JPH0331647B2 - - Google Patents
Info
- Publication number
- JPH0331647B2 JPH0331647B2 JP62269556A JP26955687A JPH0331647B2 JP H0331647 B2 JPH0331647 B2 JP H0331647B2 JP 62269556 A JP62269556 A JP 62269556A JP 26955687 A JP26955687 A JP 26955687A JP H0331647 B2 JPH0331647 B2 JP H0331647B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- lead
- perovskite
- zirconium
- solid solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 claims description 112
- 239000006104 solid solution Substances 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 39
- 239000000919 ceramic Substances 0.000 claims description 30
- 238000001354 calcination Methods 0.000 claims description 22
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 18
- 239000002244 precipitate Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 12
- 239000012266 salt solution Substances 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 12
- 150000003754 zirconium Chemical class 0.000 claims description 12
- 239000002131 composite material Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 10
- 229910021529 ammonia Inorganic materials 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 150000001412 amines Chemical class 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 claims description 4
- 238000007493 shaping process Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 description 37
- 239000000203 mixture Substances 0.000 description 16
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 7
- 238000005054 agglomeration Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 150000002611 lead compounds Chemical class 0.000 description 4
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 150000003609 titanium compounds Chemical class 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical group [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- 229910021514 lead(II) hydroxide Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- -1 zirconium salt Chemical class 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical group O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Iron (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、ジルコン酸鉛−チタン酸鉛−複合ペ
ロブスカイトよりなる凝3成分系鉛ペロブスカイ
ト固溶体粉末であつて、均一性および粒度特性の
優れたもの、および当該固溶体粉末を原料とする
高密度セラミツクスを、生産性良く安価に製造す
ることのできる方法に関するものであり、このセ
ラミツクスは、圧電体(フイルター、超音波振動
子、アクチユエーター等)、誘電体、半導体、各
種センサ、オプトエレクトロニクス材料等に用い
られる機能性セラミツクスとして有用なものであ
る。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a solid ternary lead perovskite solid solution powder made of lead zirconate-lead titanate-composite perovskite, which has excellent uniformity and particle size characteristics. The present invention relates to a method for manufacturing high-density ceramics using the solid solution powder as a raw material with high productivity and at low cost. It is useful as a functional ceramic used in dielectrics, semiconductors, various sensors, optoelectronic materials, etc.
[従来の技術]
上記の様な凝3成分系鉛ペロブスカイトセラミ
ツクスが機能性セラミツクスとして優れた特性を
有していることは既に知られている。ところが最
近、機能性セラミツクスの応用分野が急速に拡大
すると共に、技術の高度化が進むにつれて、機能
性セラミツクスに対する要求特性は更に厳しさを
増してきており、従来材では市場の要求を十分に
満たすことができなくなつてきた。[Prior Art] It is already known that the solid ternary lead perovskite ceramics described above have excellent properties as functional ceramics. However, recently, as the field of application of functional ceramics has expanded rapidly and technology has become more sophisticated, the characteristics required for functional ceramics have become even more stringent, and conventional materials have not been able to sufficiently meet market demands. I've become unable to do that.
こうした状況に対処するため、セラミツクスの
性能に最も大きな影響を与える固溶体粉末(仮焼
粉末を意味する:以下同じ)の性状(特に粒度特
性)に主眼を置いて様々の改良研究が進められて
いる。 In order to deal with this situation, various improvement studies are being carried out with a focus on the properties (particularly particle size characteristics) of solid solution powder (meaning calcined powder; the same applies hereinafter), which has the greatest impact on the performance of ceramics. .
ところで前述の様な成分組成の凝3成分系鉛ペ
ロブスカイト固溶体粉末は、通常、計算量の構成
元素を含む原料粉末(金属酸化物あるいは炭酸塩
等)を均一に混合した後仮焼する乾式法により製
造されるが、原料粉末の粒度特性が不良である場
合は、これらを混合し仮焼して得られる固溶体粉
末の粒度特性も不良となり、ひいてはこれを成形
後焼結して得られるセラミツクスの性能も十分に
良好なものとすることができない。殊に上記凝3
成分系鉛ペロブスカイト構成々分のうちジルコニ
ア原料粉末は非常に凝集し易く、湿式法および乾
式法のいずれを採用した場合でも単分散したサブ
ミクロン級の微細粉末を得ることはできず、この
様な粗大原料粉末を他の微細な金属酸化物粉末
(酸化チタンや酸化鉛等)と共に混合し乾式法で
鉛ペロブスカイト固溶体粉末を作製してもその平
均粒径は2μm程度以上の粗大なものとなつてし
まう。そしてこの様な粗粒の固溶体粉末から高密
度の機能性セラミツクスを得るためには超高圧下
に焼結を行なわなければならず、且つその様な焼
結法を採用したとしても期待されるほどの高密度
品は得られない。また機能性セラミツクスを誘電
体や半導体等として利用しようとする場合、どの
程度まで薄肉化することができるかということが
性能向上を図るうえで重要なポイントの1つとな
るが、薄肉化の上限は仮焼された固溶体粉末の粒
径によつてほぼ決まつてくるので、粗粒の固溶体
粉末を使用する限り需要者の要望を満足し得る様
な性能の機能性セラミツクスを得ることはできな
い。 By the way, the solid ternary lead perovskite solid solution powder with the above-mentioned composition is usually produced by a dry method in which raw material powders (metal oxides, carbonates, etc.) containing calculated amounts of constituent elements are uniformly mixed and then calcined. However, if the particle size characteristics of the raw material powders are poor, the particle size characteristics of the solid solution powder obtained by mixing and calcining these powders will also be poor, which in turn will affect the performance of the ceramics obtained by molding and sintering this powder. cannot be made sufficiently good either. Especially the above
Among the components of lead perovskite, zirconia raw powder is extremely prone to agglomeration, and it is impossible to obtain monodispersed submicron-level fine powder using either the wet method or the dry method. Even if lead perovskite solid solution powder is produced by a dry method by mixing coarse raw material powder with other fine metal oxide powders (titanium oxide, lead oxide, etc.), the average particle size will be coarse, with an average particle size of about 2 μm or more. Put it away. In order to obtain high-density functional ceramics from such coarse-grained solid solution powder, sintering must be carried out under ultra-high pressure, and even if such a sintering method were adopted, it would not be as expected. High-density products cannot be obtained. Furthermore, when attempting to use functional ceramics as dielectrics, semiconductors, etc., one of the important points in improving performance is how thin the walls can be made. The particle size of the calcined solid solution powder is almost determined by the particle size of the calcined solid solution powder, so as long as coarse solid solution powder is used, it is not possible to obtain functional ceramics with performance that satisfies the demands of consumers.
これに対しジルコニウム、鉛、チタン等を含む
可溶性塩よりアルコキシド法や共沈法等に湿式法
によつて沈澱を生成させ、洗浄、乾燥後仮焼する
方法を採用すれば、サブミクロン級の極めて微細
で緊密な凝3成分系鉛ペロブスカイト固溶体粉末
を得ることができ、この様な固溶体粉末を使用す
れば常圧焼結法を採用した場合でも容易に高密度
のセラミツクスが得られるばかりでなく、薄肉化
の要請にも十分に答えることのできる有望な機能
性セラミツクスとなる。しかし湿式法は乾式法に
比べて操作が極めて煩雑で手数を要し、且つ薬剤
の使用あるいは廃液処理に要する経費増も相まつ
て、非常に高価なものになるという難点がある。 On the other hand, if a method is adopted in which a precipitate is formed from a soluble salt containing zirconium, lead, titanium, etc. by a wet method such as an alkoxide method or a coprecipitation method, and then calcined after washing and drying, it is possible to It is possible to obtain a fine and dense coagulated ternary lead perovskite solid solution powder, and by using such a solid solution powder, not only can high-density ceramics be easily obtained even when using the pressureless sintering method, but also This is a promising functional ceramic that can fully meet the demands for thinner walls. However, the wet method is much more complicated and time-consuming to operate than the dry method, and it also has the disadvantage that it is very expensive due to the increased expense required for the use of chemicals and waste liquid treatment.
[発明が解決しようとする問題点]
本発明は上記の様な事情に着目してなされたも
のであつて、その目的は、ジルコン酸鉛、チタン
酸鉛および複合ペロブスカイトよりなる均質で且
つサブミクロン級の極めて微細な凝3成分系鉛ペ
ロブスカイト固溶体粉末を、比較的簡単な操作、
手順で生産性良く安価に製造することのできる方
法を確立し、ひいては優れた性能を示す高密度の
機能性セラミツクスを得ることのできる方法を提
供しようとするものである。[Problems to be Solved by the Invention] The present invention has been made by paying attention to the above-mentioned circumstances, and its purpose is to produce a homogeneous and submicron material made of lead zirconate, lead titanate, and composite perovskite. The ultra-fine coagulated ternary lead perovskite solid solution powder can be produced using relatively simple operations.
The aim is to establish a method that can be manufactured at low cost with good productivity, and to provide a method that can produce high-density functional ceramics that exhibit excellent performance.
[問題点を解決するための手段]
上記の目的を達成することのできた本発明に係
る固溶体粉末の製造方法は、ジルコン酸鉛、チタ
ン酸鉛および複合ペロブスカイトよりなる凝3成
分系鉛ペロブスカイト固溶体粉末を製造するに当
たり、
[]:計算量の全量を占めるジルコニウムの必要
全量を含むジルコニウム塩溶液(A)と、計算量の
一部に当たり、且つ上記ジルコニウム塩に対し
て0.01〜10モル%の鉛を含む鉛塩溶液(B)とを、
アンモニアおよび/もしくはアミン類の溶液に
任意の順序で加入し、生成する均密な沈殿を洗
浄、乾燥後800〜1400℃で仮焼する工程、
[]:上記[]の工程で得た仮焼粉末を、前記
計算量の残部全量に相当する化合物粉末と共に
均一に混合し、500〜1200℃で仮焼する工程、
からなるところに要旨を有するものである。また
本発明に係るセラミツクスの製造方法は、上記と
同様にして製造した固溶体粉末を使用し、これを
700〜1300℃で常圧焼結するところに要旨が存在
する。[Means for Solving the Problems] A method for producing a solid solution powder according to the present invention that achieves the above object is a solid solution powder of a solid ternary lead perovskite composed of lead zirconate, lead titanate, and a composite perovskite. []: A zirconium salt solution (A) containing the necessary total amount of zirconium, which accounts for the entire calculated amount, and 0.01 to 10 mol% of lead, which corresponds to a part of the calculated amount and based on the above zirconium salt. A lead salt solution (B) containing
A process of adding ammonia and/or amines solution in any order, washing and drying the resulting homogeneous precipitate, and then calcining at 800 to 1400℃, []: Calcination obtained in the above process [] The gist of this method is to uniformly mix the powder with a compound powder corresponding to the remaining amount of the calculated amount and calcinate the mixture at 500 to 1200°C. Furthermore, the method for producing ceramics according to the present invention uses a solid solution powder produced in the same manner as described above;
The gist lies in the fact that it is sintered under normal pressure at 700-1300°C.
[作用]
上記の構成からも明らかである様に、本発明は
言わば湿式法と乾式法をうまく組合わせ、両者の
利点を生かしつつその欠点を相互に補ない、操作
性、生産性、経済性を満たしつつ粒度特性の優れ
た固溶体粉末を製造し、ひいてはこの固溶体粉末
を用いて高密度の優秀な機能性セラミツクスを生
産性良く製造することのできる方法を提供するも
のである。[Function] As is clear from the above structure, the present invention skillfully combines a wet method and a dry method, takes advantage of the advantages of both methods, and mutually compensates for their drawbacks, resulting in improved operability, productivity, and economy. The purpose of the present invention is to provide a method for producing a solid solution powder with excellent particle size characteristics while satisfying the above requirements, and furthermore, using this solid solution powder to produce high-density and excellent functional ceramics with good productivity.
即ち本発明では、凝集し易く微細粉末の得られ
難いジルコニア粉末の製造には湿式法を採用し、
且つ沈殿生成から仮焼工程に至るまでの間の凝集
を阻止しサブミクロン級の粒度構成を確保するた
めの手段として、まず前記工程[]で規定する
様に、凝3成分系ペロブスカイト固溶体における
計算量の全量を占めるジルコニウムの必要全量を
含むジルコニウム塩溶液(A)と、計算量の一部に当
たり、且つ上記ジルコニウム塩に対して0.01〜10
モル%の鉛を含む鉛塩溶液(B)とを、アンモニアお
よび/もしくはアミンを含むアルカリ性溶液中へ
任意の順序で加入し、ジルコニウムと共に該ジル
コニウムに対して0.01〜10モル%の鉛を含む金属
水酸化物の沈殿を生成させ、これを洗浄、乾燥後
800〜1400℃で仮焼することにより酸化ジルコニ
ウムを主体とする微細な混合酸化物粉末を製造す
る。 That is, in the present invention, a wet method is adopted for producing zirconia powder, which tends to agglomerate and makes it difficult to obtain fine powder.
In addition, as a means to prevent agglomeration during the period from precipitation generation to the calcination process and to ensure a submicron-level particle size structure, first, as specified in the above process [], calculations for the solidified ternary perovskite solid solution were carried out. A zirconium salt solution (A) containing the necessary total amount of zirconium that occupies the entire amount, and a solution that corresponds to a part of the calculated amount and is 0.01 to 10
A lead salt solution (B) containing mol% of lead is added in any order to an alkaline solution containing ammonia and/or amine, and a metal containing 0.01 to 10 mol% of lead is added together with zirconium to the alkaline solution containing ammonia and/or amine. After forming a hydroxide precipitate and washing and drying it
A fine mixed oxide powder mainly composed of zirconium oxide is produced by calcining at 800-1400°C.
水酸化ジルコニウムを湿式沈殿させる工程で鉛
塩(B)の一部を添加する理由は、生成する水酸化ジ
ルコニウムの沈殿をサブミクロン級の微細なもの
とすると共に、その後の乾燥乃至仮焼工程で凝集
して粗粒化するのを防止するためであり、こうし
た目的を果たすのに必要な鉛塩(B)の量は極く僅か
でよく、ジルコニウム塩(A)に対して0.01モル%以
上、より好ましくは0.1モル%以上である。0.01
モル%未満の場合は変性効果が失なわれ、凝集粒
子が多くなる。しかし鉛塩(B)の量が多過ぎると、
次工程[]で合成される仮焼粉の組成をジルコ
ニアリツチにできなくなり、工程[]で得られ
る仮焼粉の汎用性が失なわれるばかりでなく、仮
焼粉中にジルコン酸鉛の粗大粒子が生成して微細
な単分散の変成ジルコニアが得られなくなるの
で、鉛塩(B)の添加量はジルコニウム塩(A)に対して
10モル%以下、より好ましくは2モル%以下に抑
えられるべきである。 The reason for adding a portion of lead salt (B) in the process of wet precipitation of zirconium hydroxide is to make the resulting zirconium hydroxide precipitate submicron-level fine, and also to prevent the precipitation of zirconium hydroxide from occurring in the subsequent drying or calcination process. This is to prevent agglomeration and coarse grain formation, and the amount of lead salt (B) required to achieve this purpose may be extremely small, and is 0.01 mol% or more based on the zirconium salt (A). More preferably, it is 0.1 mol% or more. 0.01
When the amount is less than mol%, the modification effect is lost and the number of aggregated particles increases. However, if the amount of lead salt (B) is too large,
The composition of the calcined powder synthesized in the next step [] cannot be made rich in zirconia, and the calcined powder obtained in the step [] not only loses its versatility, but also contains coarse lead zirconate in the calcined powder. Since particles are generated and fine monodisperse modified zirconia cannot be obtained, the amount of lead salt (B) added should be smaller than that of zirconium salt (A).
It should be kept to 10 mol% or less, more preferably 2 mol% or less.
上記の湿式沈殿工程で使用されるジルコニウム
塩の種類は、主として水(場合によつてはアルコ
ール等の有機溶剤)に可溶性のものであればすべ
て使用することができるが、夾雑イオンの除き易
さや水酸化物沈殿の生成し易さあるいは経済性等
を総合的に考えて最も一般的なのはオキシ硝酸ジ
ルコニウムやオキシ塩化ジルコニウム等のオキシ
ジルコニウム塩である。また鉛塩も水(もしくは
アルコール等)に可溶で且つアンモニアやアミン
類の存在下で水酸化物の沈殿を生成し得るもので
あればすべて使用できるが、最も実用性の高いも
のは、硝酸鉛、酢酸鉛等の鉛塩である。 Any type of zirconium salt used in the above wet precipitation process can be used as long as it is soluble in water (in some cases, organic solvents such as alcohol); Considering the ease of forming a hydroxide precipitate and the economic efficiency, the most common ones are oxyzirconium salts such as zirconium oxynitrate and zirconium oxychloride. Also, any lead salt can be used as long as it is soluble in water (or alcohol, etc.) and can form a hydroxide precipitate in the presence of ammonia or amines, but the most practical one is nitric acid. Lead salts such as lead and lead acetate.
沈殿形成剤としてはアンモニアおよび/もしく
はアミン類を使用し得る旨記載したが、経済性、
毒性、取扱い性等を総合的に考えて最も一般的な
のはアンモニア水である。 Although it has been described that ammonia and/or amines can be used as the precipitant, economic efficiency and
Considering toxicity, ease of handling, etc., the most common one is ammonia water.
ジルコニウム塩溶液(A)、鉛塩溶液(B)の添加順序
にも格別の制約はないが、相対的に生成量の少な
い鉛水酸化物沈殿をジルコニウム水酸化物沈殿内
へより均一に分散させるには、沈殿生成剤溶液中
にまず鉛塩溶液(B)を加えて鉛水酸化物を生成せし
め、次いで撹拌下にジルコニウム塩溶液(A)を加え
る方法が推奨される。 There are no particular restrictions on the order of addition of the zirconium salt solution (A) and the lead salt solution (B), but the lead hydroxide precipitate, which is produced in a relatively small amount, can be more uniformly dispersed into the zirconium hydroxide precipitate. For this purpose, it is recommended to first add the lead salt solution (B) to the precipitant solution to generate lead hydroxide, and then add the zirconium salt solution (A) under stirring.
この様にして得た複合水酸化物沈殿を濾取し、
洗浄、乾燥後仮焼するとジルコニアを主体とする
複合酸化物粉末が得られるが、この粉末は少量の
鉛酸化物が共存することによつてジルコニア同士
の凝集が起こらず、サブミクロン級の極めて微細
な仮焼粉末が得られる。尚このときの仮焼温度を
800〜1400℃と定めたのは、800℃未満では焼成不
足となつて仮焼後の放置により凝集を起こし易く
なる傾向があり、また1400℃を超える高温で仮焼
を行なうと酸化物の一部が溶融して粒子同士の融
着が起こり、やはり仮焼粉末が粗大化するからで
ある。 The composite hydroxide precipitate obtained in this way was collected by filtration,
When calcined after washing and drying, a composite oxide powder mainly composed of zirconia is obtained. However, due to the coexistence of a small amount of lead oxide, zirconia particles do not agglomerate with each other, and are extremely fine at the submicron level. A calcined powder is obtained. Furthermore, the calcination temperature at this time is
The temperature range of 800 to 1,400°C was set because if the temperature is lower than 800°C, calcination will be insufficient and agglomeration will tend to occur if left after calcination.If calcination is performed at a high temperature exceeding 1,400°C, some of the oxides will This is because the particles melt and the particles are fused together, resulting in coarsening of the calcined powder.
かくして得られるジルコニア主体の仮焼微粉末
は、次工程[]で、凝3成分系鉛ペロブスカイ
ト固溶体粉末を構成する成分のうち、前記[]
工程で使用した鉛を差し引いた残部全量に相当す
る鉛化合物粉末とチタン化合物粉末粉末並びに複
合ペロブスカイトを構成する成分元素(具体的な
ものとしてはMg、Mn、Cr、Mn、Fe、Co、Ni、
Cd、In、、Sbおよび希土類元素等から選択される
元素の化合物と、Nb、Ta、Te、Sb、W等から
選択される元素の化合物が挙げられ、これらは通
常、実効電荷が+4価になる様に組合わせて使用
される)の化合物と共に混合し、500〜1200℃で
仮焼することによつて凝3成分系鉛ペロブスカイ
ト固溶体粉末とされる。この混合・仮焼工程は従
来の乾式法と実質的に同様の装置および方法によ
つて行なわれるが、この時点で使用される配合原
料は、ジルコニア主体の仮焼微粉末が前述の如く
微細なものであり、またチタン化合物、鉛化合物
および複合鉛ペロブスカイトを構成する上記の様
な金属化合物(酸化物あるいは仮焼工程で熱分解
を起こして酸化物に変化する炭酸塩や蓚酸塩等を
含む)はいずれもサブミクロン級の非常に微細な
ものとして得ることができるので、これらを混
合、仮焼して得られる凝3成分鉛系ペロブスカイ
ト固溶体粉末もサブミクロン級の極めて微細なも
のとして得ることができる。 The calcined fine powder mainly composed of zirconia thus obtained is processed in the next step [] by adding the above-mentioned [] among the components constituting the solid ternary lead perovskite solid solution powder.
Lead compound powder and titanium compound powder corresponding to the total amount remaining after subtracting the lead used in the process, as well as the component elements constituting the composite perovskite (specifically, Mg, Mn, Cr, Mn, Fe, Co, Ni,
Examples include compounds of elements selected from Cd, In, Sb, and rare earth elements, and compounds of elements selected from Nb, Ta, Te, Sb, W, etc., and these usually have an effective charge of +4. A coagulated ternary lead perovskite solid solution powder is obtained by mixing with the compounds (used in combination so as to achieve the desired results) and calcining at 500 to 1200°C. This mixing and calcination process is carried out using substantially the same equipment and method as the conventional dry method, but the raw materials used at this point are calcined fine powder mainly composed of zirconia, which is finely divided as described above. In addition, titanium compounds, lead compounds, and the metal compounds mentioned above that constitute composite lead perovskites (including oxides or carbonates and oxalates that undergo thermal decomposition during the calcination process and turn into oxides) Since both of these can be obtained as extremely fine particles on the submicron level, the coagulated ternary lead-based perovskite solid solution powder obtained by mixing and calcining them can also be obtained as extremely fine particles on the submicron level. can.
尚上記混合・仮焼時の温度は500〜1200℃の範
囲に設定すべきであり、500℃未満では各酸化物
同士の固相反応が不十分となつて均質なペロブス
カイト構造のものが得られず、逆に仮焼温度が
1200℃を超えると酸化物の一部が溶融して融着し
粒子が粗大化する傾向が生じてくる。 The temperature during the above mixing and calcination should be set in the range of 500 to 1200°C; if it is less than 500°C, the solid phase reaction between each oxide will be insufficient and a homogeneous perovskite structure will not be obtained. On the other hand, the calcination temperature
When the temperature exceeds 1200°C, part of the oxide melts and fuses, and the particles tend to become coarse.
しかし500〜1200℃で混合仮焼したものは、極
めて均質で微細な凝3成分系鉛ペロブスカイト固
溶体粉末として得ることができ、これを任意の形
状に成形した後焼結すると、極めて均質で充填密
度の高いセラミツクスが得られる。殊に本発明の
固溶体粉末は前述の如く非常に微細で均質なもの
であるから、従来例の様な高圧焼結法を採用しな
くとも常圧下の焼結で高密度のセラミツクスを得
ることができ、焼結操作も著しく簡素化される。
また仮焼粉末はサブミクロン級の極めて微細なも
のであるから、成形物の肉厚は当該粒径の数倍程
度の非常に薄いものとすることができ、非常に高
い性能を備えた機能性セラミツクスとなる。尚焼
結温度は700〜1300℃の範囲内に設定する必要が
あり、700℃未満では焼結不足となつて十分な強
度が得られず、1方1300℃を超えると焼結粒子が
部分的に融着してグレインサイズが増大したり成
分元素の一部が揮発し、機能性セラミツクスとし
ての性能が低下してくる。 However, when mixed and calcined at 500 to 1200℃, an extremely homogeneous and fine solidified ternary lead perovskite solid solution powder can be obtained.If this is formed into an arbitrary shape and then sintered, it becomes extremely homogeneous and has a packing density. Ceramics with high quality can be obtained. In particular, since the solid solution powder of the present invention is extremely fine and homogeneous as described above, it is possible to obtain high-density ceramics by sintering under normal pressure without using the conventional high-pressure sintering method. This greatly simplifies the sintering operation.
In addition, since the calcined powder is extremely fine at the submicron level, the wall thickness of the molded product can be made extremely thin, several times the particle size, resulting in highly functional products with extremely high performance. Becomes ceramics. The sintering temperature must be set within the range of 700 to 1300℃; if it is less than 700℃, sintering will be insufficient and sufficient strength will not be obtained, while if it exceeds 1300℃, the sintered particles will partially break down. As a result, the grain size increases and some of the component elements volatilize, resulting in a decline in performance as functional ceramics.
[実施例]
実施例 1
4Nのアンモニア水1中に、硝酸鉛1.3248g
を水50c.c.に溶解した水溶液を徐々に加え、Pb2+
の水酸化物沈殿を形成させた後、続いて、濃度
0.75076mol/のオキシ塩化ジルコニウム水溶
液を徐々に加え、Pb2+とZr4+の混合水酸化物の
均密沈殿を生成させた。これを洗浄、乾燥後1000
℃で1時間仮焼し、(Zr0.99Pb0.02)O2なる組成の
仮焼微粉末を得た。該仮焼微粉末の一次粒子の平
均径は0.1μmであり、殆んど単分散状態であつ
た。[Example] Example 1 1.3248 g of lead nitrate in 1 part of 4N ammonia water
Pb 2+
After forming a hydroxide precipitate, the concentration
A 0.75076 mol/aqueous zirconium oxychloride solution was gradually added to form a homogeneous precipitate of a mixed hydroxide of Pb 2+ and Zr 4+ . After washing and drying this, 1000
It was calcined at ℃ for 1 hour to obtain a calcined fine powder having a composition of (Zr 0.99 Pb 0.02 )O 2 . The primary particles of the calcined fine powder had an average diameter of 0.1 μm and were almost monodispersed.
上記で得た仮焼微粉末3.8320gと市販のTiO2
粉末3.1952g、PbO粉末22.18g、ZnO粉末0.8139
g、Nb2O5粉末2.6581g(何れも平均粒径は1μm
以下)をボールミルで20時間混合した後、730℃
で1時間仮焼し、組成式が0.3Pb(Zn1/3Nb2/3)O3
−0.3PbZrO3−0.4PbTiO3である凝3成分系鉛ペ
ロブスカイト固溶体粉末を得た。該固溶体粉末の
平均粒径は約0.2μmであり、粒子は球状で殆んど
単分散状態であつた。 3.8320 g of calcined fine powder obtained above and commercially available TiO 2
Powder 3.1952g, PbO powder 22.18g, ZnO powder 0.8139
g, Nb 2 O 5 powder 2.6581 g (average particle size of each is 1 μm)
After mixing the following) in a ball mill for 20 hours, 730℃
The composition formula is 0.3Pb (Zn 1/3 Nb 2/3 )O 3
A solid ternary lead perovskite solid solution powder of −0.3PbZrO 3 −0.4PbTiO 3 was obtained. The average particle size of the solid solution powder was about 0.2 μm, and the particles were spherical and almost monodispersed.
この固溶体粉末を2トン/cm2で円盤状に成形し
た後、1200℃で2時間常圧焼結すると、密度8.14
(理論密度の99.6%)のセラミツクスが得られた。 This solid solution powder was formed into a disk shape at 2 tons/cm 2 and then sintered at 1200℃ for 2 hours under normal pressure, resulting in a density of 8.14.
(99.6% of theoretical density) ceramics were obtained.
比較例 1
市販のPbO、ZrO2、TiO2、ZnO、Nb2O5の各
粉末を、実施例1と同じ凝3成分系鉛ペロブスカ
イト組成となるように配合し、ボールミルで20時
間混合した後、800℃で1時間仮焼した。仮焼粉
末の平均粒径は1.4μmであつた。Comparative Example 1 Commercially available powders of PbO, ZrO 2 , TiO 2 , ZnO, and Nb 2 O 5 were blended to give the same solidified ternary lead perovskite composition as in Example 1, and mixed in a ball mill for 20 hours. , and calcined at 800℃ for 1 hour. The average particle size of the calcined powder was 1.4 μm.
この仮焼粉末を2トン/cm2で円盤状に成形し、
1200℃で2時間常圧焼結したところ、密度7.32
(理論密度の89.6%)のセラミツクスしか得られ
なかつた。 This calcined powder was formed into a disk shape at 2 tons/cm 2 ,
After normal pressure sintering at 1200℃ for 2 hours, the density was 7.32.
(89.6% of the theoretical density) ceramics could only be obtained.
比較例 2
市販のPbO、ZrO2、TiO2、Zb2O5、実施例3
におけると同様にして得たCo3O4の各粉末を、実
施例3の凝3成分系鉛ペロブスカイト組成となる
ように配合し、ボールミルで20時間混合した後、
800℃で1時間仮焼した。得られた仮焼粉末の平
均粒径は1.9μmであつた。この仮焼粉末を2ト
ン/cm2で円盤状に成形し、1200℃で2時間常圧焼
結して得たセラミツクスの密度は7.29(理論密度
の88.9%)と低いものであつた。Comparative Example 2 Commercially available PbO, ZrO 2 , TiO 2 , Zb 2 O 5 , Example 3
Co 3 O 4 powders obtained in the same manner as in Example 3 were blended to give the coagulated ternary lead perovskite composition, and after mixing in a ball mill for 20 hours,
It was calcined at 800°C for 1 hour. The average particle size of the obtained calcined powder was 1.9 μm. This calcined powder was molded into a disk shape at 2 tons/cm 2 and sintered at 1200° C. for 2 hours under normal pressure. The density of the ceramic obtained was as low as 7.29 (88.9% of the theoretical density).
実施例 2
実施例1と同様にして作成した(Zr0.99Pb0.02)
O2組成の仮焼微粉末6.0034gと、市販のTiO2粉
末3.2750g、PbO粉末22.11g、Nb2O5粉末0.7974
g、Fe2O3粉末0.4791g(何れも平均粒径は1μm
以下)を、ボールミルで20時間混合した後720℃
で1時間仮焼し、組成式が0.12Pb(Fe1/2Nb1/2)−
0.47PbZrO3−0.41PbTiO3である凝3成分系鉛ペ
ロブスカイト固溶体微粉末を得た。該固溶体微粉
末の平均粒径は0.25μmのであり、各粒子は球状
で殆んど単分散状態であつた。Example 2 Created in the same manner as Example 1 (Zr 0.99 Pb 0.02 )
6.0034 g of calcined fine powder with O 2 composition, 3.2750 g of commercially available TiO 2 powder, 22.11 g of PbO powder, and 0.7974 g of Nb 2 O 5 powder.
g, Fe 2 O 3 powder 0.4791 g (average particle size of each is 1 μm)
(below) was mixed in a ball mill for 20 hours at 720°C.
The composition formula is 0.12Pb (Fe 1/2 Nb 1/2 )−
A solid ternary lead perovskite solid solution fine powder of 0.47PbZrO 3 -0.41PbTiO 3 was obtained. The solid solution fine powder had an average particle size of 0.25 μm, and each particle was spherical and almost monodispersed.
得られた固溶体微粉末を2トン/cm2で円盤状に
成形した後1100℃で2時間常圧焼結すると、密度
8.02(理論密度の99.3%)のセラミツクスが得ら
れた。 The obtained solid solution fine powder was molded into a disk shape at 2 tons/cm 2 and then sintered at 1100℃ for 2 hours under normal pressure.
Ceramics with a density of 8.02 (99.3% of theoretical density) were obtained.
実施例 3
実施例1と同様にして作成した(Zr0.99Pb0.02)
O2組成の仮焼微粉末6.3866gと、市販のTiO2粉
末3.6744g、PbO粉末22.09g、Nb2O5粉末0.2658
g、Y2O3粉末0.2258g(何れも平均粒径は1μm
以下)を、ボールミルで20時間混合した後750℃
で1時間仮焼し、、組成式が0.04Pb(Y1/2Nb1/2)
O3−0.5PbZrO3−0.46PbTiO3である凝3成分系
鉛ペロブスカイト固溶体粉末を得た。該固溶体微
粉末の平均粒径は0.3μmであり、各粒子は球状で
殆んど単分散状態であつた。Example 3 Created in the same manner as Example 1 (Zr 0.99 Pb 0.02 )
6.3866 g of calcined fine powder with O 2 composition, 3.6744 g of commercially available TiO 2 powder, 22.09 g of PbO powder, and 0.2658 g of Nb 2 O 5 powder.
g, Y 2 O 3 powder 0.2258 g (average particle size of each is 1 μm)
(below) was mixed in a ball mill for 20 hours at 750°C.
Calcined for 1 hour, the composition formula is 0.04Pb (Y 1/2 Nb 1/2 )
A solid ternary lead perovskite solid solution powder of O 3 −0.5PbZrO 3 −0.46PbTiO 3 was obtained. The solid solution fine powder had an average particle size of 0.3 μm, and each particle was spherical and almost monodispersed.
得られた固溶体微粉末を2トン/cm2で円盤状に
成形した後1200℃で2時間常圧焼結すると、密度
8.01(理論密度の99.1%)のセラミツクスが得ら
れた。 The obtained solid solution fine powder was formed into a disk shape at 2 tons/cm 2 and then sintered at 1200℃ for 2 hours under normal pressure.
Ceramics with a density of 8.01 (99.1% of the theoretical density) were obtained.
比較例 3
4Nのアンモニア1中に硝酸鉛0.0033g(ジ
ルコニウム塩に対して0.005モル%)を水50c.c.に
溶解した水溶液を徐々に加え、Pb2+の水酸化物
沈殿を生成させた後、続いて濃度0.75076mol/
のオキシ塩化ジルコニウム水溶液133.19c.c.を
徐々に加え、Pb2+とZr4+の混合水酸化物の均密
沈殿を生成させた。これを洗浄、乾燥後1000℃で
1時間仮焼し、(Zr0.99995Pb0.0001)O2なる組成の
仮焼粉末を得た。該仮焼粉末の1次粒子の平均径
は0.1μmであるが、凝集粒子が見られた。Comparative Example 3 An aqueous solution of 0.0033 g of lead nitrate (0.005 mol % based on zirconium salt) dissolved in 50 c.c. of water in 4N ammonia 1 was gradually added to form a hydroxide precipitate of Pb 2+ After that, the concentration is 0.75076mol/
133.19 cc of zirconium oxychloride aqueous solution was gradually added to form a homogeneous precipitate of mixed hydroxide of Pb 2+ and Zr 4+ . After washing and drying, this was calcined at 1000° C. for 1 hour to obtain a calcined powder having a composition of (Zr 0.99995 Pb 0.0001 ) O 2 . Although the average diameter of the primary particles of the calcined powder was 0.1 μm, aggregated particles were observed.
上記で得た仮焼粉末3.6974gと市販のTiO2粉
末3.1952g、PbO粉末22.30g、ZnO粉末0.8139
g、Nb2O5粉末2.6581g(何れも平均粒径は1μm
以下)をボールミルで20時間混合した後、730℃
で1時間仮焼し、実施例1の場合と同様にして、
組成式が0.3Pb(Zn1/3Nb2/3)O3−0.3PbZrO3−
0.4PbTiO3である凝3成分系鉛ペロブスカイト粉
末を得た。 3.6974g of calcined powder obtained above, 3.1952g of commercially available TiO 2 powder, 22.30g of PbO powder, 0.8139g of ZnO powder
g, Nb 2 O 5 powder 2.6581 g (average particle size of each is 1 μm)
After mixing the following) in a ball mill for 20 hours, 730℃
Calcinate for 1 hour and do the same as in Example 1.
The composition formula is 0.3Pb(Zn 1/3 Nb 2/3 )O 3 −0.3PbZrO 3 −
A solid ternary lead perovskite powder of 0.4PbTiO 3 was obtained.
該固溶体粉末の粒径は約0.2μmであるが、かな
りの凝集が見られた。 Although the particle size of the solid solution powder was approximately 0.2 μm, considerable agglomeration was observed.
この固溶体粉末を2トン/cm2で円盤状に成形し
た後、1200℃で2時間常圧焼結したところ、密度
7.52(理論密度の92%)のセラミツクスしか得ら
れなかつた。 This solid solution powder was formed into a disk shape at 2 tons/cm 2 and then sintered at 1200℃ for 2 hours under normal pressure.
Only ceramics with a density of 7.52 (92% of theoretical density) were obtained.
比較例 4
4Nのアンモニア1中に硝酸鉛7.945g(ジル
コニウム塩に対して12モル%)を水100c.c.に溶解
した水溶液を徐々に加え、Pb2+の水酸化物沈殿
を生成させた後、続いて濃度0.75076mol/の
オキシ塩化ジルコニウム水溶液117.21c.c.を徐々に
加え、Pb2+とZr4+の混合水酸化物の均密沈殿を
生成させた。これを洗浄、乾燥後1100℃で1時間
仮焼し、(Zr0.88Pb0.24)O2なる組成の仮焼粉末を
得た。該仮焼粉末の1次粒子の平均粒径は0.2μm
のものの他、粒子径が2〜3μmの粗大粒子が含
まれていた。Comparative Example 4 An aqueous solution of 7.945 g of lead nitrate (12 mol % based on zirconium salt) dissolved in 100 c.c. of water in 4N ammonia 1 was gradually added to form a Pb 2+ hydroxide precipitate. Then, 117.21 cc of an aqueous solution of zirconium oxychloride having a concentration of 0.75076 mol/ml was gradually added to form a homogeneous precipitate of a mixed hydroxide of Pb 2+ and Zr 4+ . After washing and drying, this was calcined at 1100° C. for 1 hour to obtain a calcined powder having a composition of (Zr 0.88 Pb 0.24 )O 2 . The average particle size of the primary particles of the calcined powder is 0.2 μm
Coarse particles with particle diameters of 2 to 3 μm were also included.
上記で得た仮焼粉末5.5229gと市販のTiO2粉
末3.1952g、PbO粉末20.49g、ZnO粉末0.8139
g、Nb2O5粉末2.6581g(何れも平均粒径は1μm
以下)をボールミルで20時間混合した後、730℃
で1時間仮焼し、実施例1の場合と同様にして、
組成式が0.3Pb(Zn1/3Nb2/3)O3−0.3PbZrO3−
0.4PbTiO3である凝3成分系鉛ペロブスカイト粉
末を得た。 Calcined powder 5.5229g obtained above, commercially available TiO 2 powder 3.1952g, PbO powder 20.49g, ZnO powder 0.8139g
g, Nb 2 O 5 powder 2.6581 g (average particle size of each is 1 μm)
After mixing the following) in a ball mill for 20 hours, 730℃
Calcinate for 1 hour and do the same as in Example 1.
The composition formula is 0.3Pb(Zn 1/3 Nb 2/3 )O 3 −0.3PbZrO 3 −
A solid ternary lead perovskite powder of 0.4PbTiO 3 was obtained.
該固溶体粉末の粒径は約0.2μmのものの他、粗
大粒子が多く含まれていた。 The solid solution powder had a particle size of approximately 0.2 μm and contained many coarse particles.
この固溶体粉末を2トン/cm2で円盤状に成形し
た後、1200℃で2時間常圧焼結したところ、密度
7.68(理論密度の94%)のセラミツクスしか得ら
れなかつた。 This solid solution powder was formed into a disk shape at 2 tons/cm 2 and then sintered at 1200℃ for 2 hours under normal pressure.
Only ceramics with a density of 7.68 (94% of the theoretical density) were obtained.
[発明の効果]
本発明は以上の様に構成されており、製造工程
で凝集し易く微細粉末として得られ難いジルコニ
ウム酸化物粉末は、適量の鉛化合物と組合せた多
段湿式法を採用することによつてサブミクロン級
の微細なものとし、これを元々微細なものとして
得ることのできるチタン化合物や鉛化合物等と共
に乾式法で混合、仮焼することにより、ジルコン
酸鉛−チタン酸鉛−複合ペロブスカイトよりなる
粒度特性の優れた凝3成分系鉛ペロブスカイト固
溶体粉末を、比較的簡単な操作で生産性良く安価
に提供し得ることになつた。そしてこの固溶体粉
末は均密で非常に微細なものであるから、任意の
形状に成形した後は常圧で焼結した場合でも高密
度のセラミツクスを得ることができ、また薄肉化
の要請にも十分答えることができるなど、機能性
セラミツクスの性能向上に大きく貢献するもので
ある。[Effects of the Invention] The present invention is configured as described above, and zirconium oxide powder, which tends to agglomerate during the manufacturing process and is difficult to obtain as a fine powder, can be obtained by using a multi-stage wet method in combination with an appropriate amount of lead compound. Therefore, the submicron-level fine particles are mixed with titanium compounds, lead compounds, etc., which can originally be obtained as fine particles, by a dry method and calcined to produce lead zirconate-lead titanate-composite perovskite. It has now become possible to provide a coagulated ternary lead perovskite solid solution powder with excellent particle size characteristics at a low cost and with good productivity through relatively simple operations. Since this solid solution powder is homogeneous and extremely fine, it is possible to obtain high-density ceramics even when sintered at normal pressure after forming it into any shape, and it also meets the demand for thinner walls. This will greatly contribute to improving the performance of functional ceramics.
Claims (1)
スカイトよりなる凝3成分系鉛ペロブスカイト固
溶体粉末を製造するに当たり、 []:計算量の全量を占めるジルコニウムの必要
全量を含むジルコニウム塩溶液(A)と、計算量の
一部に当たり、且つ上記ジルコニウム塩に対し
て0.01〜10モル%の鉛を含む鉛塩溶液(B)とを、
アンモニアおよび/もしくはアミン類の溶液に
任意の順序で加入し、生成する均密な沈殿を洗
浄、乾燥後800〜1400℃で仮焼する工程、 []:上記[]の工程で得た仮焼粉末を、前記
計算量の残部全量に相当する化合物粉末と共に
均一に混合し、500〜1200℃で仮焼する工程、 からなることを特徴とする凝3成分系ペロブスカ
イト固溶体粉末の製造方法。 2 ジルコン酸鉛、チタン酸鉛および複合ペロブ
スカイトよりなる凝3成分系鉛ペロブスカイト固
溶体粉末を製造するに当たり、 []:計算量の全量を占めるジルコニウムの必要
全量を含むジルコニウム塩溶液(A)と、計算量の
一部に当たり、且つ上記ジルコニウム塩に対し
て0.01〜10モル%の鉛を含む鉛塩溶液(B)とを、
アンモニアおよび/もしくはアミン類の溶液に
任意の順序で加入し、生成する均密な沈殿を洗
浄、乾燥後800〜1400℃で仮焼する工程、 []:上記[]の工程で得た仮焼粉末を、前記
計算量の残部全量に相当する化合物粉末と共に
均一に混合し、500〜1200℃で仮焼する工程、 []:上記[]で得た仮焼粉末を成形し、700
〜1300℃で常圧焼結する工程、 からなることを特徴とする凝3成分系ペロブスカ
イトセラミツクスの製造方法。[Scope of Claims] 1. In producing a coagulated ternary lead perovskite solid solution powder consisting of lead zirconate, lead titanate, and composite perovskite, []: A zirconium salt solution containing the necessary total amount of zirconium that accounts for the entire calculated amount. (A) and a lead salt solution (B) which corresponds to a part of the calculated amount and contains 0.01 to 10 mol% of lead based on the above zirconium salt,
A process of adding ammonia and/or amines solution in any order, washing and drying the resulting homogeneous precipitate, and then calcining at 800 to 1400℃, []: Calcination obtained in the above process [] A method for producing a coagulated three-component perovskite solid solution powder, comprising the steps of uniformly mixing the powder with a compound powder corresponding to the remainder of the calculated amount and calcining at 500 to 1200°C. 2. In producing a solid ternary lead perovskite solid solution powder consisting of lead zirconate, lead titanate, and composite perovskite, []: A zirconium salt solution (A) containing the required total amount of zirconium that accounts for the total amount of the calculated amount, and A lead salt solution (B) containing 0.01 to 10 mol% of lead based on the zirconium salt,
A process of adding ammonia and/or amines solution in any order, washing and drying the resulting homogeneous precipitate, and then calcining at 800 to 1400℃, []: Calcination obtained in the above process [] The step of uniformly mixing the powder with the compound powder corresponding to the remaining amount of the calculated amount and calcining at 500 to 1200°C, []: Shaping the calcined powder obtained in the above [],
1. A method for producing solid three-component perovskite ceramics, comprising: a step of sintering under normal pressure at ~1300°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62269556A JPH01111725A (en) | 1987-10-26 | 1987-10-26 | Condensed ternary lead perovskite solid solution powder and production of condensed ternary lead perovskite ceramic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62269556A JPH01111725A (en) | 1987-10-26 | 1987-10-26 | Condensed ternary lead perovskite solid solution powder and production of condensed ternary lead perovskite ceramic |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01111725A JPH01111725A (en) | 1989-04-28 |
JPH0331647B2 true JPH0331647B2 (en) | 1991-05-08 |
Family
ID=17474023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62269556A Granted JPH01111725A (en) | 1987-10-26 | 1987-10-26 | Condensed ternary lead perovskite solid solution powder and production of condensed ternary lead perovskite ceramic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01111725A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3597400B2 (en) | 1997-11-18 | 2004-12-08 | 株式会社デンソー | Piezoelectric ceramic composition |
JP2010275163A (en) * | 2009-05-29 | 2010-12-09 | Sakai Chem Ind Co Ltd | Zirconium titanate and external additive for toner |
JP5700862B2 (en) * | 2013-05-08 | 2015-04-15 | 堺化学工業株式会社 | Zirconium titanate particle manufacturing method, zirconium titanate and toner external additive |
CN110697775A (en) * | 2019-11-08 | 2020-01-17 | 广东广晟稀有金属光电新材料有限公司 | Preparation method of low-nitrogen niobium hydroxide |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61247607A (en) * | 1985-04-22 | 1986-11-04 | Natl Inst For Res In Inorg Mater | Preparation of raw material powder of compound having perovskite structure |
-
1987
- 1987-10-26 JP JP62269556A patent/JPH01111725A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61247607A (en) * | 1985-04-22 | 1986-11-04 | Natl Inst For Res In Inorg Mater | Preparation of raw material powder of compound having perovskite structure |
Also Published As
Publication number | Publication date |
---|---|
JPH01111725A (en) | 1989-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0345025B2 (en) | ||
JP2598786B2 (en) | Method for producing perovskite-based functional ceramic | |
US5503815A (en) | Method for the preparation of a lanthanum manganite powder | |
JPH0331647B2 (en) | ||
JPH0159967B2 (en) | ||
JPS6153113A (en) | Production of powdery raw material of easily sintering perovskite and its solid solution by wet process | |
JPH0818871B2 (en) | Method for manufacturing lead zirconate titanate-based piezoelectric ceramic | |
JPH0210089B2 (en) | ||
JPH027906B2 (en) | ||
JP2767584B2 (en) | Method for producing fine perovskite ceramic powder | |
JPS6363511B2 (en) | ||
JPH0818870B2 (en) | Method for manufacturing lead zirconate titanate-based piezoelectric ceramic | |
JPH0210091B2 (en) | ||
JPH0769645A (en) | Production of lead-containing multiple oxide | |
JPH0159205B2 (en) | ||
JPH013019A (en) | Method for producing perovskite ceramic fine powder | |
JPH0784345B2 (en) | Manufacturing method of perovskite ceramics | |
JPS62138354A (en) | Manufacture of readily sinterable lead-containing oxide powder | |
JPH0784346B2 (en) | Method for producing perovskite ceramics containing niobium | |
JPH0427166B2 (en) | ||
JPS6221759A (en) | Manufacture of ferroelectric ceramic by multi-stage wet process | |
JPS63235401A (en) | Production of dielectric powder containing zirconium and lead | |
JPS6265907A (en) | Production of easy-to-sinter perovskite powder | |
JPS63248774A (en) | Manufacture of polycomponent ceramics | |
JPH0336769B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |