうのが望ましい。尚、焼結は、不活性
雰囲気で熱間静水圧加圧により高密度化した後、大気中
で焼成することにより行なうこともできる。
Next, it is molded and sintered. Sintering is performed by hot pressing or atmospheric pressure in air or an oxygen atmosphere. Sintering temperature is 10
If the temperature is lower than 00 ° C, the sintering is insufficient, and if the temperature exceeds 1600 ° C, the scattering of ZnO and the like becomes remarkable.
It is desirable to carry out at 1600 ° C. The sintering can also be performed by densifying by hot isostatic pressing in an inert atmosphere and then firing in the atmosphere.

〔実施例〕〔Example〕

以下実施例を示して、本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1 Nb53.8g及びTaF522.5gを含有する水溶液1
に、重炭酸アンモニウム5gを含有する5Nアンモニア
水0.2を加えてタンタル化合物の沈殿物を生成させ、
これらを濾過し、更にその沈殿物を水洗して沈殿物から
フッ素イオンを除去した。Ba(NO3239.9g、Zn
(NO3210.6g(Znは以下の沈殿操作により10%
が損失することが分かっている。このため理論量の1.1
倍量を用いた。)を含有する水溶液1調製し、この水
溶液に上記のフッ素イオンを除去した沈殿物を分散させ
た。この分散液と、重炭酸アンモニウム25gを含有す
る5Nアンモニア0.1とを均一に混合してバリウム、
亜鉛、ニオブ、タンタルの炭酸塩、水酸化物の均密沈殿
物を得た。ロ過、水洗、乾燥後、1100℃で2時間仮
焼して、Ba(Zn0.33Nb0.14Ta0.53)O3の組成
のBZNT原料粉末を得た。得られた仮焼粉末を電子顕
微鏡で観察したところ、平均0.2μmの均一微粒子であ
ることが認められた。該粉末を1t/cm2の圧力下で直
径30mm、厚み3mmに成形し、空気中で常圧下、140
0℃で2時間焼結した。
Example 1 Aqueous solution 1 containing 3.8 g of Nb 5 and 22.5 g of TaF 5
To this, 0.2 of 5N aqueous ammonia containing 5 g of ammonium bicarbonate was added to form a precipitate of tantalum compound,
These were filtered, and the precipitate was washed with water to remove fluorine ions from the precipitate. Ba (NO 3 ) 2 39.9 g, Zn
(NO 3 ) 2 10.6 g (Zn is 10% by the following precipitation operation
Are known to lose. Therefore, the theoretical amount of 1.1
Double volume was used. 1) was prepared, and the precipitate from which the above-mentioned fluorine ions were removed was dispersed in this aqueous solution. This dispersion was uniformly mixed with 0.1 of 5N ammonia containing 25 g of ammonium bicarbonate to obtain barium,
A uniform precipitate of zinc carbonate, niobium carbonate, tantalum carbonate, and hydroxide was obtained. After filtration, washing with water, drying, and calcination at 1100 ° C. for 2 hours, a BZNT raw material powder having a composition of Ba (Zn 0.33 Nb 0.14 Ta 0.53 ) O 3 was obtained. When the obtained calcined powder was observed with an electron microscope, it was confirmed that the fine particles were 0.2 μm on average. The powder was molded into a powder having a diameter of 30 mm and a thickness of 3 mm under a pressure of 1 t / cm 2 , and the powder was compressed to 140 mm under normal pressure in air.
Sintered for 2 hours at 0 ° C.

比較例1 市販のBaCO3、ZnO、Nb25、Ta25の各粉
末をBa(Zn0.33Nb0.14Ta0.53)O3の組成にな
るように配合し、ボールミルで混合後、1100℃で2
時間仮焼後、再びボールミルで粉砕した。この粉末を電
子顕微鏡で観察したところ、二次粒子を含んだ平均粒径
約1.8μmの不揃いの粒子から構成されていた。該粉末
を1t/cm2の圧力下で直径30mm、厚み3mmに成形
し、空気中で常圧下、1400℃で2時間焼結した。
Comparative Example 1 Commercially available powders of BaCO 3 , ZnO, Nb 2 O 5 and Ta 2 O 5 were blended so as to have a composition of Ba (Zn 0.33 Nb 0.14 Ta 0.53 ) O 3 , mixed with a ball mill and then mixed at 1100 ° C. In 2
After calcination for an hour, it was crushed again with a ball mill. When the powder was observed with an electron microscope, it was composed of irregular particles having an average particle diameter of about 1.8 μm including secondary particles. The powder was molded under a pressure of 1 t / cm 2 to a diameter of 30 mm and a thickness of 3 mm, and was sintered in air at 1400 ° C. for 2 hours under normal pressure.

上記実施例1、比較例1について、焼結体の焼結密度、
誘電率及び誘電損失を測定した結果を第1表に示す。
For the above-mentioned Example 1 and Comparative Example 1, the sintered density of the sintered body,
Table 1 shows the measurement results of the dielectric constant and the dielectric loss.

上記のデータから明らかなように、本発明の製造方法に
より調製した粉末を用いた焼結体は、従来法により得ら
れた焼結体よりQ値、εr及び焼結密度の点で優れてい
ることは明らかである。
As is apparent from the above data, the sintered body using the powder prepared by the manufacturing method of the present invention is superior to the sintered body obtained by the conventional method in terms of Q value, ε r and sintered density. It is clear that

また、X線回析法により上記実施例1、比較例1の仮焼
粉末の組成変動を測定した結果、本発明の製造方法によ
る粉末は組成変動が少なく、均密な粉体であるこが分っ
た。
In addition, as a result of measuring the compositional variation of the calcined powders of the above-mentioned Example 1 and Comparative Example 1 by the X-ray diffraction method, it was found that the powder produced by the production method of the present invention had a small compositional variation and was a dense powder. It was.

〔発明の効果〕〔The invention's effect〕

本発明の製造方法によれば、BZNTの原料成分のうち
バリウムとニオブ及びタンタルとを共沈させることがな
いので、ニオブ及びタンタル原料として、工業的に安価
なフッ化ニオブ水溶液及びフッ化タンタル水溶液が使用
でき、従って、安価な工業的生産の実用化を達成するこ
とができる。また、BZNTの構成成分の全部を共沈さ
せることなく、多重沈殿を生成させるため、これらの沈
殿は相互分散された状態となり、高嵩密度の易焼結性の
ものが得られる。更に、多重沈殿生成を行なうため、各
成分に適した沈殿剤の種類及び濃度を選択でき、目的組
成のBZNTが容易に得られる。そして、従来の乾式法
におけるような組成成分の不均一性のない、高密度で均
一なBZNTが容易に得られる。
According to the production method of the present invention, barium, niobium, and tantalum are not coprecipitated among the raw material components of BZNT. Therefore, as a niobium and tantalum raw material, an industrially inexpensive niobium fluoride aqueous solution and tantalum fluoride aqueous solution are used. Can be used, and thus a low-cost industrial production can be achieved. In addition, since multiple precipitates are generated without coprecipitating all the constituent components of BZNT, these precipitates are in a mutually dispersed state, and a highly bulky and easily sinterable product is obtained. Furthermore, since multiple precipitations are generated, the type and concentration of the precipitating agent suitable for each component can be selected, and BZNT having the target composition can be easily obtained. Further, it is possible to easily obtain a high density and uniform BZNT without the nonuniformity of the composition components as in the conventional dry method.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)〜(D)は、それぞれ本発明の製造方法を
実施する場合の具体的な沈殿形成の順序を示した説明図
である。
FIGS. 1 (A) to (D) are explanatory views showing a specific order of precipitation formation when the production method of the present invention is carried out.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古澤 孝幸 福岡県大牟田市歴木1626 平野寮 (72)発明者 多木 宏光 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭62−143859(JP,A) 特開 昭62−3004(JP,A) 特開 昭62−3005(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takayuki Furusawa 1626 Hirano Dormitory, Omuta City, Fukuoka Prefecture (72) Inventor Hiromitsu Taki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References Kai 62-143859 (JP, A) JP 62-3004 (JP, A) JP 62-3005 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】組成式 3BaO・xZnO・(1−y)Nb・yTa
(但し、0.6≦x≦2.0、0<y<1の範囲である。) におけるBa/(Zn+Nb+Ta)のモル比が1.0近
傍の組成を有するBZNT系強誘電体を製造するに際
し、バリウム化合物水溶液、亜鉛化合物水溶液,フッ化
ニオブ水溶液及びフッ化タンタル水溶液を調製し、これ
ら4種の水溶液とするかあるいは亜鉛化合物水溶液をバ
リウム化合物水溶液、フッ化ニオブ水溶液、フッ化タン
タル水溶液またはフッ化ニオブとフッ化タンタルの混合
水溶液のいずれかに混合して3種または2種の水溶液と
し、それらの水溶液と過剰の沈殿形成液とを均一に混合
することによりニオブ化合物及びタンタル化合物を逐次
沈殿させるかまたは共沈させ、その後フッ素イオンを除
去し、更にその後、ニオブ化合物及びタンタル化合物沈
殿物の存在下でバリウム化合物を含む水溶液と過剰の沈
殿形成液とを均一に混合して沈殿物を形成させ、亜鉛化
合物を含む水溶液と過剰の沈殿形成液との均一混合をニ
オブ化合物沈殿物またはタンタル化合物沈殿物の形成
前、ニオブ化合物沈殿物またはタンタル化合物沈殿物の
形成と同時、フッ素イオンの除去前、バリウム化合物沈
殿物の形成前、バリウム化合物沈殿物の形成と同時又は
バリウム化合物沈殿物の形成後の任意の段階で実施して
全成分の均密沈殿物を形成し、該沈殿物を500〜12
00℃で仮焼した後、成形物を空気中又は酸素雰囲気
中、1000〜1600℃で焼結させるか、又は不活性
雰囲気で熱間静水圧加圧により高密度化し、更に大気中
で焼結させることを特徴とする高密度BZNT系強誘電
体セラミックの製造方法。
1. A composition formula 3BaO · xZnO · (1-y ) Nb 2 O 5 · yTa 2
In producing a BZNT-based ferroelectric having a composition in which the molar ratio of Ba / (Zn + Nb + Ta) in O 5 (where 0.6 ≦ x ≦ 2.0 and 0 <y <1) is near 1.0, a barium compound is used. An aqueous solution, a zinc compound aqueous solution, a niobium fluoride aqueous solution, and a tantalum fluoride aqueous solution are prepared, and these four types of aqueous solutions are prepared, or the zinc compound aqueous solution is used as a barium compound aqueous solution, a niobium fluoride aqueous solution, a tantalum fluoride aqueous solution, or niobium fluoride aqueous solution. A niobium compound and a tantalum compound are successively precipitated by mixing with any one of the mixed aqueous solutions of tantalum fluoride to form three or two kinds of aqueous solutions, and uniformly mixing these aqueous solutions with an excess precipitation-forming solution, or Coprecipitation followed by removal of fluoride ions followed by flash in the presence of niobium and tantalum compound precipitates. The aqueous solution containing the zinc compound and the excess precipitation-forming liquid are uniformly mixed to form a precipitate, and the aqueous solution containing the zinc compound and the excess precipitation-forming liquid are uniformly mixed to form a niobium compound precipitate or a tantalum compound precipitate. Any before formation, at the same time as formation of the niobium compound precipitate or tantalum compound precipitate, before removal of fluoride ions, before formation of the barium compound precipitate, simultaneously with formation of the barium compound precipitate or after formation of the barium compound precipitate Performed in stages to form a homogenous precipitate of all components, which precipitate is 500-12
After calcination at 00 ° C, the molded product is sintered at 1000 to 1600 ° C in air or oxygen atmosphere, or densified by hot isostatic pressing in an inert atmosphere, and further sintered in air. A method for producing a high-density BZNT-based ferroelectric ceramic, which comprises:
JP61168793A 1986-07-17 1986-07-17 High-density BZNT-based ferroelectric ceramic manufacturing method Expired - Lifetime JPH0643266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61168793A JPH0643266B2 (en) 1986-07-17 1986-07-17 High-density BZNT-based ferroelectric ceramic manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168793A JPH0643266B2 (en) 1986-07-17 1986-07-17 High-density BZNT-based ferroelectric ceramic manufacturing method

Publications (2)

Publication Number Publication Date
JPS6325265A JPS6325265A (en) 1988-02-02
JPH0643266B2 true JPH0643266B2 (en) 1994-06-08

Family

ID=15874576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168793A Expired - Lifetime JPH0643266B2 (en) 1986-07-17 1986-07-17 High-density BZNT-based ferroelectric ceramic manufacturing method

Country Status (1)

Country Link
JP (1) JPH0643266B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722299A (en) * 1994-06-30 1998-03-03 Fuji Kiko Co., Ltd. Adjustable steering column assembly for a vehicle
DE102011010346B4 (en) * 2011-02-04 2014-11-20 H.C. Starck Gmbh Process for the production of a homogeneous multi-substance system, ceramic material based on the homogeneous multi-substance system and its use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623004A (en) * 1985-06-28 1987-01-09 Ube Ind Ltd Production of easily sintering perovskite raw material powder by wet method
JPS623005A (en) * 1985-06-28 1987-01-09 Ube Ind Ltd Production of easily sintering perovskite raw material powder by powder dispersing
JPS62143859A (en) * 1985-12-17 1987-06-27 科学技術庁無機材質研究所長 Manufacture of high density ba(zn1/3(ta and/or nb)2/3)03 perovskite ceramics

Also Published As

Publication number Publication date
JPS6325265A (en) 1988-02-02

Similar Documents

Publication Publication Date Title
US5096642A (en) Process for producing a high density ceramic of perovskite
KR101195629B1 (en) Method for preparing barium titanyl oxalate powder and method for preparing titanium based perovskite-type ceramic raw powder
JPH0643266B2 (en) High-density BZNT-based ferroelectric ceramic manufacturing method
JPH0159967B2 (en)
JPH0627023B2 (en) High-density BZT-based ferroelectric ceramic manufacturing method
JPH0627024B2 (en) High-density BZN-based ferroelectric ceramic manufacturing method
JPH0517150A (en) Production of ceramic raw material powder
JPH07112928B2 (en) Manufacturing method of ceramic raw material powder
JPS6363511B2 (en)
JPS62191423A (en) Production of easily sintering lead-containing oxide powder
JP2622545B2 (en) Manufacturing method of dielectric resonator material
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
CN114127013B (en) Me element-substituted organic acid barium titanyl oxide, process for producing the same, and process for producing titanium perovskite ceramic raw material powder
JPH0556287B2 (en)
JP2653789B2 (en) Manufacturing method of dielectric resonator material
JPS6325272A (en) Manufacture of high density psznt base ferroelectric ceramic
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
JPS6325262A (en) Manufacture of high density bbt base ferroelectric ceramic
JPH0331647B2 (en)
JPH0456777B2 (en)
JPS6325261A (en) Manufacture of high density pmn base ferroelectric ceramic
JPH0818867B2 (en) Method for producing perovskite ceramics containing zirconium
JPH0784346B2 (en) Method for producing perovskite ceramics containing niobium
JPH0784349B2 (en) Method for producing dielectric ceramics containing neodymium
JPS6221759A (en) Manufacture of ferroelectric ceramic by multi-stage wet process