JP4636642B2 - Spinel type lithium manganese composite oxide and method for producing the same - Google Patents
Spinel type lithium manganese composite oxide and method for producing the same Download PDFInfo
- Publication number
- JP4636642B2 JP4636642B2 JP36957399A JP36957399A JP4636642B2 JP 4636642 B2 JP4636642 B2 JP 4636642B2 JP 36957399 A JP36957399 A JP 36957399A JP 36957399 A JP36957399 A JP 36957399A JP 4636642 B2 JP4636642 B2 JP 4636642B2
- Authority
- JP
- Japan
- Prior art keywords
- composite oxide
- lithium
- spinel
- producing
- type lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、スピネル型リチウムマンガン複合酸化物に関し、とくに、スピネル型複合酸化物の構造がLi4Mn5O12である、3V級のリチウム二次電池正極材またはリチウム吸着剤前駆体として用いられるスピネル型リチウムマンガン複合酸化物およびその製造方法について提案する。
【0002】
【従来の技術】
近年、電子機器の小型化, 高性能化を背景として、とくに携帯電話の急速な普及によってリチウムイオン二次電池の生産量が急増している。リチウムイオン二次電池は、ニッケル水素電池等の二次電池に比べると、起電力が約3倍高く、携帯電話等の軽量化に寄与するというのが急速普及の主な理由である。
【0003】
ところで、最近、そうしたリチウムイオン二次電池の正極材として、資源、安全性等に配慮したスピネル型リチウムマンガン複合酸化物が開発されている。
このような複合酸化物には、LiMn2O4、Li2Mn4O9およびLi4Mn5O12等のスピネル型複合酸化物や非スピネル型のLiMnO2複合酸化物が知られている。これらのリチウムマンガン系のスピネル型複合酸化物のうち、構造式がLiMn2O4であるスピネル型複合酸化物は、4V級の正極材として、リチウム二次電池に賞用されている。
【0004】
一方、構成式がLi4Mn5O12であるスピネル型複合酸化物は、理論上163mAh/g程度の放電容量を示し、上記LiMn2O4よりも大きな放電容量を示すにもかかわらず、リチウム二次電池の正極材としては全く用いられたことがなかった。この理由は、焼成条件によっては簡単に他の複合酸化物に変化してしまうことが原因である。
【0005】
すなわち、Li4Mn5O12複合酸化物は、450℃以上の温度で焼成すると、酸素欠陥が生じ他の複合酸化物構造に変化する他、500℃以上の温度で焼成すると、Li4Mn5O12−δまたはLiMn2O4とLi2MnO3の化合物に分解してしまう。かといって300℃程度の低温で焼成すると、Li4Mn5O12構造のスピネル型複合酸化物の製造は困難である。
【0006】
このように、Li4Mn5O12複合酸化物は、焼成温度がわずかに違っただけでも、生成する複合酸化物の構造(形態)が異なったり、酸素欠陥の多い他の複合酸化物となったりするため、十分な放電容量および放電特性が得られない。要するに、Li4Mn5O12構造の完全なスピネル型複合酸化物は、従来技術水準の下では製造が困難なたために、いわゆる二次電池用正極材としての利用が果たされなかったということであると考えられる。
【0007】
【発明が解決しようとする課題】
従来、3V級二次電池の正極材としては、MnO2を低温焼成した二酸化マンガン焼成物質やLi2MnO3と二酸化マンガンの混合物などが用いられている。しかし、これらの正極材は、2サイクル以降の充放電容量に急激な低下がみられる他、放電容量も100mAh/gと低く、初期放電容量と末期放電容量との電位差が大きいという課題があり、とくにその放電特性を改善することが必要であった。
従来、上述した課題を改善するために各種の技術が提案されている。例えば、特開平4―253161号公報に記載された発明は、その一例であり、MnO2とリチウム塩とをアルカリ中で反応させた後、減圧下で150℃〜300℃の温度範囲で熱処理してリチウムマンガン酸化物を得るという方法である。
この既知技術は、たしかに放電容量特性は改良されてはいるが、いまだ不充分であった。
【0008】
その他の提案としては、希少な資源であるリチウムを海水等から回収する際に、そのリチウムを回収する物質として、上記MnO2にリチウムを混合して焼成した後、リチウムのみを除去して微小気孔を形成したマンガン酸化物を用いる方法がある。しかし、このようなマンガン酸化物からなるリチウム吸着剤は、吸着量が10mg/ g(吸着剤1gあたりのリチウム吸着量)程度とあまり高くはなく、酸に対する安定性も低いという課題があった。
【0009】
本発明の目的は、Li4Mn5O12構造のスピネル型複合酸化物のもつ高い充放電容量を、3V級の電位を有するリチウム二次電池正極材とすることで、3V級二次電池の容量アップを図り、かつ3V級二次電池の電位平坦性を改善することにある。
本発明の他の目的は、Li4Mn5O12構造を有するスピネル型複合酸化物をリチウム吸着用の前駆体とすることで、リチウム吸着性能の向上と構造安定性に優れるリチウム吸着剤を提供することにある。
【0010】
【課題を解決するための手段】
発明者らは、上記目的を達成するために、スピネル構造を有するLi4Mn5O12複合酸化物を液相合成法(自己燃焼法)によって合成することに着目し、本発明に想到した。本発明により、格子定数が8.160〜8.130Åである組成式:Li 4 Mn 5 O 12 のスピネル型リチウムマンガン複合酸化物を製造することができる。かかる複合酸化物は、3V級のリチウム二次電池用正極材として用いられる他、リチウム吸着剤の前駆体としても用いることができる。
【0011】
本発明にかかる複合酸化物の製造方法は、Liの硝酸塩と、Mnの硝酸塩とを化学量論的にLi 4 Mn 5 O 12 を生成するように配合してなる混合水溶液に、金属イオンを含まない非イオン水溶性高分子をカチオン担持体として添加混合し、その後、水分を加熱除去することによって格子定数が8.160〜8.130Åである組成式:Li 4 Mn 5 O 12 のスピネル型リチウムマンガン複合酸化物を合成するものである。
【0012】
上記発明において、水分を加熱除去は、100〜200℃の温度範囲で行われることが好ましく、また、該水分の加熱除去後、さらに400℃以上Li 4 Mn 5 O 12 複合酸化物の分解温度未満の温度範囲で再熱処理を行うことが好ましい。
【0013】
なお、上記製造方法において、非イオン水溶性高分子としては、ニトロ化しやすい有機物でOH基を有する高分子化合物を用いることが望ましい。
【0014】
【発明の実施の形態】
本発明の特徴は、格子定数が8.160 Å以下、好ましくは8.150 〜8.130 Å、さらに好ましくは8.150 〜8.140 Åを示すLi4Mn5O12系複合酸化物を工業的に製造する技術を提案することにある。このような複合酸化物は、3V級正極材としては150mAh/g以上の初期放電容量特性を示し、電位平坦性に優れると共にサイクル特性も良好である。
また、このようなLi4Mn5O12系複合酸化物は、海水中(PH7〜8)のリチウム吸着剤として、30mg/g以上の吸着量を得ることができるリチウム吸着剤の前駆体として用いることができる。
なお、本発明のスピネル型複合酸化物は、3V級正極材はもちろんのこと、4V級リチウム電池用正極材等に混合して使用することができる。
【0016】
本発明にかかる複合酸化物について、とくにX線格子定数が8.160Å以下であれば、複合酸化物のマンガンの原子価数はほぼ4価のものになる。マンガンの原子価数が4価であれば、150mAh/g以上の初期放電容量特性を示し、電位平坦性に優れると共にサイクル特性も良好な複合酸化物が得られる。しかし、格子定数が8.160Åを超えると、3価のマンガンが増え、また、8.130Åよりも小さいとLi2MnO3のような複合酸化物が生成すると考えられ、その結果として、上記の作用効果が得られなくなる。
【0017】
上述した特性を示すリチウムマンガン複合酸化物は、液相合成法(自己反応法)を適用して製造される。この方法の特徴は、リチウムおよびマンガンの硝酸塩と非イオン水溶性高分子をカチオン担持体として添加してこれらを混合した後、比較的低い温度で水分を加熱除去することによって、自己反応を起こさせることにより、複合酸化物を合成することにある。
【0018】
この方法において、上記の加熱温度は、80℃未満ではニトロ化合物の分解,燃焼が起こらず、複合酸化物を合成することができないので、80℃以上とすることが望ましい。一方、上記温度の上限は、水分が蒸発しかつニトロ化合物が分解する温度であればよいので、使用する水溶性高分子の種類に応じて450℃以下の範囲とすることが望ましい。より好ましくは100〜200℃の温度範囲がよい。というのは、450℃を超えるような高温での加熱焼成を行うと、酸素欠陥が起こって電池性能が低下する。もし、500℃を超えるような温度で焼成すると、Li4Mn5O12やLiMnO2とLiMn2O4との複合酸化物に分解することになる。
【0019】
上記温度領域で加熱することによって、混合水溶液中の2 種以上のカチオンは、水分の蒸発に伴い、カチオン担持体に均一に混合された状態に固定される。一方、硝酸イオンはカチオン担持体と加熱反応してニトロ化合物を生成する。その結果、上記加熱を続けると、上記ニトロ化合物が燃焼分解し、その熱エネルギーによってカチオン同士が反応し、複合酸化物を合成することが可能になる。
【0020】
このようにして得られた複合酸化物の粉末は、微細でかつ比表面積の大きな粉末である。しかしながら、合成直後の酸化物粉末は、不純物としてCおよびNを含んでおり、これらの不純物は除去することが望ましい場合がある。
【0021】
次に、本発明にかかる複合酸化物は、上述した複合酸化物の合成過程に加えてさらに、高温域で再加熱処理( 焼成) を行うことが有効である。このような再熱処理は、400℃以上、複合酸化物の分解温度未満の温度範囲で行うことが望ましい。
【0022】
前記再熱処理の温度に制限を設けたのは、比較的低い温度(100℃〜200℃)の加熱だけでは、結晶配列にゆがみが残るからである。そこで、このような結晶のゆがみや欠陥を排除して、ほぼ完全に結晶化した複合化酸化物とするには、上記の高温での再加熱処理が必要となるのである。
【0023】
本発明にかかる製造方法において、LiおよびMnの硝酸塩を用いる理由は、硝酸イオンは、カチオン担持体である非イオン性高分子と反応して、ニトロ化合物を生成することができるためと、低温で容易に分解するため、他のアニオン(硫酸イオン、塩素イオン等)と比較して残存生成物の除去が容易だからである。
なお、Liの硝酸塩の例としては、LiNO3などが好ましく、Mnの硝酸塩としてはMn(NO3)2・6H2O などが好ましい。
【0024】
また、本発明にかかる製造方法において、カチオン担持体を用いる理由は、カチオン担持体を添加しないと、加熱による混合水溶液中の水分蒸発に伴って、溶解度の差により各元素の硝酸塩が分離析出してしまうからである。
このカチオン担持体は、カチオンを担持し固定する機能を有する物質であり、金属イオンを含まない非イオン水溶性高分子であればよく、例えば、小麦デンプンなどのデンプン質、マンナン(こんにゃく等)、アガー(寒天)などの海藻類、トロロアオイやアラビアゴムなどの植物粘質物、デキストランなどの微生物による粘質物、にかわやゼラチンなどのタンパク質に代表される天然高分子、ビスコースやメチルセルロース(MC)などのセルロース系、可溶性デンプンやジアルデヒドデンプンなどのデンプン系に代表される半合成品、およびポリビニルアルコール(PVA)などに代表される合成品がある。なかでも、ニトロ化しやすい有機物でOH基を有する、例えば、PVAやMC、アガーなどから選ばれる1種以上を用いることが好ましい。
【0025】
また、本発明にかかる製造方法において、金属イオンを含まない非イオン水溶性高分子を用いる理由は、カリウムやナトリウムなどの金属イオンが残留すると、所望の複合酸化物の結晶構造中に取り込まれるか、あるいは新たな化合物が生成してしまうからである。
【0026】
このようにして製造される本発明にかかるリチウムマンガン複合酸化物は、以下のような反応機構に基づいて合成されるものと考えられる。
▲1▼ まず、リチウムおよびマンガンの混合硝酸塩水溶液中のカチオンが、加熱による水分の蒸発に伴い、徐々にカチオン担持体に担持し固定され、そして反応し易い均一な状態となる。
▲2▼ 一方で、上記混合硝酸塩水溶液中の硝酸イオンは、加熱によりカチオン担持体と反応してニトロ化合物を生成する。
▲3▼ そして、上記カチオンを担持したニトロ化合物は、さらなる加熱により分解, 燃焼して発熱する。この時の熱エネルギーによって、カチオンどうしが反応して、スピネル型のリチウムマンガン複合酸化物が合成される。
【0027】
【実施例】
( 実施例1)
この実施例による複合酸化物は、3V級のリチウム電池の電極材料として利用されるLi4Mn5O12を液相合成法を適用して製造したものである。
この方法ではまず、LiNO3:0.133 モルとMn(NO3)2・6H2O:0.167 モルを、純水10mlに溶解して混合水溶液とした。この混合水溶液にカチオン担持体としてPVAの20%溶液を33g添加した後、乾燥器に移し、150 ℃で2時間加熱乾燥して黒色粉末を得た。その粉末をX線回折による同定を行ったところ、 Li4Mn5O12単一相であることが確認できた。
さらに、上記加熱乾燥後に、温度450 ℃で5 時間の焼成を行い、その焼成粉末をX線回折によって同定した結果、X線格子定数は8.145 Åであり、所望のLi4Mn5O12が得られたことを確認した(図1参照)。
【0028】
(比較例1)
比較のために、従来の粉末焼結法(固相法)によって実施例1と同一目標組成になるようにLi2CO3粉末(0.0665モル, 粒径2μm) とMnO2粉末 (0.167 モル,粒径20μm)とを攪拌器で1時間攪拌混合し、その後、焼成炉で、450℃で5時間焼成してリチウム・マンガン・ニッケル複合酸化物を得た。
得られた粉末をX線回折によって同定したところ、リチウム・マンガンのスピネル構造ではあったが、目標としたLi4Mn5O12の単一相が得られずに、X線格子定数が8.170 Åの結晶性の低いスピネル複合酸化物であったことがわかった。
【0029】
(実施例2)
実施例1で得られた粉末と比較例1で得られた粉末を正極材として二次電池特性試験を行った。
電池特性の評価は、実施例1と比較例1の正極材を正極とし、金属リチウムを負極と参照極とし、1M過塩素酸リチウムを含むエチレンカーボネートとジメチルカーボネートを電解液とした三極式のガラスセルで行った。また、測定電圧範囲は2.0 〜3.5 Vとし、充放電レートは0.1 Cとした。
【0030】
作製した電池の評価を行うために、充放電サイクル試験を行った。本発明に適合する方法の下に製造した正極材の結果を図2に、比較例の複合酸化物の結果を図3に示す。図2からわかるように、本発明にかかる複合酸化物の放電容量は、初期充放電容量が150mAh/g程度であるのに対し、比較例にかかる複合酸化物の放電容量は、図3に示すように、初期充放電容量が40mAh/g程度であり、スピネル単一相の欠陥(他の複合酸化物の存在)、結晶欠陥の存在が放電容量に影響を与えていることが判る。また、図2から本発明のスピネル複合酸化物は、2回目の放電容量が1回目と同等の性能を示し、繰り返し充放電によっても放電容量が低下しないことが確認された。
【0031】
(実施例3)
この実施例にかかる本発明の複合酸化物は、Li4Mn5O12リチウム吸着材料として使用されるLi4Mn5O12 である。
まず、LiNO3:0.133 モルとMn(NO3)2・6H2O:0.167 モルを純水10mlに溶解して混合水溶液とした。この混合水溶液にカチオン担持体としてPVAの20%溶液を33g添加した後、乾燥器に移し、150℃で2時間加熱乾燥した。その結果、黒色粉末が得られたので、これをX線回折による同定を行ったところ、 Li4Mn5O12単一相であることが確認できた。
上記加熱乾燥後さらに、温度450 ℃で5時間の再加熱焼成を行い、その再加熱焼成粉末をX線回折によって同定した結果、X線格子定数は8.145 Åを示し、さらに結晶性の高いLi4Mn5O12(本発明のリチウム吸着剤前駆体)が得られたこと
を確認した。
この焼成原料(リチウム吸着剤用前駆体)5gを1モル/l HCl 100ml中に浸漬させて、リチウムと水素とのイオン交換を行い、次いで、乾燥機で60℃×12時間乾燥してリチウム吸着剤を得た。
得られたリチウム吸着剤0.03gをリチウム濃度70ppm 、pH8.1 に調整したリチウム溶液50ml中に浸漬し、24時間保持し、リチウムを吸着させた。吸着されたリチウムイオンを測定したところ、30mg−Li/g−吸着剤の吸着量であったことがわかった。
【0032】
比較のため、実施例2の方法で製造したリチウムマンガン複合酸化物を同様の方法で処理して、リチウムを吸着させ、吸着回収したリチウム吸着量を測定したところ10mg/gであった。
【0033】
【発明の効果】
以上説明したように、本発明にかかるスピネル型Li4Mn5O12複合酸化物は、放電容量が150mAh/g以上と高く、かつ、電位平坦性とサイクル特性とに優れるので、3V級の電池用正極材として、また、海水のpH域でもLi吸着量が30mg/g吸着剤と大きく、Li吸着剤用前駆体として十分に利用可能である。
また、本発明にかかる製造方法によれば、均一反応性に優れると共に低温合成が可能な自己反応性によって、結晶欠陥の少ない上記スピネル型リチウムマンガン複合酸化物を容易に製造することができる。
【図面の簡単な説明】
【図1】本発明の実施例によって得られた乾燥粉末のX線回折図である。
【図2】本発明の二次電池試験の充放電容量の結果を示す図である。
【図3】比較例の二次電池試験の充放電容量の結果を示す図である。[0001]
[Industrial application fields]
The present invention relates to a spinel-type lithium-manganese composite oxide, and in particular, is used as a positive electrode material or a lithium adsorbent precursor for a 3V class lithium secondary battery in which the structure of the spinel-type composite oxide is Li 4 Mn 5 O 12. A spinel type lithium manganese oxide and its manufacturing method are proposed.
[0002]
[Prior art]
In recent years, against the backdrop of miniaturization and high performance of electronic devices, the production volume of lithium ion secondary batteries has increased rapidly due to the rapid spread of mobile phones in particular. The main reason for the rapid spread of lithium ion secondary batteries is that the electromotive force is about three times higher than that of secondary batteries such as nickel metal hydride batteries, which contributes to weight reduction of mobile phones and the like.
[0003]
Recently, spinel-type lithium manganese composite oxides have been developed as a positive electrode material for such lithium ion secondary batteries in consideration of resources, safety, and the like.
As such composite oxides, spinel type composite oxides such as LiMn 2 O 4 , Li 2 Mn 4 O 9 and Li 4 Mn 5 O 12 and non-spinel type LiMnO 2 composite oxides are known. Among these lithium manganese spinel complex oxides, spinel complex oxides having a structural formula of LiMn 2 O 4 are used in lithium secondary batteries as 4V class positive electrode materials.
[0004]
On the other hand, the spinel-type composite oxide having a constitutive formula of Li 4 Mn 5 O 12 theoretically shows a discharge capacity of about 163 mAh / g, and despite the fact that the discharge capacity is larger than that of LiMn 2 O 4 , the lithium It has never been used as a positive electrode material for a secondary battery. This is because it easily changes to another composite oxide depending on the firing conditions.
[0005]
That is, when Li 4 Mn 5 O 12 composite oxide is baked at a temperature of 450 ° C. or higher, oxygen defects are generated and change to another composite oxide structure, and when baked at a temperature of 500 ° C. or higher, Li 4 Mn 5 It decomposes into a compound of O 12- δ or LiMn 2 O 4 and Li 2 MnO 3 . However, if it is fired at a low temperature of about 300 ° C., it is difficult to produce a spinel composite oxide having a Li 4 Mn 5 O 12 structure.
[0006]
As described above, the Li 4 Mn 5 O 12 composite oxide is different from the structure (form) of the composite oxide to be produced even if the firing temperature is slightly different, or is another composite oxide having many oxygen defects. Therefore, sufficient discharge capacity and discharge characteristics cannot be obtained. In short, the complete spinel type complex oxide of Li 4 Mn 5 O 12 structure was difficult to produce under the state of the art, so that it could not be used as a positive electrode material for secondary batteries. It is thought that.
[0007]
[Problems to be solved by the invention]
Conventionally, as a positive electrode material for a 3V class secondary battery, a manganese dioxide fired material obtained by firing MnO 2 at a low temperature, a mixture of Li 2 MnO 3 and manganese dioxide, or the like has been used. However, these positive electrode materials have a problem that the charge / discharge capacity after two cycles is rapidly decreased, the discharge capacity is as low as 100 mAh / g, and the potential difference between the initial discharge capacity and the final discharge capacity is large. In particular, it was necessary to improve the discharge characteristics.
Conventionally, various techniques have been proposed to improve the above-described problems. For example, the invention described in Japanese Patent Application Laid-Open No. 4-253161 is an example thereof, and after MnO 2 and a lithium salt are reacted in an alkali, heat treatment is performed in a temperature range of 150 ° C. to 300 ° C. under reduced pressure. Thus, lithium manganese oxide is obtained.
Although this known technique has improved the discharge capacity characteristics, it is still insufficient.
[0008]
As another proposal, when recovering lithium, which is a scarce resource, from seawater, etc., as a substance for recovering the lithium, after mixing and burning lithium in the above MnO 2 , only lithium is removed and micropores are removed. There is a method using a manganese oxide in which is formed. However, the lithium adsorbent composed of such a manganese oxide has a problem that the adsorbed amount is not so high as about 10 mg / g (lithium adsorbed amount per 1 g of adsorbent) and the stability against acid is low.
[0009]
An object of the present invention is to provide a lithium secondary battery positive electrode material having a potential of 3V class by using a high charge / discharge capacity of a spinel type composite oxide having a Li 4 Mn 5 O 12 structure. The purpose is to increase the capacity and to improve the potential flatness of the 3V class secondary battery.
Another object of the present invention is to provide a lithium adsorbent having improved lithium adsorption performance and excellent structural stability by using a spinel-type composite oxide having a Li 4 Mn 5 O 12 structure as a precursor for lithium adsorption. There is to do.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the inventors have conceived the present invention by focusing on synthesizing a Li 4 Mn 5 O 12 composite oxide having a spinel structure by a liquid phase synthesis method (self-combustion method). According to the present invention, a spinel type lithium manganese composite oxide having a composition formula: Li 4 Mn 5 O 12 having a lattice constant of 8.160 to 8.130 Å can be produced. Such a composite oxide can be used as a precursor for a lithium adsorbent in addition to being used as a positive electrode material for a 3V class lithium secondary battery .
[0011]
The method for producing a composite oxide according to the present invention comprises a mixed aqueous solution obtained by mixing Li nitrate and Mn nitrate so as to generate Li 4 Mn 5 O 12 in a stoichiometric manner. without nonionic water-soluble polymer was added and mixed as a cation carrier, then the composition formula lattice constant by heating removing moisture is 8.160~8.130Å: Li 4 spinel-type lithium manganese complex oxide of Mn 5 O 12 It synthesizes things.
[0012]
In the above invention, it is preferable that the water is removed by heating in a temperature range of 100 to 200 ° C., and after the heat removal of the water, the temperature is further 400 ° C. or higher and lower than the decomposition temperature of the Li 4 Mn 5 O 12 composite oxide. It is preferable to perform the heat treatment again in the temperature range.
[0013]
In the above production method, as the nonionic water-soluble polymer, it is desirable to use a polymer compound having an OH group which is an organic substance that is easily nitrated.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The feature of the present invention is to propose a technique for industrially producing a Li 4 Mn 5 O 12 based composite oxide having a lattice constant of 8.160 Å or less, preferably 8.150 to 8.130 Å, more preferably 8.150 to 8.140 Å. It is in. Such a complex oxide exhibits an initial discharge capacity characteristic of 150 mAh / g or more as a 3V class positive electrode material, and is excellent in potential flatness and cycle characteristics.
Moreover, such a Li 4 Mn 5 O 12 system complex oxide as the lithium adsorbent in seawater (pH 7-8), is used as a precursor of the lithium adsorbent capable of obtaining an adsorption amount of more than 30 mg / g be able to.
In addition, the spinel type complex oxide of the present invention can be used by being mixed with a positive electrode material for a 4V class lithium battery as well as a 3V class positive electrode material.
[0016]
With respect to the composite oxide according to the present invention, in particular, when the X-ray lattice constant is 8.160 Å or less, the valence number of manganese in the composite oxide is approximately tetravalent. If the valence number of manganese is tetravalent, a composite oxide having an initial discharge capacity characteristic of 150 mAh / g or more, excellent potential flatness and good cycle characteristics can be obtained. However, if the lattice constant exceeds 8.160Å, trivalent manganese increases, and if it is less than 8.130Å, a composite oxide such as Li 2 MnO 3 is formed. Cannot be obtained.
[0017]
The lithium manganese composite oxide exhibiting the above-described characteristics is manufactured by applying a liquid phase synthesis method (self-reaction method). The feature of this method is that lithium and manganese nitrates and nonionic water-soluble polymers are added as a cation carrier, mixed, and then heated to remove moisture at a relatively low temperature to cause self-reaction. This is to synthesize a composite oxide.
[0018]
In this method, if the heating temperature is less than 80 ° C., decomposition and combustion of the nitro compound do not occur and a composite oxide cannot be synthesized. On the other hand, since the upper limit of the temperature may be any temperature at which moisture evaporates and the nitro compound decomposes, it is desirable that the upper limit of the temperature be in the range of 450 ° C. or less depending on the type of water-soluble polymer used. More preferably, the temperature range of 100-200 degreeC is good. This is because when heat baking is performed at a high temperature exceeding 450 ° C., oxygen defects occur and the battery performance deteriorates. If it is fired at a temperature exceeding 500 ° C., it is decomposed into Li 4 Mn 5 O 12 or a composite oxide of LiMnO 2 and LiMn 2 O 4 .
[0019]
By heating in the above temperature range, two or more kinds of cations in the mixed aqueous solution are fixed in a state of being uniformly mixed with the cation carrier as the moisture evaporates. On the other hand, nitrate ions react with heat with a cation carrier to produce a nitro compound. As a result, when the heating is continued, the nitro compound is burnt and decomposed, and cations react with each other by the thermal energy to synthesize a composite oxide.
[0020]
The composite oxide powder thus obtained is a fine powder having a large specific surface area. However, the oxide powder immediately after synthesis contains C and N as impurities, and it may be desirable to remove these impurities.
[0021]
Next, it is effective that the composite oxide according to the present invention is subjected to reheating treatment (firing) in a high temperature region in addition to the above-described composite oxide synthesis process. Such reheat treatment is desirably performed in a temperature range of 400 ° C. or higher and lower than the decomposition temperature of the composite oxide.
[0022]
The reason why the reheating temperature is limited is that distortion is left in the crystal arrangement only by heating at a relatively low temperature (100 ° C. to 200 ° C.). Therefore, in order to eliminate such crystal distortion and defects and to obtain a composite oxide that is almost completely crystallized, the above-described reheating treatment at a high temperature is required.
[0023]
In the production method according to the present invention, the reason why nitrates of Li and Mn are used is that nitrate ions can react with a nonionic polymer that is a cation carrier to generate a nitro compound, and at low temperatures. This is because it easily decomposes, so that the remaining product can be easily removed as compared with other anions (sulfate ion, chlorine ion, etc.).
As an example of the Li nitrate, LiNO 3 is preferable, and as the Mn nitrate, Mn (NO 3 ) 2 .6H 2 O is preferable.
[0024]
In addition, in the production method according to the present invention, the reason for using a cation carrier is that if the cation carrier is not added, nitrates of each element are separated and precipitated due to the difference in solubility due to moisture evaporation in the mixed aqueous solution by heating. Because it will end up.
This cation carrier is a substance having a function of supporting and fixing a cation, and may be any nonionic water-soluble polymer that does not contain metal ions. For example, starch such as wheat starch, mannan (konjac, etc.), Seaweeds such as agar (agar), plant mucilages such as troroaoy and gum arabic, mucilage due to microorganisms such as dextran, natural polymers such as glue and gelatin, proteins such as viscose and methylcellulose (MC) There are cellulosic products, semi-synthetic products represented by starch systems such as soluble starch and dialdehyde starch, and synthetic products represented by polyvinyl alcohol (PVA). Especially, it is preferable to use 1 or more types chosen from PVA, MC, agar, etc. which have an OH group with the organic substance which is easy to nitrate.
[0025]
In the production method according to the present invention, the reason for using a nonionic water-soluble polymer that does not contain metal ions is that if metal ions such as potassium and sodium remain, they are incorporated into the crystal structure of the desired composite oxide. Or a new compound is produced.
[0026]
The lithium manganese composite oxide according to the present invention thus produced is considered to be synthesized based on the following reaction mechanism.
{Circle around (1)} First, the cations in the mixed nitrate aqueous solution of lithium and manganese are gradually supported and fixed on the cation support as the moisture evaporates due to heating, and are in a uniform state that is easy to react.
(2) On the other hand, nitrate ions in the mixed nitrate aqueous solution react with the cation carrier by heating to produce a nitro compound.
(3) The nitro compound carrying the cation decomposes and burns upon further heating and generates heat. The heat energy at this time causes cations to react with each other to synthesize a spinel-type lithium manganese composite oxide.
[0027]
【Example】
(Example 1)
The composite oxide according to this example is produced by applying a liquid phase synthesis method to Li 4 Mn 5 O 12 used as an electrode material for a 3V class lithium battery.
In this method, LiNO 3 : 0.133 mol and Mn (NO 3 ) 2 .6H 2 O: 0.167 mol were first dissolved in 10 ml of pure water to obtain a mixed aqueous solution. After adding 33 g of a 20% PVA solution as a cation support to the mixed aqueous solution, the mixture was transferred to a dryer and dried by heating at 150 ° C. for 2 hours to obtain a black powder. When the powder was identified by X-ray diffraction, it was confirmed that it was a Li 4 Mn 5 O 12 single phase.
Furthermore, after the above heat drying, baking was performed at a temperature of 450 ° C. for 5 hours, and the powder was identified by X-ray diffraction. As a result, the X-ray lattice constant was 8.145 Å, and the desired Li 4 Mn 5 O 12 was obtained. (See FIG. 1).
[0028]
(Comparative Example 1)
For comparison, Li 2 CO 3 powder (0.0665 mol,
When the obtained powder was identified by X-ray diffraction, it was a spinel structure of lithium manganese, but the target single phase of Li 4 Mn 5 O 12 was not obtained, and the X-ray lattice constant was 8.170 Å. It was found that the spinel composite oxide had low crystallinity.
[0029]
(Example 2)
A secondary battery characteristic test was conducted using the powder obtained in Example 1 and the powder obtained in Comparative Example 1 as a positive electrode material.
The battery characteristics were evaluated using a tripolar system using the positive electrode material of Example 1 and Comparative Example 1 as the positive electrode, metallic lithium as the negative electrode and the reference electrode, and ethylene carbonate and dimethyl carbonate containing 1M lithium perchlorate as the electrolyte. Performed in a glass cell. The measurement voltage range was 2.0 to 3.5 V, and the charge / discharge rate was 0.1 C.
[0030]
In order to evaluate the manufactured battery, a charge / discharge cycle test was performed. FIG. 2 shows the result of the positive electrode material manufactured under the method suitable for the present invention, and FIG. 3 shows the result of the composite oxide of the comparative example. As can be seen from FIG. 2, the discharge capacity of the composite oxide according to the present invention, of the initial charge-discharge capacity in the range of about 150 mAh / g, the discharge capacity of the composite oxide according to the comparative example, shown in FIG. 3 Thus, the initial charge / discharge capacity is about 40 mAh / g, and it can be seen that the spinel single-phase defects (existence of other complex oxides) and the presence of crystal defects affect the discharge capacity. Further, spinel composite oxide of the present invention from FIG. 2, the discharge capacity of the second represents the first time and the same performance, the discharge capacity by repeated charging and discharging was confirmed that no decrease.
[0031]
(Example 3)
The composite oxide of the present invention according to this example is Li 4 Mn 5 O 12 used as a Li 4 Mn 5 O 12 lithium adsorbing material.
First, LiNO 3 : 0.133 mol and Mn (NO 3 ) 2 · 6H 2 O: 0.167 mol were dissolved in 10 ml of pure water to obtain a mixed aqueous solution. After adding 33 g of a 20% solution of PVA as a cation carrier to this mixed aqueous solution, it was transferred to a dryer and dried by heating at 150 ° C. for 2 hours. As a result, a black powder was obtained. When this was identified by X-ray diffraction, it was confirmed that it was a Li 4 Mn 5 O 12 single phase.
The heating and drying after the further and re-heated and fired for 5 hours at a temperature 450 ° C., as a result of reheating baked powder was identified by X-ray diffraction, X-ray lattice constant indicates 8.145 Å, higher crystallinity Li 4 It was confirmed that Mn 5 O 12 (the lithium adsorbent precursor of the present invention) was obtained.
5 g of this calcined raw material (precursor for lithium adsorbent) is immersed in 100 ml of 1 mol / l HCl to perform ion exchange between lithium and hydrogen, and then dried in a dryer at 60 ° C. for 12 hours to adsorb lithium. An agent was obtained.
0.03 g of the obtained lithium adsorbent was immersed in 50 ml of a lithium solution adjusted to a lithium concentration of 70 ppm and pH 8.1 and held for 24 hours to adsorb lithium. When the adsorbed lithium ions were measured, it was found that the adsorbed amount was 30 mg-Li / g-adsorbent.
[0032]
For comparison, the lithium manganese composite oxide produced by the method of Example 2 was treated in the same manner to adsorb lithium, and the amount of adsorbed and recovered lithium was measured to be 10 mg / g.
[0033]
【The invention's effect】
As described above, the spinel-type Li 4 Mn 5 O 12 composite oxide according to the present invention has a high discharge capacity of 150 mAh / g or more, and is excellent in potential flatness and cycle characteristics. As a positive electrode material for use, and even in the pH range of seawater, the Li adsorption amount is as large as 30 mg / g adsorbent, and can be sufficiently used as a precursor for Li adsorbent.
Moreover, according to the manufacturing method concerning this invention, the said spinel type lithium manganese complex oxide with few crystal defects can be easily manufactured by the self-reactivity which is excellent in uniform reactivity and can be synthesized at low temperature.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of a dry powder obtained by an example of the present invention.
FIG. 2 is a graph showing the results of charge / discharge capacity of the secondary battery test of the present invention.
FIG. 3 is a graph showing a result of charge / discharge capacity of a secondary battery test of a comparative example.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36957399A JP4636642B2 (en) | 1999-12-27 | 1999-12-27 | Spinel type lithium manganese composite oxide and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36957399A JP4636642B2 (en) | 1999-12-27 | 1999-12-27 | Spinel type lithium manganese composite oxide and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001180937A JP2001180937A (en) | 2001-07-03 |
JP4636642B2 true JP4636642B2 (en) | 2011-02-23 |
Family
ID=18494779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36957399A Expired - Lifetime JP4636642B2 (en) | 1999-12-27 | 1999-12-27 | Spinel type lithium manganese composite oxide and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4636642B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001332260A (en) * | 2000-05-22 | 2001-11-30 | Natl Inst Of Advanced Industrial Science & Technology Meti | Solid polymer type lithium secondary battery and its manufacturing method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0328109A (en) * | 1989-03-28 | 1991-02-06 | Tosoh Corp | Production of compound oxide powder |
JPH04179057A (en) * | 1990-11-09 | 1992-06-25 | Hitachi Maxell Ltd | Lithium secondary battery and its manufacture |
WO1996022943A1 (en) * | 1995-01-26 | 1996-08-01 | Japan Metals And Chemicals Co., Ltd. | PROCESS FOR PRODUCING SPINEL LiMn2O¿4? |
JPH08203521A (en) * | 1994-06-21 | 1996-08-09 | Commiss Energ Atom | Insertion compound based on manganese oxide useful for positive-electrode active substance of lithium battery |
JPH09124321A (en) * | 1995-11-01 | 1997-05-13 | Tosoh Corp | Lithium manganese spinel and its production and its use |
JPH09245795A (en) * | 1996-03-07 | 1997-09-19 | Japan Storage Battery Co Ltd | Positive electrode active material for lithium battery and manufacture thereof |
JPH10139442A (en) * | 1996-10-18 | 1998-05-26 | Fr Telecom | Lithium/manganese double oxide for positive electrode in electrochemical device, its production and electrode containing the same |
JP2001130914A (en) * | 1999-10-29 | 2001-05-15 | Toda Kogyo Corp | Method for producing lithium manganese spinel oxide particle powder |
-
1999
- 1999-12-27 JP JP36957399A patent/JP4636642B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0328109A (en) * | 1989-03-28 | 1991-02-06 | Tosoh Corp | Production of compound oxide powder |
JPH04179057A (en) * | 1990-11-09 | 1992-06-25 | Hitachi Maxell Ltd | Lithium secondary battery and its manufacture |
JPH08203521A (en) * | 1994-06-21 | 1996-08-09 | Commiss Energ Atom | Insertion compound based on manganese oxide useful for positive-electrode active substance of lithium battery |
WO1996022943A1 (en) * | 1995-01-26 | 1996-08-01 | Japan Metals And Chemicals Co., Ltd. | PROCESS FOR PRODUCING SPINEL LiMn2O¿4? |
JPH09124321A (en) * | 1995-11-01 | 1997-05-13 | Tosoh Corp | Lithium manganese spinel and its production and its use |
JPH09245795A (en) * | 1996-03-07 | 1997-09-19 | Japan Storage Battery Co Ltd | Positive electrode active material for lithium battery and manufacture thereof |
JPH10139442A (en) * | 1996-10-18 | 1998-05-26 | Fr Telecom | Lithium/manganese double oxide for positive electrode in electrochemical device, its production and electrode containing the same |
JP2001130914A (en) * | 1999-10-29 | 2001-05-15 | Toda Kogyo Corp | Method for producing lithium manganese spinel oxide particle powder |
Also Published As
Publication number | Publication date |
---|---|
JP2001180937A (en) | 2001-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4253142B2 (en) | Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery | |
JP5057179B2 (en) | Method for manufacturing core-shell spinel cathode active material for lithium secondary battery | |
JP4361060B2 (en) | Positive electrode active material for lithium secondary battery and method for producing the same | |
JP5081731B2 (en) | The manufacturing method of the raw material for positive electrode active materials for lithium secondary batteries. | |
EP1837937B1 (en) | Lithium manganese-based composite oxide and method for preparing the same | |
EP2261176B1 (en) | Novel precursor for the production of a lithium composite transition metal oxide | |
JP2020513658A (en) | Nickel-based active material precursor for lithium secondary battery, method for producing the same, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including positive electrode containing the same | |
JPH08130013A (en) | Manufacture of lim3+o2 or limn2o4, and lini3+o2 for secondary battery positive electrode material | |
JPH10316431A (en) | Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery | |
JP3461800B2 (en) | Lithium manganese nickel composite oxide and method for producing the same | |
JP2002025555A (en) | Magnesium compound oxide for magnesium secondary battery positive electrode active material, its manufacturing method, and magnesium secondary battery using it | |
KR100536957B1 (en) | Honeycomb-shaped ion-exchange type lithium manganese oxide adsorbent and method for preparing the same | |
US5807532A (en) | Method of producing spinel type limn204 | |
JPH10214624A (en) | Manufacture of nonaqueous secondary battery positive active material and lithium secondary battery using the same | |
JP2001185148A5 (en) | ||
JP2001185148A (en) | Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor | |
EP0841711A1 (en) | Lithium battery | |
JP2001508391A (en) | Preparation method of lithium manganese oxide | |
JP4636642B2 (en) | Spinel type lithium manganese composite oxide and method for producing the same | |
KR100668050B1 (en) | Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same | |
WO2018181967A1 (en) | Manganese oxide, production method therefor, and lithium secondary battery | |
JP4163595B2 (en) | Method for producing positive electrode material for lithium ion secondary battery | |
KR100679380B1 (en) | Low temperature lithiation of cobalt, nickel and manganese containning hydroxides using a wet process | |
KR100393194B1 (en) | A process for preparing LixMn2O4 Powder used for cathode of lithium secondary battery | |
JP2001257003A (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100806 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100806 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4636642 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |