JPH0328109A - Production of compound oxide powder - Google Patents

Production of compound oxide powder

Info

Publication number
JPH0328109A
JPH0328109A JP9882189A JP9882189A JPH0328109A JP H0328109 A JPH0328109 A JP H0328109A JP 9882189 A JP9882189 A JP 9882189A JP 9882189 A JP9882189 A JP 9882189A JP H0328109 A JPH0328109 A JP H0328109A
Authority
JP
Japan
Prior art keywords
precursor
sol
solvent
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9882189A
Other languages
Japanese (ja)
Inventor
Hajime Funakoshi
肇 船越
Kenichi Fukuda
福田 健市
Yasushi Hara
靖 原
Takashi Mori
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9882189A priority Critical patent/JPH0328109A/en
Publication of JPH0328109A publication Critical patent/JPH0328109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain compound oxide powder having a composition of excellent uniformity by heat-treating at a given temperature a precursor for producing a uniform compound oxide comprising a thermally decomposable metallic compound, sol of metal oxide, etc., as raw materials. CONSTITUTION:Plural compounds are selected from a thermally decomposable metallic compound, sol of metal oxide and sol of metal hydroxide. A solution containing the plural compounds and a solvent is blended with a water-soluble polymer compound. Then the solvent is removed from the mixed solution to give a precursor for producing a compound oxide. Then the precursor is heat- treated at >=400 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複合酸化物製造用前駆体の製法及びこの前駆
体を用いた微細でかつ均一な組成を有する複合酸化物粉
末の製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a precursor for producing a complex oxide, and a method for producing a complex oxide powder having a fine and uniform composition using this precursor. .

複合酸化物粉末は誘電体、圧電体、超伝導体、オプトエ
レクトロニクス材料等の電子部品材料や触媒を始め多く
の利用分野がある。近年これらの材料の高機能化が要求
されており、原料粉末においても低温焼結性、組成の均
一性等が要求されている。本発明はこれらの要求にこた
えるものである。
Composite oxide powders have many uses including dielectrics, piezoelectrics, superconductors, electronic component materials such as optoelectronic materials, and catalysts. In recent years, there has been a demand for higher functionality of these materials, and raw material powders are also required to have low-temperature sinterability, uniform composition, and the like. The present invention meets these needs.

[従来の技術] 従来、複合酸化物粉末の製造方法として以下の方法が知
られている。
[Prior Art] Conventionally, the following method is known as a method for producing composite oxide powder.

(1)乾式法 この方法は、構成成分の原料化合物(主として酸化物)
を乾式混合もしくは湿式混合し、これを焼成する方法で
ある。この方法では、原料粉末が安価であること、複雑
な操作を必要としないこと等の利点もあるが、均一組成
の原料粉末が得にくく、また混合時に不純物の混入が生
じる等の問題点を有する。さらに、この方法で均一な相
の複合酸化物粉末を得るためには焼或温度を高くする必
要があり、そのため原料粉末の粒子は粗大化する。
(1) Dry method This method uses raw material compounds (mainly oxides) as constituent components.
This method involves dry mixing or wet mixing and firing the mixture. This method has advantages such as the raw material powder is inexpensive and does not require complicated operations, but it has problems such as difficulty in obtaining raw material powder with a uniform composition and the possibility of contamination with impurities during mixing. . Furthermore, in order to obtain a composite oxide powder with a uniform phase using this method, it is necessary to increase the sintering temperature, which causes the particles of the raw material powder to become coarse.

(2)共沈法 この方法は、その構成或分のすべてを混合した混合溶液
とし、これにアルカリ等の沈澱形戊剤を添加して構或成
分を共沈させ、この共沈物を濾過、乾燥、焼成する方法
である。この共沈法では、微細な原料粉末が得られるが
、沈澱形成剤添加の際の溶液のpl1によって構或或分
の各金属イオンの沈澱形成状態が異なる場合が多く、製
造した酸化物の組成が、当初設定した組成と異る場合が
多く目的とした複合酸化物を得ることが困難である等の
欠点がある。
(2) Co-precipitation method In this method, a mixed solution is prepared by mixing all of the components, a precipitating agent such as an alkali is added to this solution to coprecipitate the components, and this coprecipitate is filtered. , drying and firing. In this coprecipitation method, a fine raw material powder can be obtained, but the precipitate formation state of each metal ion often differs depending on the PL1 of the solution when the precipitant is added, and the composition of the produced oxide may vary. However, there are drawbacks such as the fact that the composition is often different from the initially set composition and it is difficult to obtain the desired composite oxide.

(3)アルコキシド法 この方法は構或戊分のアルコキシド溶液の混合物を加水
分解することにより、金属酸化物あるいは水酸化物の共
沈体とアルコールを生或する事を利用したものである。
(3) Alkoxide method This method utilizes the production of a metal oxide or hydroxide coprecipitate and alcohol by hydrolyzing a mixture of alkoxide solutions of certain components.

この方法で得られる酸化物の粉末は非常に微細であり、
粒度分布が狭く、かつ高純度なため、この方法で得られ
たものはセラミックス原料粉末として優れた特性を有し
ている。
The oxide powder obtained by this method is very fine;
Since the particle size distribution is narrow and the purity is high, the powder obtained by this method has excellent characteristics as a ceramic raw material powder.

しかし、アルコキシド原料が高価であり、アルコキシド
溶液を調製するために溶媒を十分に脱水する必要があり
、そのための脱水コスト及び溶媒回収コストがかかると
いう欠点を有する。
However, the alkoxide raw material is expensive, and the solvent must be sufficiently dehydrated to prepare the alkoxide solution, resulting in dehydration costs and solvent recovery costs.

[発明が解決しようとする課題] 本発明の目的は、従来の複合酸化物粉末の製造方法の欠
点を改良した、組成の均一性に優れかつ微細で焼結性の
よい複合酸化物粉末前駆体の製造方l去及びこの前駆体
を用いた複合酸化物粉末の製造方法を提供することにあ
る。
[Problems to be Solved by the Invention] An object of the present invention is to improve the drawbacks of conventional methods for producing composite oxide powder, and to provide a composite oxide powder precursor with excellent compositional uniformity, fineness, and good sinterability. An object of the present invention is to provide a method for producing a composite oxide powder using the precursor and a method for producing a composite oxide powder using the precursor.

[課題を解決するための手段コ 複合酸化物は、その結晶構造により多くの種類がある。[Means to solve the problem] There are many types of composite oxides depending on their crystal structure.

たとえば、強磁性をもつスビネル構造やマグネトプラン
バイト構造、強誘電性を持つベロブス力イト構造等を持
つものが良く知られている。
For example, those having a ferromagnetic Subinel structure, a magnetoplumbite structure, a ferroelectric Belobusite structure, etc. are well known.

組成の均一性に優れた複合酸化物粉末を製造するために
は、各種金属原料を均一に混合することが必要である。
In order to produce composite oxide powder with excellent compositional uniformity, it is necessary to uniformly mix various metal raw materials.

このような理想的な混合状態は、例えば各種金属化合物
を共通の溶媒に均一に溶解することにより得ることが出
来る。各種金属塩が溶解した溶液では、原子オーダーで
の混合が行われており、また、各種コロイド溶液を混合
した溶液では、コロイド次元オーダーで混合が行われて
いると考えらている。このような混合状態を保ちながら
溶媒を除去し、得られた成分を焼成することにより、低
温で組成の均一性に優れた複合酸化物粉末を調製するこ
とが出来ると考えられる。例えば従来技術である共沈法
は、各種金属化合物が共通の溶媒に溶解混合された状態
の溶戒に沈澱剤を加え各種金属成分の混合された沈澱物
を得る方法であるが、溶液中での金属或分の沈澱生成の
条件は金属成分ごとに異なり、一般的に多数のイオンを
同時に沈澱させることは実際上不可能である。
Such an ideal mixed state can be obtained, for example, by uniformly dissolving various metal compounds in a common solvent. It is believed that in solutions in which various metal salts are dissolved, mixing occurs on the atomic order, and in solutions in which various colloidal solutions are mixed, mixing occurs on the colloidal order. It is believed that by removing the solvent while maintaining such a mixed state and firing the obtained components, it is possible to prepare a composite oxide powder with excellent compositional uniformity at a low temperature. For example, in the coprecipitation method, which is a conventional technique, a precipitant is added to a precipitate in which various metal compounds are dissolved and mixed in a common solvent to obtain a precipitate in which various metal components are mixed. The conditions for precipitating a certain amount of metal differ depending on the metal component, and generally it is practically impossible to precipitate a large number of ions at the same time.

また、各種金属或分が溶解混合された状態の溶液から蒸
発乾固あるいは、噴霧乾燥等により溶媒を除去した場合
には、各種金属成分の溶媒に対する溶解度が異なるため
乾燥時に金属成分の偏析が避けられない。以上のように
して得た前駆体を焼成することにより複合酸化物粉末の
調製を試みた場合、前駆体の組成が不均一で、単一複合
酸化物相を得ようとした場合、高い焼或温度を必要とす
る。
In addition, when the solvent is removed from a solution in which various metal components are dissolved and mixed by evaporation to dryness or spray drying, segregation of the metal components during drying is avoided because the solubility of the various metal components in the solvent is different. I can't. When attempting to prepare a composite oxide powder by firing the precursor obtained as described above, if the composition of the precursor is non-uniform and an attempt is made to obtain a single composite oxide phase, high sintering or Requires temperature.

本発明者らは、以上のような問題点を解決するために検
討を行った桔果、或る種の条件で各種金属化合物を溶解
混合した状態の溶液から溶媒を除大したものは、均一な
組成を持つ複合酸化物粉末製造用前駆体を得ることを見
出し本発明を完成した。即ち本発明は、熱分解性金属化
合物、金属酸化物ゾル、金属水酸化物ゾルの化合物群か
ら選ばれた2種以上の化合物及び溶媒を含んだ溶液と水
溶性高分子化合物とを混合し、該混合溶液から溶媒を除
失することを特徴とする複合酸化物製造用前駆体の製造
方法に関するものであり、更にこの方法で得た前駆体を
400℃以上の温度で熱処理することを特徴とする複合
酸化物粉末の製遣方法に関するものである。
In order to solve the above-mentioned problems, the inventors of the present invention have investigated the results of their research, and found that a solution obtained by removing the solvent from a solution in which various metal compounds are dissolved and mixed under certain conditions is a homogeneous solution. The present invention was completed by discovering that a precursor for producing composite oxide powder having the following composition could be obtained. That is, the present invention mixes a water-soluble polymer compound with a solution containing two or more compounds and a solvent selected from the compound group of thermally decomposable metal compounds, metal oxide sols, and metal hydroxide sols, This invention relates to a method for producing a precursor for producing a composite oxide, characterized by removing the solvent from the mixed solution, and further characterized by heat-treating the precursor obtained by this method at a temperature of 400°C or higher. The present invention relates to a method for producing composite oxide powder.

次に本発明を更に詳述する。Next, the present invention will be explained in further detail.

本発明で得る複合酸化物は、特に限定されるものではな
く、例えば、強磁性をもつスピネル構造やマグネトプラ
ンバイト構造、強誘電性を持つベロブス力イト構造等の
複合酸化物等いづれでも得られるが、特にペロブス力イ
ト型複合酸化物の製造に対して有効である。
The composite oxide obtained in the present invention is not particularly limited, and for example, any composite oxide having a spinel structure or magnetoplumbite structure with ferromagnetism, a belobus-powerite structure with ferroelectricity, etc. can be obtained. However, it is particularly effective for producing perovskite complex oxides.

以下ペロブス力イト構造を持つ複合酸化物を得る方法を
例として本発明を詳細に説明する。
The present invention will be explained in detail below using as an example a method for obtaining a composite oxide having a perovskite structure.

ベロブス力イト型複合酸化物は一般にABO3で示され
る。このようなベロブス力イト構造をとる前記一般式の
A成分と、B成分の組合せは、多数存在し、例えばコン
デンサ材料として用いられるものでは、A成分がPb,
 B成分がTI, Mg, N1,Nbからなるものが
知られており、以下の組成のものが知れている。
A belobusite-type composite oxide is generally represented by ABO3. There are many combinations of the A component and the B component in the general formula that have such a bellows power structure. For example, in a material used as a capacitor material, the A component is Pb, Pb,
It is known that the B component consists of TI, Mg, N1, and Nb, and the following compositions are known.

[PbTiO  i  コ −  −   [Pb  
(Mg+, 3 Nb 2zi  )  0  3  
]  −[Pb  (Nll/3  Nb 2/x  
)  0  3 コ 2( :.:. テX+Y+Z−
1 テ以下PT−PMN−PNNと略記する)本発明に
おいて、複合酸化物製造用前駆体を調製するための原料
としては、熱分解性金属化合物、金属酸化物ゾル、金属
水酸化物ゾルの化合物群から構成される化合物の2種以
上を使用する。具体的な熱分解性金属化合物としては、
各種金属のカルボン酸塩、硝酸塩等があげられる。これ
らの内TI、ZrSNb等の金属元素については、カル
ボン酸塩、硝酸塩等を用いることが困難であるため、金
属酸化物ゾルあるいは、金属水酸化物ゾルを用いること
が好ましい。金属酸化物ゾル、金属水酸化物ゾルとして
は、金属酸化物や金属水酸化物をボールミルや振動ミル
等を用いて超微粉砕し溶媒に分散させたもの、市販各種
金属酸化物コロイド溶液、あるいは、各種金属アルコキ
シド、金属塩化物、金属オキシ塩化物、金属蓚酸化合物
等を加水分解等の反応により調製して得たゾルを使用す
ることが出来るが、金属塩化物等を原料として使用した
場合、生成系残留する塩素イオン等が製品粉末の性能低
下の原因となり、また、これらが他の原料例えばpbと
結合して沈澱を生成するため、充分な桔製が必要がある
。また、塩素イオンや蓚酸イオンは、他の原料例えばp
bと結合して沈澱を生成するために、これらを含んだ原
料を用いてゾルを調整した場合は十分な精製が必要であ
る。ここで用いるゾルの粒子径は、小さければ小さいほ
ど反応性に富むので、500n一以下、特に100r+
+w以下のゾル粒子を使用することが好ましい。先に示
しタPT−PMN−PNNの組成を持つベロプス力イト
型複合酸化物の生成に於いては、Pb, Mg, N1
は酢酸塩あるいは硝酸塩を、TISNbはゾルを原料と
することができる。
[PbTiO i co - - [Pb
(Mg+, 3 Nb 2zi ) 0 3
] −[Pb (Nll/3 Nb 2/x
) 0 3 ko 2 ( :.:. teX+Y+Z-
(hereinafter abbreviated as PT-PMN-PNN) In the present invention, the raw materials for preparing the precursor for producing a composite oxide include compounds such as thermally decomposable metal compounds, metal oxide sols, and metal hydroxide sols. Two or more compounds of the group are used. Specific thermally decomposable metal compounds include:
Examples include carboxylates and nitrates of various metals. Among these metal elements such as TI and ZrSNb, it is difficult to use carboxylates, nitrates, etc., so it is preferable to use metal oxide sol or metal hydroxide sol. Metal oxide sols and metal hydroxide sols include those obtained by ultrafinely pulverizing metal oxides and metal hydroxides using a ball mill or vibration mill and dispersing them in a solvent, commercially available various metal oxide colloidal solutions, or It is possible to use sol obtained by preparing various metal alkoxides, metal chlorides, metal oxychlorides, metal oxalic acid compounds, etc. through reactions such as hydrolysis, but when metal chlorides etc. are used as raw materials, Chlorine ions and the like remaining in the production system cause a decline in the performance of the product powder, and also combine with other raw materials, such as PB, to form precipitates, so it is necessary to prepare the product sufficiently. In addition, chloride ions and oxalate ions can be used with other raw materials such as p
In order to combine with b and form a precipitate, sufficient purification is required when a sol is prepared using raw materials containing these. The particle size of the sol used here is 500n or less, especially 100r+, since the smaller the particle size, the more reactive it is.
It is preferable to use sol particles of +w or less. In the production of the velocytite complex oxide having the composition PT-PMN-PNN shown above, Pb, Mg, N1
can be made from acetate or nitrate, and TISNb can be made from sol.

次にこのような原料を溶媒を用いて溶解混合する。ここ
で用いる溶媒としては、特に限定されるものではないが
全ての熱分解性金属化合物が溶解し、またゾルを使用す
る場合は、ゾル粒子が凝集またはゲル化しない溶媒及び
条件を選択する必要がある。これらの条件を満たす溶媒
としては、水が最も適しておりかつコスト的にも最適で
あるが、水に限定されるものではなく、例えば水とアル
コールあるいは水と有機酸(ギ酸、酢酸等)の混合溶媒
や、非水溶媒を用いてもよい。また、例えばチタニアゾ
ルを原料の一部として使用するような場合、溶媒をゲル
化しない条件、即ちpl1を4以下に保つ必要があり他
の金属成分のゾルを使用する場合も同様の注意が必要で
ある。
Next, such raw materials are dissolved and mixed using a solvent. The solvent used here is not particularly limited, but it is necessary to select a solvent and conditions that will dissolve all the thermally decomposable metal compounds, and if a sol is used, the sol particles will not aggregate or gel. be. Water is the most suitable solvent that satisfies these conditions, and is also optimal in terms of cost, but it is not limited to water. For example, water and alcohol, or water and organic acids (formic acid, acetic acid, etc.) A mixed solvent or a non-aqueous solvent may be used. In addition, for example, when using titania sol as part of the raw material, it is necessary to maintain conditions that do not cause the solvent to gel, that is, pl1 is 4 or less, and the same precautions are required when using sols with other metal components. be.

原料を溶解混合した時点で各種金属成分は、原子オーダ
ーあるいはコロイド次元のオーダーで均一に混合された
状態となる。このような混合状態を保ちながら溶媒を除
去し、焼成することにより低温で粒度分布の少ない複合
酸化物粉末を調製することが出来る。
When the raw materials are melted and mixed, the various metal components are uniformly mixed on the atomic or colloidal order. By removing the solvent and firing while maintaining such a mixed state, a composite oxide powder with a narrow particle size distribution can be prepared at a low temperature.

本発明においては、溶解混合した溶液から溶媒を除表す
る前に、水溶性高分子化合物を前記混合溶液に混合する
ことが必須である。
In the present invention, it is essential to mix the water-soluble polymer compound into the mixed solution before removing the solvent from the dissolved and mixed solution.

ここで用いる水溶性高分子化合物の効果は明確ではない
が、各種金属成分が溶解混合された状態の溶液から溶媒
を除去する時点で、水溶性高分子化合物により形成され
るネットワークの中に金属イオンあるいは、コロイド粒
子が取り込まれることにより、各種金属塩の偏析あるい
は、コロイド粒子の凝集が抑制され、理想的な混合状態
が保たれたまま混合溶液から溶媒の除去が可能になるた
めと考えられる。従って、本発明においては、水溶性高
分子化合物は、特に限定されるものではないが、各種金
属成分が溶解混合された状態の溶液から溶媒を除去する
時点で、金属塩の偏折、およびコロイド粒子の凝集防止
作用を強く有していると4えられるもの例えば、ポリビ
ニルアルコール、ポリエチレングリコール、ポリアクリ
ル酸、ポリメタクリル酸等が特に好ましい。
The effect of the water-soluble polymer compound used here is not clear, but when the solvent is removed from the solution in which various metal components are dissolved and mixed, metal ions are present in the network formed by the water-soluble polymer compound. Alternatively, it is considered that the incorporation of colloidal particles suppresses segregation of various metal salts or aggregation of colloidal particles, making it possible to remove the solvent from the mixed solution while maintaining an ideal mixed state. Therefore, in the present invention, the water-soluble polymer compound is not particularly limited, but when the solvent is removed from the solution in which various metal components are dissolved and mixed, the polarization of the metal salt and the colloid. Particularly preferred are materials that are considered to have a strong particle aggregation prevention effect, such as polyvinyl alcohol, polyethylene glycol, polyacrylic acid, and polymethacrylic acid.

このような水溶性高分子化合物の添加方法は特に規定さ
れるものではなく、各種金属化合物の混合溶液に水溶性
高分子化合物を加えてもよく、水溶性高分子溶液に各種
金属化合物を添加することにより混合してもよい。用い
る水溶性高分子化合物の添加量が少ないと偏析あるいは
、凝集防止効果が発揮されない。従って水溶性高分子化
合物の添加量は、金属成分の種類によっても異なるが、
金属酸化物の重量の20wt%以上、好ましくは、50
vt%以上となるような量である。
The method of adding such a water-soluble polymer compound is not particularly specified, and the water-soluble polymer compound may be added to a mixed solution of various metal compounds, or various metal compounds may be added to a water-soluble polymer solution. They may also be mixed. If the amount of the water-soluble polymer compound used is small, the effect of preventing segregation or aggregation will not be exhibited. Therefore, the amount of water-soluble polymer compound added varies depending on the type of metal component, but
20 wt% or more of the weight of the metal oxide, preferably 50 wt%
The amount is such that it is equal to or higher than vt%.

以上のような各種或分を含んだ溶液から溶媒を除去する
方法は特に制限されないが、通常の蒸発乾固、噴霧乾燥
等を用いることが出来る。蒸発乾固を行う場合は、撹拌
下で行うのが好ましく、また、減圧下で行ってもよい。
The method for removing the solvent from the solution containing the various components as described above is not particularly limited, but ordinary evaporation to dryness, spray drying, etc. can be used. When performing evaporation to dryness, it is preferably performed under stirring, and may also be performed under reduced pressure.

以上のような方法で複合酸化物製造用前駆体を得ること
ができる。
A precursor for producing a composite oxide can be obtained by the method described above.

次に得られた複合酸化物製造用前駆体から複合酸化物粉
末を得る方法について説明する。
Next, a method for obtaining composite oxide powder from the obtained composite oxide production precursor will be described.

本発明では、得られた前記前駆体を400℃以上の温度
で熱処理するが、前駆体をまず比較的低い温度で熱分角
ダすることが好ましい。これは前記熱処理にまり生或す
る副生ガス等をまず熱分解により除去し、後に高温度で
焼成するのに好ましいことである。この際の熱分解の温
度は、250℃以上好ましくは300℃以上である。こ
の温度が250℃未満では、前駆体の分角qが充分に進
行しない。分角イに要する時間は、添加した水溶性高分
子化合物の量によっても異なるが、空気雰囲気下で1時
間程度行えば十分である。次に熱分解した前駆体を焼威
する。この焼或工程は、熱分解工程と厳密に分ける必要
はなく、熱分解に引き続いて焼戊を行ってもよく、また
、熱分解後の前駆体を一旦ボールミル等で粉砕した後行
ってもよい。焼或温度は、目的とする複合酸化物の結晶
構造及び生成のしやすさによって大きく異なるが通常4
00℃以上を必要とする。焼戊温度が400℃未満の場
合、目的とする複合酸化物を得にくく、また、水溶性高
分子化合物が分解して生じた炭素が残留する可能性が有
るため好ましくない。例えば、ベロブス力イト型複合酸
化物の生成の場合を例にとると、焼成温度は600℃以
上であればよく、好ましくは700〜900℃である。
In the present invention, the obtained precursor is heat-treated at a temperature of 400° C. or higher, but it is preferable that the precursor is first subjected to thermal decomposition at a relatively low temperature. This is preferable in that by-product gases generated during the heat treatment are first removed by thermal decomposition and then fired at a high temperature. The thermal decomposition temperature at this time is 250°C or higher, preferably 300°C or higher. If this temperature is less than 250° C., the arc arc q of the precursor will not progress sufficiently. Although the time required for minute angle A varies depending on the amount of the water-soluble polymer compound added, it is sufficient to carry out the reaction in an air atmosphere for about one hour. The pyrolyzed precursor is then incinerated. This sintering step does not need to be strictly separated from the pyrolysis step, and sintering may be carried out following pyrolysis, or may be carried out after the pyrolyzed precursor is once pulverized with a ball mill or the like. . The firing temperature varies greatly depending on the crystal structure of the target composite oxide and ease of production, but is usually 4.
00°C or higher is required. If the firing temperature is less than 400° C., it is not preferable because it is difficult to obtain the desired composite oxide and carbon produced by decomposition of the water-soluble polymer compound may remain. For example, in the case of producing a belobusite type composite oxide, the firing temperature may be 600°C or higher, preferably 700 to 900°C.

本発明では勿論当初から400℃以上の温度で分解、焼
成を含む熱処理を行なっても良い。
In the present invention, of course, heat treatment including decomposition and firing may be performed at a temperature of 400° C. or higher from the beginning.

本発明において水溶性高分子を用いることの効果は、各
種金属塩の偏折あるいはコロイド粒子の凝集を抑制し、
理想的な混合状態が保たれたまま混合溶液から溶媒の除
去を可能にするだけでなく、前駆体を熱分解、さらに焼
成することにより調製した複合酸化物粉末を微細化する
作用も有している。この詳細な機構は不明であるが、前
駆体を熱分解しさらに焼成する工程において、ネットワ
ークを形或していると考えられる水溶性高分子化合物の
分解作用が有効に働き、生或した複合酸化物粉末は、非
常に微細で粒度分布のそろったものが得られると考えら
れる。
The effect of using a water-soluble polymer in the present invention is to suppress polarization of various metal salts or aggregation of colloidal particles,
It not only makes it possible to remove the solvent from the mixed solution while maintaining the ideal mixing state, but also has the effect of refining the composite oxide powder prepared by thermally decomposing the precursor and then firing it. There is. Although the detailed mechanism is unknown, during the process of thermally decomposing the precursor and further firing, the decomposition effect of the water-soluble polymer compound that is thought to form the network acts effectively, resulting in the formation of complex oxidation. It is thought that a very fine powder with a uniform particle size distribution can be obtained.

本発明で得られる複合酸化物粉末の一次粒子径は、用い
る水溶性高分子の種類と添加量及び分解、焼成条件によ
り異なるが、通常1μm以下のものが得られる。また、
粒子径は添加する高分子化合物の量によりある程度制御
でき、添加量が多いと得られた粉末の一次粒子径は、小
さくなる傾向にある。
The primary particle size of the composite oxide powder obtained in the present invention varies depending on the type and amount of the water-soluble polymer used and the decomposition and firing conditions, but it is usually 1 μm or less. Also,
The particle size can be controlled to some extent by the amount of the polymer compound added, and the larger the amount added, the smaller the primary particle size of the resulting powder tends to be.

[発明の効果コ 以上の説明から明らかなように本発明によれば、熱分解
性金属化合物、金属酸化物ゾル、金属水酸化物ゾルを原
料として均一な前駆体組成物を調製でき、この前駆体組
成物を熱分解し、焼成することにより組成の均一性にす
ぐれた複合酸化物を調製できる。更に、均一な前駆体組
底物を調製するために用いた水溶性高分子化合物が分解
するときの作用により、生戊した複合酸化物粉末は、非
常に微細なものが得られる。
[Effects of the Invention] As is clear from the above description, according to the present invention, a uniform precursor composition can be prepared using a thermally decomposable metal compound, metal oxide sol, or metal hydroxide sol as raw materials, and By thermally decomposing the body composition and firing it, a composite oxide with excellent compositional uniformity can be prepared. Furthermore, due to the decomposition of the water-soluble polymer compound used to prepare the uniform precursor composite, a very fine composite oxide powder can be obtained.

[実施例コ 次に本発明を実施例により更に詳細に説明する。[Example code] Next, the present invention will be explained in more detail with reference to Examples.

実施例1 (1−1)ペロブス力イト型Pb (Mg+.2i N
b2/3) 03?末製造用前駆体の調製 撹拌器を備えた200rd四つ目フラスコに酢酸鉛三水
塩5.89g,酢酸マグネシウム四水塩1.07g,ポ
リエチレングリコール(平均分子m6000) 2.6
4g1蒸留水80gを加え撹拌溶解した。ニオブペンタ
エトキシド3.18gを無水エタノール25rdに溶解
させたものを蒸留水80−に添加し、ニオブゾルを調製
した。この二オブゾルを先に調製した鉛,マグネシウム
溶液に撹押下で添加混合した。この混合溶液をオイルバ
スを用いて加熱し蒸発乾固を行った。蒸発が進行するに
従い溶液の粘度は上昇したが、ニオブゾルの凝集及び塩
の偏析は、観察されなかった。
Example 1 (1-1) Perobus force type Pb (Mg+.2i N
b2/3) 03? Preparation of precursor for powder production In a 200rd fourth flask equipped with a stirrer, add 5.89 g of lead acetate trihydrate, 1.07 g of magnesium acetate tetrahydrate, and 2.6 g of polyethylene glycol (average molecular weight m6000).
4 g of distilled water and 80 g of distilled water were added and dissolved with stirring. A solution of 3.18 g of niobium pentaethoxide in 25 ml of absolute ethanol was added to 80 ml of distilled water to prepare a niobium sol. This diobium sol was added to and mixed with the previously prepared lead and magnesium solution by stirring and pressing. This mixed solution was heated using an oil bath and evaporated to dryness. Although the viscosity of the solution increased as evaporation progressed, no aggregation of niobium sol or segregation of salts was observed.

(1−2)ペロブス力イト型Pb (Mg+/s Nb
2.■3) 03粉末の調製 上記操作により得られた樹脂状の前駆体を磁性ルツボに
移し、マツフル炉を用い空気中300℃で熱分解した。
(1-2) Perobus force type Pb (Mg+/s Nb
2. (3) Preparation of 03 powder The resinous precursor obtained by the above procedure was transferred to a magnetic crucible and thermally decomposed in air at 300°C using a Matsufuru furnace.

得られた、試料をボールミルで1時間粉砕した後、磁性
ボートに移し管状炉を用い空気流通下850℃で2特間
焼成した。得られた粉末?X線回折を用いて分析したと
ころ、Pb(Mg1/,Nb273)03ベロブス力イ
ト相を示すピークと微量のパイロクロア相の存在を示す
ピーク(最強ピークのピーク強度比で10分の1以下)
が観察された。また、走査型電子顕微鏡(SEM)を用
い粒子の形状を観察したところ、平均粒子径0.8 μ
mの1次粒子、及びその弱く凝集した2次粒子が観察さ
れた。
The obtained sample was ground in a ball mill for 1 hour, then transferred to a magnetic boat and fired for 2 hours at 850° C. under air circulation using a tubular furnace. The resulting powder? When analyzed using X-ray diffraction, a peak indicating the Pb(Mg1/, Nb273)03 belobite phase and a peak indicating the presence of a trace amount of pyrochlore phase (peak intensity ratio of the strongest peak is less than 1/10)
was observed. In addition, when the shape of the particles was observed using a scanning electron microscope (SEM), the average particle diameter was 0.8 μm.
m primary particles and their weakly aggregated secondary particles were observed.

実施例2 (2−1)ベロブス力イト型Pb(Mg+/3Nb2z
3)0>粉末製造用前駆体の調製 ニオブゾルとして、永和酸化ニオブ(表面積14011
12/g.強熱減量l5.9%)をジルコニアビーズを
用いた振動ミルを用い24時間湿式粉砕することにより
平均粒子径0.2 μ傷まで微粉砕したものを水に分散
することにより調製したニオブゾルを用いた以外は、実
施例1 (1−1)と同様の操作を行った。前駆体調製
時にゾルの凝集及び塩の偏折は、観察されなかった。
Example 2 (2-1) Beloved type Pb (Mg+/3Nb2z
3) 0> Preparation of precursor for powder production As a niobium sol, Eiwa niobium oxide (surface area 14011
12/g. Using a niobium sol prepared by finely pulverizing ignition loss 15.9%) in water using a vibrating mill using zirconia beads for 24 hours to finely pulverize it to an average particle size of 0.2 μ flaws. The same operation as in Example 1 (1-1) was performed except that No sol aggregation and salt polarization were observed during precursor preparation.

(2−2)ベロブス力イト型Pb(Mgl■Jb2/i
)Oi粉末の調製 (2−1)で得られた前駆体を、実施例1 (1−2)
と同様の操作を行ない得られた粉末をX線回折を用いて
分析したところ、Pb(Mg+/i Nb2/i)03
ベロブス力イト相を示すピークと微量のパイロクロア相
の存在を示すピーク(最強ピークのピーク強度比で約l
O分の1)が観察された。また、走査型電子顕微鏡を用
い粒子の形状を観察したところ、平均粒子径0.8 μ
mの1次粒子、及びその弱く凝集した2次粒子が観察さ
れた。
(2-2) Belobus-type Pb (MglJb2/i
) Preparation of Oi powder (2-1) The precursor obtained in Example 1 (1-2)
When the powder obtained by performing the same operation as above was analyzed using X-ray diffraction, it was found that Pb(Mg+/i Nb2/i)03
A peak indicating the belobus pyrite phase and a peak indicating the presence of a trace amount of pyrochlore phase (the peak intensity ratio of the strongest peak is about 1
1) was observed. In addition, when the shape of the particles was observed using a scanning electron microscope, the average particle diameter was 0.8 μm.
m primary particles and their weakly aggregated secondary particles were observed.

実施例3 (3−1)ペロブスカイト型0.2PTO−0.2PM
N−0.6PNN粉末製造用前駆体の調製 撹拌器を備えた200一四つ口フラスコに蒸留水50g
1ポリビニルアルコール4,4gを加え加熱下で撹拌溶
解した。さらに酢酸鉛三水塩5.69g,酢酸マグネシ
ウム四水塩0.215g,酢酸ニッケル四水塩0.74
7gを加え撹拌溶解した。ニオプベンタエトキシド2.
55gを無水エタノール20艷に溶解させたものを蒸留
水70艷に添加し、ニオブゾルを調製した。
Example 3 (3-1) Perovskite type 0.2PTO-0.2PM
Preparation of Precursor for N-0.6PNN Powder Production 50 g of distilled water in a 200 four-necked flask equipped with a stirrer.
4.4 g of polyvinyl alcohol was added and dissolved with stirring under heating. Additionally, 5.69 g of lead acetate trihydrate, 0.215 g of magnesium acetate tetrahydrate, and 0.74 g of nickel acetate tetrahydrate.
7 g was added and stirred to dissolve. Niopbentaethoxide 2.
A niobium sol was prepared by dissolving 55 g of the solution in 20 bottles of absolute ethanol and adding it to 70 bottles of distilled water.

チタンテトラエトキシド0.684gを無水エタノール
15rniに溶解したものを、ポリビニルアルコール1
vL%を含んだ4wt%ギ酸水溶液40gに添加し、チ
タニアゾルを調製した。このニオブゾルとチタニアゾル
を先に調製した、鉛,ニッケル,マグネシウム溶液に撹
袢下で添加混合した。この混合溶岐をオイルバスを用い
て加熱し蒸発乾固を行った。蒸発が進行するに従い溶液
の粘度は上昇したが、ニオブゾル及びチタニアゾルの凝
集及び塩の偏析は、観察されず、蒸発乾固が終了した時
点で樹脂状の前駆体が得られた。
A solution of 0.684 g of titanium tetraethoxide in 15 rni of absolute ethanol was added to 1 ml of polyvinyl alcohol.
A titania sol was prepared by adding the titania sol to 40 g of a 4 wt % formic acid aqueous solution containing vL%. The niobium sol and titania sol were added to and mixed with the previously prepared lead, nickel, and magnesium solution under stirring. This mixed melt was heated using an oil bath and evaporated to dryness. Although the viscosity of the solution increased as the evaporation proceeded, no aggregation of the niobium sol and titania sol and segregation of salts were observed, and a resinous precursor was obtained at the end of the evaporation to dryness.

(3−2)ペロブス力イト型PT−PMN−PNN粉末
の調製上記操作により得られた樹脂状の前駆体を磁性ル
ッポに移し、マツフル炉を用い空気中300℃で熱分解
した。得られた試料をボールミルで30分間粉砕した後
、磁性ボートに移し管状炉を用い空気流通下850℃で
2時間焼威した。得られた粉末をX線同折を用いて分析
したところ、PbTIO3: Pb(Mg+・3Nb2
/3)  03  : Pb (Nl+,・3Nb2/
3)03が固溶したべロブス力イト相を示すピークと微
量のパイロクロア相の存在を示すピーク(最強ピークの
ピーク強度比でIO分の1以下)が観察された。
(3-2) Preparation of perovskite type PT-PMN-PNN powder The resinous precursor obtained by the above operation was transferred to a magnetic Lupo and thermally decomposed in air at 300°C using a Matsufuru furnace. The obtained sample was ground in a ball mill for 30 minutes, then transferred to a magnetic boat and incinerated at 850° C. for 2 hours under air circulation using a tubular furnace. When the obtained powder was analyzed using X-ray diffraction, it was found that PbTIO3: Pb(Mg+・3Nb2
/3) 03: Pb (Nl+,・3Nb2/
3) A peak indicative of a belobite phase in which 03 was dissolved as a solid solution and a peak indicative of the presence of a trace amount of pyrochlore phase (peak intensity ratio of the strongest peak was less than 1/IO) were observed.

また、走査型電子顕微鏡(SEM)を用い粒子の形状を
観察したところ、平均粒子径0,5 μmの1次粒子、
及びその弱く凝集した2次粒子が観察された。図−1に
X線回折図を示した。
In addition, when the shape of the particles was observed using a scanning electron microscope (SEM), it was found that primary particles with an average particle diameter of 0.5 μm;
and its weakly aggregated secondary particles were observed. Figure 1 shows the X-ray diffraction pattern.

実施例4 (4−1)ペロプスカイト型0.2PT−0.2PMN
−0.ePNN粉末製造用前駆体の調製 チタニアゾルとして、市販チタニアゾルに含まれる塩素
イオンを、チタニアゾルを限外濾過膜を用いて濃縮した
後、ギ酸水溶液で希釈する操作を繰り返すことにより取
り除き精製したものを用い、ニオブゾルとして、水和酸
化ニオブ及び蓚酸2水和物を110℃で水に溶解した後
、氷冷し析出した蓚酸を濾別した溶液を加熱することに
よりニオプゾルを調製し、これを限外濾過膜を用いて精
製したものを用いた以外は、実施例3 (3−1)と同
様の操作を行った。前駆体調製時にゾルの凝集及び塩の
偏折は観察されなかった。(4−2)ペロブスカイ?型
PT−PMN−PNN粉末の調製 (4−1)で得られた前駆体を、実施例3 (3−2)
と同様の操作を行なうことにより得られた粉末をX線回
折を用いて分析したところ、PbTIO*  : Pb
(Mg+/3Nb2/i)Oi ; Pb(Ni+7i
Nb2.■s)Oiが固溶したべロブス力イト相を示す
ピークと微量のパイロクロア相の存在を示すピーク(最
強ピークのピーク強度比でIO分の1以下)が観察され
た。また、走査型電子顕微鏡を用い粒子の形状を観察し
たところ、平絢粒子径0.6 μmの1次粒子、及びそ
の弱く凝集した2次粒子が観察された。
Example 4 (4-1) Peropskite type 0.2PT-0.2PMN
-0. Preparation of precursor for ePNN powder production As titania sol, chloride ions contained in commercially available titania sol were removed and purified by repeating the operation of concentrating the titania sol using an ultrafiltration membrane and diluting it with an aqueous formic acid solution. A niobium sol is prepared by dissolving hydrated niobium oxide and oxalic acid dihydrate in water at 110°C, cooling it on ice, and filtering off the precipitated oxalic acid. The same operation as in Example 3 (3-1) was performed, except that the purified product was used. No sol aggregation and salt polarization were observed during precursor preparation. (4-2) Perovsky? The precursor obtained in the preparation of type PT-PMN-PNN powder (4-1) was prepared in Example 3 (3-2).
When the powder obtained by performing the same operation was analyzed using X-ray diffraction, it was found that PbTIO*: Pb
(Mg+/3Nb2/i)Oi; Pb(Ni+7i
Nb2. (2) A peak indicating a belobite phase in which Oi is solidly dissolved and a peak indicating the presence of a trace amount of pyrochlore phase (peak intensity ratio of the strongest peak is less than 1/IO) were observed. Further, when the shape of the particles was observed using a scanning electron microscope, primary particles with a flat particle diameter of 0.6 μm and weakly aggregated secondary particles thereof were observed.

実施例5 (5−1)スビネル型Code20 4複合酸化物粉末
製造用前駆体の調製 撹拌器を備えたl 0 0rdフラスコに酢酸コバルト
四水塩2.49g,硝酸鉄九水塩8.08g,蒸留水4
0g1ポリビニルアルコール4gを加え撹拌溶解した。
Example 5 (5-1) Preparation of Precursor for Manufacturing Subinel Type Code 20 4 Complex Oxide Powder In a 100rd flask equipped with a stirrer, 2.49 g of cobalt acetate tetrahydrate, 8.08 g of iron nitrate nonahydrate, distilled water 4
0 g and 4 g of polyvinyl alcohol were added and dissolved with stirring.

この混合溶液をオイルバスを用いて加熱し蒸発乾固を行
った。蒸発が進行するに従い溶液の粘度は上昇したが塩
の偏析は、観察されず、蒸発乾固が終了した時点で樹脂
状の前駆体が得られた。
This mixed solution was heated using an oil bath and evaporated to dryness. Although the viscosity of the solution increased as the evaporation progressed, no salt segregation was observed, and a resinous precursor was obtained at the end of the evaporation to dryness.

(5−2>スビネル型COFe204複合酸化物粉末の
調製 上記操作により得られた樹脂状の前駆体を磁性ルツボに
移し、マツフル炉を用い空気中300℃で熱分解した。
(5-2> Preparation of Subinel type COFe204 composite oxide powder The resinous precursor obtained by the above operation was transferred to a magnetic crucible and thermally decomposed in air at 300°C using a Matsufuru furnace.

得られた、試料をボールミルで1時間粉砕した後、磁性
ボートに移し管状炉を用い空気流通下500℃で2時間
焼或した。得られた粉末をX線回折を用いて分析したと
ころ、スピネル構造を示すピークのみが観察された。ま
た、走査型電子顕微鏡(SEM)を用い粒子の形状を観
察したところ、平均粒子径0,4 μ燗の1次粒子、及
びその弱く凝集した2次粒子が観察された。
The obtained sample was ground in a ball mill for 1 hour, then transferred to a magnetic boat and calcined for 2 hours at 500° C. under air circulation using a tubular furnace. When the obtained powder was analyzed using X-ray diffraction, only a peak indicating a spinel structure was observed. Furthermore, when the shape of the particles was observed using a scanning electron microscope (SEM), primary particles with an average particle diameter of 0.4 μm and weakly aggregated secondary particles thereof were observed.

比較例1 粉末混合法によるペロプスカイト型PT−PMN−PN
N粉末の調製 酸化鉛13.69g,酸化マグネシウム0.166g,
酸化ニッケル0.916g,二酸化チタン0.98g,
五酸化ニオブ4.3gをボールミルを用いて18時間混
式混合した。混合物を乾燥後、磁性ボートに移し管状炉
を用い空気流通下850℃で2時間焼成した。得られた
粉末をX線回折を用いて分析したところ、PbTI0 
3  ; Pb CMg+/3Nb2。) 03  :
 Pb (N11/3Nb2/3)03が固溶したべロ
ブス力イト相を示すピークと多量のパイロクロア相の存
在を示すピーク(最強ピークのピーク強度比10:4)
が観察された。
Comparative Example 1 Perovskite type PT-PMN-PN by powder mixing method
Preparation of N powder Lead oxide 13.69g, Magnesium oxide 0.166g,
Nickel oxide 0.916g, titanium dioxide 0.98g,
4.3 g of niobium pentoxide was mixed for 18 hours using a ball mill. After drying the mixture, it was transferred to a magnetic boat and fired at 850° C. for 2 hours under air circulation using a tubular furnace. When the obtained powder was analyzed using X-ray diffraction, it was found that PbTI0
3; Pb CMg+/3Nb2. ) 03:
A peak indicating a belobite phase in which Pb (N11/3Nb2/3)03 is solidly dissolved and a peak indicating the presence of a large amount of pyrochlore phase (peak intensity ratio of the strongest peak 10:4)
was observed.

比較例2 ペロブス力イト型PT粉末の調製 撹拌器を備えた2 0 0d四つ目フラスコに酢酸鉛三
水塩5.89g,酢酸マグネシウム三水塩1.07g、
蒸留水80gを加え撹拌溶解した。ニオプベンタエトキ
シド3.18gを無水エタノール25mNに溶解させた
ものを蒸留水80mj!に添加し、ニオブゾルを調製し
た。このニオブゾルを先に調製した鉛,Mg溶液に撹拌
下で添加混合した。この混合溶液をオイルバスを用いて
加熱し蒸発乾固を行った。蒸発乾固が進行するに従い、
ニオブゾルの凝集及び塩の偏析が、観察された。蒸発乾
固により?リられた固体を磁性ボートに移し管状炉を用
い空気流通下850℃で2時間焼成した。生成した粉末
をX線回折を用いて分析したところ、Pb (Mg+/
3Nb2/3) 0 3ベロブスカイト相を示すピーク
と多量のパイロクロア相の存在を示すピーク(最強ピー
クのピーク強度比でlo:3)が観察された。
Comparative Example 2 Preparation of Perovskite Type PT Powder In a 200d fourth flask equipped with a stirrer, 5.89 g of lead acetate trihydrate, 1.07 g of magnesium acetate trihydrate,
80 g of distilled water was added and dissolved with stirring. Dissolve 3.18 g of niopbentaethoxide in 25 mN of absolute ethanol and add 80 mj of distilled water! was added to prepare a niobium sol. This niobium sol was added to and mixed with the previously prepared lead and Mg solution under stirring. This mixed solution was heated using an oil bath and evaporated to dryness. As evaporation to dryness progresses,
Niobium sol agglomeration and salt segregation were observed. By evaporation to dryness? The filtrated solid was transferred to a magnetic boat and calcined at 850° C. for 2 hours under air circulation using a tubular furnace. When the generated powder was analyzed using X-ray diffraction, it was found that Pb (Mg+/
3Nb2/3) 0 3 A peak indicating the berovskite phase and a peak indicating the presence of a large amount of pyrochlore phase (peak intensity ratio of the strongest peak: lo: 3) were observed.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は実施例3で得たPT−PMN−PNN粉末のX
腺回折図である。
Figure-1 shows the X of the PT-PMN-PNN powder obtained in Example 3.
This is a glandular diffraction diagram.

Claims (1)

【特許請求の範囲】[Claims] 1)熱分解性金属化合物、金属酸化物ゾル、金属水酸化
物ゾルの化合物群から選ばれる2種以上の化合物及び溶
媒を含んだ溶液と水溶性高分子化合物とを混合し該混合
溶液から溶媒を除去することを特徴とする複合酸化物製
造用前駆体の製造方法2)熱分解性金属化合物、金属酸
化物ゾル、金属水酸化物ゾルの化合物群から選ばれる2
種以上の化合物及び溶媒を含んだ溶液と水溶性高分子化
合物とを混合し該混合溶液から溶媒を除去して得た前駆
体を400℃以上の温度で熱処理すことを特徴とする複
合酸化物粉末の製造方法
1) Mix a water-soluble polymer compound with a solution containing two or more compounds selected from the compound group of thermally decomposable metal compounds, metal oxide sol, and metal hydroxide sol and a solvent, and extract the solvent from the mixed solution. 2) A method for producing a precursor for producing a composite oxide, characterized by removing 2) 2 selected from the compound group of thermally decomposable metal compounds, metal oxide sol, and metal hydroxide sol.
A composite oxide characterized in that a precursor obtained by mixing a solution containing at least one type of compound and a solvent with a water-soluble polymer compound and removing the solvent from the mixed solution is heat-treated at a temperature of 400°C or higher. Powder manufacturing method
JP9882189A 1989-03-28 1989-04-20 Production of compound oxide powder Pending JPH0328109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9882189A JPH0328109A (en) 1989-03-28 1989-04-20 Production of compound oxide powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-73997 1989-03-28
JP7399789 1989-03-28
JP9882189A JPH0328109A (en) 1989-03-28 1989-04-20 Production of compound oxide powder

Publications (1)

Publication Number Publication Date
JPH0328109A true JPH0328109A (en) 1991-02-06

Family

ID=26415144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9882189A Pending JPH0328109A (en) 1989-03-28 1989-04-20 Production of compound oxide powder

Country Status (1)

Country Link
JP (1) JPH0328109A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684663A1 (en) * 1991-12-06 1993-06-11 Rhone Poulenc Chimie PEROSVSKITES BASED ON TANTALIUM OR NIOBIUM AND PROCESS FOR PREPARING THE SAME.
JP2001180937A (en) * 1999-12-27 2001-07-03 Japan Metals & Chem Co Ltd Spinel type lithium manganese compound oxide and manufacturing method
JP2011014820A (en) * 2009-07-06 2011-01-20 Seiko Epson Corp Methods for manufacturing piezoelectric thin film, liquid-ejecting head and liquid-ejecting apparatus
JP2011014714A (en) * 2009-07-02 2011-01-20 Seiko Epson Corp Methods for manufacturing piezoelectric thin film, liquid ejecting head and liquid ejecting apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684663A1 (en) * 1991-12-06 1993-06-11 Rhone Poulenc Chimie PEROSVSKITES BASED ON TANTALIUM OR NIOBIUM AND PROCESS FOR PREPARING THE SAME.
JP2001180937A (en) * 1999-12-27 2001-07-03 Japan Metals & Chem Co Ltd Spinel type lithium manganese compound oxide and manufacturing method
JP4636642B2 (en) * 1999-12-27 2011-02-23 日本電工株式会社 Spinel type lithium manganese composite oxide and method for producing the same
JP2011014714A (en) * 2009-07-02 2011-01-20 Seiko Epson Corp Methods for manufacturing piezoelectric thin film, liquid ejecting head and liquid ejecting apparatus
JP2011014820A (en) * 2009-07-06 2011-01-20 Seiko Epson Corp Methods for manufacturing piezoelectric thin film, liquid-ejecting head and liquid-ejecting apparatus

Similar Documents

Publication Publication Date Title
KR100497938B1 (en) Method for producing complex oxide powder and complex oxide powder
KR20080078864A (en) Methods for production of metal oxide nano particles, and nano particles and preparations produced thereby
JPS61275108A (en) Preparation of powder of dielectric substance
KR20080080350A (en) Methods for production of metal oxide nano particles with controlled properties, and nano particles and preparations produced thereby
KR100955802B1 (en) Process for preparing fine barium titanate based composite oxide
JPH0328109A (en) Production of compound oxide powder
JP2764111B2 (en) Method for producing perovskite ceramic powder
KR102581034B1 (en) Method for producing barium titanate powder
Srisombat et al. Chemical synthesis of magnesium niobate powders
JPH06144837A (en) Synthesis of columbite-type niobic acid salt and synthesis of perovskite-type compound using the salt
JPH0574530B2 (en)
KR100921352B1 (en) Process for preparing fine barium titanate based composite oxide
JP2584519B2 (en) Method for producing perovskite-type composite oxide powder
JP2557344B2 (en) Method for treating inorganic hydroxide precipitate
KR100290247B1 (en) Method for manufacturing barium titanate and perovskite type composite oxide
JP3309467B2 (en) Method for producing lead-containing composite oxide powder
JP3412187B2 (en) Preparation of composite perovskite oxide powder
JPH01226724A (en) Method for synthesizing fine oxide particles as starting material
JPS61127624A (en) Production of perovskite type oxide solid
JPH01122907A (en) Production of perovskite oxide powder
DE3780573T2 (en) PRODUCTION OF PARTLY STABILIZED TETRAGONAL ZIRCONDIOXIDE.
JPH0558629A (en) Production of perovskite-type lead oxide
JPH0476322B2 (en)
JP3176119B2 (en) Acicular dielectric oxide particles and method for producing the same
JPH05116943A (en) Production of barium titanate powder