JPH09245795A - Positive electrode active material for lithium battery and manufacture thereof - Google Patents

Positive electrode active material for lithium battery and manufacture thereof

Info

Publication number
JPH09245795A
JPH09245795A JP8079464A JP7946496A JPH09245795A JP H09245795 A JPH09245795 A JP H09245795A JP 8079464 A JP8079464 A JP 8079464A JP 7946496 A JP7946496 A JP 7946496A JP H09245795 A JPH09245795 A JP H09245795A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium
electrode active
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8079464A
Other languages
Japanese (ja)
Other versions
JP3746099B2 (en
Inventor
Kiyoshi Kanemura
聖志 金村
Zenichiro Takehara
善一郎 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP07946496A priority Critical patent/JP3746099B2/en
Publication of JPH09245795A publication Critical patent/JPH09245795A/en
Application granted granted Critical
Publication of JP3746099B2 publication Critical patent/JP3746099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To reduce slip-off of active material due to charging and discharging and ensue a longer service life of a positive plate by providing a super-lattice structure having regularity in an array of lithium ion, manganese ion, and manganese ion in a positive electrode active material. SOLUTION: The composition of a positive electrode material for a lithium battery is Li413 Mu513 O4 . The crystal has a spinel structure attribute to a space group Fd 3m and has a super-lattice structure. In the powder X-ray refraction graph using CuK αray, 2 θ has a refraction peak equivalent to (1/2, 1/2, 1/2), (1/3, 1/3, 1/3), and (1/6, 1/6, 1/6) of a space group Fd at 9.2 deg., 6.3 deg., and 3.1 deg.. This positive electrode active material is mixed with lithium nitrate and manganese oxide to be at stoichiometric ratio and is obtained by burning them at approx. 500 to 600 deg. in the oxygen atmosphere. Thereby, the change of the crystal structure due to repetition of charging and discharging is eliminated, and the lower capacity can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、常温で作動するリ
チウム電池に用いられる正極活物質としてのスピネル型
リチウムマンガン複合酸化物及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spinel type lithium manganese composite oxide as a positive electrode active material used in a lithium battery operating at room temperature and a method for producing the same.

【0002】[0002]

【従来の技術】常温で作動し、有機電解液やポリマー電
解質を用いるリチウム電池は、理論的に極めて高いエネ
ルギー密度を保有するために、古くから実に様々の研究
がなされてきているとともに、非常に多くの材料や系が
提案されている。これらのリチウム電池は一次電池と二
次電池とに大別することができる。一次電池は、1970年
代の後半に実用化され、一般に負極として金属リチウム
が、正極としてフッ化カーボン、二酸化マンガンなどが
用いられている。二次電池は、負極として金属リチウム
もしくはリチウム合金を用い、正極として二酸化マンガ
ン、バナジウム化合物あるいは二硫化チタンといったリ
チウムを含まない酸化物あるいは硫化物や、リチウム・
バナジウム複合酸化物のように、放電によってさらにリ
チウムが挿入可能な材料を用いる金属リチウム型二次電
池と負極に黒鉛や低結晶化度のカーボンなどのリチウム
イオンのホストとなり得る材料を用い、正極にコバルト
酸リチウム(LiCoO2 )、ニッケル酸リチウム(LiNiO
2 ) 、リチウム・マンガンスピネル化合物(LiMn
2 4 )などのリチウムを含む複合酸化物を用いるいわ
ゆるリチウムイオン二次電池に分類することができる。
現在のところは寿命、安全性という点でよりすぐれた後
者のリチウムイオン二次電池が実用上主流になってい
る。
2. Description of the Related Art Lithium batteries, which operate at room temperature and use organic electrolytes and polymer electrolytes, have theoretically possessed extremely high energy densities, and various studies have been made since ancient times and they have been extremely Many materials and systems have been proposed. These lithium batteries can be roughly classified into primary batteries and secondary batteries. Primary batteries were put into practical use in the latter half of the 1970s, and generally, metallic lithium is used as the negative electrode, and carbon fluoride, manganese dioxide, etc. are used as the positive electrode. The secondary battery uses metallic lithium or a lithium alloy for the negative electrode, and a lithium-free oxide or sulfide such as manganese dioxide, a vanadium compound, or titanium disulfide for the positive electrode, or lithium.
A metallic lithium secondary battery that uses a material such as vanadium composite oxide into which lithium can be inserted further by discharge, and a material that can be a host of lithium ions such as graphite or carbon with low crystallinity for the negative electrode Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO
2 ), lithium manganese spinel compound (LiMn
It can be classified as a so-called lithium ion secondary battery using a composite oxide containing lithium such as 2 O 4 ).
At present, the latter lithium-ion secondary battery, which is superior in terms of life and safety, has become the mainstream in practice.

【0003】リチウム二次電池用各種正極活物質材料の
うち、資源、コスト、安全性という観点からすると、マ
ンガン酸化物系材料がきわめて魅力的である。マンガン
酸化物系材料としては、既に実に様々な組成や結晶構造
を有するものが提案されているが、それらの中で、特に
スピネル構造を有するリチウム・マンガン複合酸化物が
注目に値する。スピネル型リチウム・マンガン複合酸化
物としては、例えば、M.M.Thackeray ら(J.Electroche
m.Soc. Vol.139, No.2, P.363, 1992 )は次のような組
成及びスピネル表示構造の物質をあげている。
Of the various positive electrode active material materials for lithium secondary batteries, manganese oxide materials are extremely attractive from the viewpoints of resources, cost and safety. As manganese oxide-based materials, materials having various compositions and crystal structures have already been proposed. Among them, lithium-manganese composite oxides having a spinel structure are particularly noteworthy. Examples of spinel-type lithium-manganese composite oxides include MMThackeray et al. (J. Electroche
m.Soc. Vol.139, No.2, P.363, 1992) cites substances having the following compositions and spinel display structures.

【0004】[0004]

【表1】 なお、これらの物質は、いずれも充電された状態の組成
で示されているものであり、その放電反応は次の通りで
ある。また、理論容量密度もこれらの反応に基づいて計
算されたものである。
[Table 1] In addition, all of these substances are shown in the composition in a charged state, and the discharge reaction is as follows. The theoretical capacity density is also calculated based on these reactions.

【0005】[0005]

【化1】 一方、スピネル構造は一般にAB2 4 と表示される。
Aが四面体8(a) サイト、Bが八面体16(d) サイトに位
置するカチオンを示す。λ -MnO2 及びLi2 Mn4 9
欠陥型スピネルであり、□は欠陥を示す。なお、Li[ Li
0.33Mn1.67 ]O4 はむしろLi[ Li1/3 Mn5/3 ]O4 と表
示した方が明解なので、以下この表示を用いることにす
る。
Embedded image On the other hand, the spinel structure is generally designated as AB 2 O 4 .
A indicates a cation located on the tetrahedral 8 (a) site and B indicates a cation located on the octahedral 16 (d) site. λ-MnO 2 and Li 2 Mn 4 O 9 are defect type spinels, and □ indicates a defect. Note that Li [Li
Since it is clear that 0.33 Mn 1.67 ] O 4 is expressed as Li [Li 1/3 Mn 5/3 ] O 4 , this expression will be used hereinafter.

【0006】上表において、λ -MnO2 は、Li2 Mn2
4 まで放電させることが可能であり、この場合には、理
論容量密度は308mAh/gとなる。しかしながら、λ -MnO
2 〜LiMn2 4 の範囲においては、4〜3V であり、そ
の結晶構造も立方晶であるのに対し、LiMn2 4 〜Li2
Mn2 4 の範囲においては、3〜2V の電圧となり、そ
の結晶構造は正方晶となる。換言すると、放電曲線は二
段となり、実際的な使用面で不都合である。また結晶構
造の変化に伴って、ヤーンテーラー効果により結晶の歪
みが生ずるため、充放電の繰り返しによって放電容量が
低下するという難点がある。
In the above table, λ -MnO 2 is Li 2 Mn 2 O
It is possible to discharge up to 4 , in which case the theoretical capacity density is 308 mAh / g. However, λ -MnO
In the range of 2 to LiMn 2 O 4 , it is 4 to 3 V, and its crystal structure is cubic, while that of LiMn 2 O 4 to Li 2
In the range of Mn 2 O 4 , the voltage is 3 to 2 V and the crystal structure is tetragonal. In other words, the discharge curve has two steps, which is inconvenient in practical use. Further, there is a problem that the discharge capacity decreases due to repeated charging and discharging, because the strain of the crystal occurs due to the yarn tailor effect with the change of the crystal structure.

【0007】一方、正極活物質は、その電位が高い(貴
な)ほど、リチウム電池に組み込んだ際、エネルギー密
度が大きくなる傾向にあるが、有機電解液の分解防止あ
るいは電池の安全性といった点を優先させる場合には、
電位は低い(卑な)方が一般に有利である。上記の表の
3V 系の活物質材料において、Mn3 4 は容量密度が低
く、LiMn2 4 は充放電サイクルの繰り返しとともに容
量密度が大幅に低下するために、適切な材料とはいえな
い。Li2 Mn4 9 及びLi4 Mn5 12の場合には、充放電
サイクルを繰り返した際、1サイクル目は150mAh/gの放
電容量密度が得られるものの、10サイクルの充放電を
繰り返すと、125 〜130mAh/gまで低下することが報告さ
れている。またLi4 Mn5 12に化学的(電気化学的では
ない)にリチウムを挿入して得られるLi6.0 Mn5
12(109mAh/gに相当)ではまだ、挿入前と同様の純粋な
立方晶を持つが、Li6.3 Mn5 12(156mAh/gに相当)に
至ると立方晶と正方晶との混合物となり、結晶構造変化
が起こることが報告されている。なお、ここで述べたLi
4 Mn5 12は、炭酸リチウム(Li2 CO3 )と炭酸マン
ガン(MnCO3 )の粉末を化学量論比で混合し、空気
中、400 ℃で焼成することにより調製されている。
On the other hand, the positive electrode active material tends to have a higher energy density when incorporated in a lithium battery as the potential thereof is higher (noble). However, the decomposition of the organic electrolytic solution and the safety of the battery are important. When giving priority to
It is generally advantageous that the potential is low (base). Of the 3V active material shown in the above table, Mn 3 O 4 has a low capacity density, and LiMn 2 O 4 has a significantly lower capacity density with repeated charge and discharge cycles, so it cannot be said to be an appropriate material. . In the case of Li 2 Mn 4 O 9 and Li 4 Mn 5 O 12 , when the charge and discharge cycle was repeated, the discharge capacity density of 150 mAh / g was obtained in the first cycle, but when the charge and discharge of 10 cycles were repeated. , 125-130 mAh / g. In addition, Li 6.0 Mn 5 O obtained by chemically (not electrochemically) inserting lithium into Li 4 Mn 5 O 12
12 (equivalent to 109 mAh / g) still has the same pure cubic crystal as before insertion, but up to Li 6.3 Mn 5 O 12 (equivalent to 156 mAh / g), it becomes a mixture of cubic and tetragonal crystals, It has been reported that crystal structure changes occur. Note that the Li described here
4 Mn 5 O 12 is prepared by mixing powders of lithium carbonate (Li 2 CO 3 ) and manganese carbonate (MnCO 3 ) in a stoichiometric ratio and firing the mixture at 400 ° C. in air.

【0008】他方、M.N.Richard ら(Solid State Ioni
cs, Vol73, Page81, 1994 )は、スピネル型Li4 Mn5
12(Li[ Li1/3 Mn5/3 ]O4 )を上述のM.M.Thackeray
らと同様の方法と条件あるいは、γ−オキシ水酸化マン
ガン(γ-MnOOH)と水酸化リチウム一水和物(LiOH・
2 O)とを混合し、空気中450 ℃で焼成するという方
法により合成するとともに、まず最初に、4.2V(対 Li/
Li+ )まで充電した後、2.5Vまで放電し、再び充電する
という操作の実験を試み、2.8V付近で約110mAh/gの放電
容量密度が得られることを報告している。また、充電の
代わりに、放電から始め、2.5 〜3.6Vの間で充放電を繰
り返せば、可逆的に約150mAh/gの容量密度が得られると
推量している。しかしながら、これは推量であって、実
績ではないし、充放電に伴って結晶構造が変化するか否
かについても具体的に言及していない。
On the other hand, MN Richard et al. (Solid State Ioni
cs, Vol73, Page81, 1994) is spinel type Li 4 Mn 5 O
12 (Li [Li 1/3 Mn 5/3 ] O 4 ) to the above MMThackeray
The same method and conditions as those described above, or γ-manganese oxyhydroxide (γ-MnOOH) and lithium hydroxide monohydrate (LiOH.
H 2 O) and then calcined in air at 450 ° C. to synthesize it. First, 4.2 V (vs. Li /
After charging to Li + ), we tried an operation of discharging to 2.5V and charging again, and reported that a discharge capacity density of about 110mAh / g was obtained at around 2.8V. Moreover, it is estimated that the capacity density of about 150 mAh / g can be reversibly obtained by starting from discharging instead of charging and repeating charging and discharging between 2.5 and 3.6 V. However, this is a speculation, it is not an actual result, and it does not specifically mention whether or not the crystal structure changes with charge and discharge.

【0009】[0009]

【発明が解決しようとする課題】上述のように、従来Li
4/3 Mn5/3 4 は、充放電の初期には約150mAh/gという
理論値(163mAh/g)にかなり近い放電容量を示すけれど
も、10サイクル目には、125 〜130mAh/gまで低下するこ
とが問題である。これはこの材料の合成方法とそれの結
晶構造と深い関連があると考えられる。本発明はこの問
題を解決しようとするものである。
As described above, the conventional Li
4/3 Mn 5/3 O 4 shows a discharge capacity that is fairly close to the theoretical value of about 150 mAh / g (163 mAh / g) at the beginning of charging / discharging, but at the 10th cycle, 125 to 130 mAh / g It is a problem to decrease. This is thought to be closely related to the method of synthesizing this material and its crystal structure. The present invention seeks to solve this problem.

【0010】[0010]

【課題を解決するための手段】本発明は、Li4/3 Mn5/3
4 に、その構成要素であるリチウムイオン、マンガン
イオン及び酸素イオンの配列が規則性を有する超格子構
造を持たせることによって、充電過程、放電過程及び充
放電の繰り返しに伴う結晶構造の変化を極力排除し、容
量低下を抑止するものである。
The present invention provides Li 4/3 Mn 5/3
By giving O 4 a superlattice structure in which the arrangement of its constituent lithium ions, manganese ions, and oxygen ions has regularity, changes in the crystal structure due to repeated charging, discharging, and charging / discharging It is to eliminate it as much as possible and prevent the capacity from decreasing.

【0011】また、このような超格子構造を示すLi4/3
Mn5/3 4 を、硝酸リチウムとマンガン化合物との混合
物を酸素雰囲気中、500 〜600 ℃で焼成することによっ
て、合成する点に本発明の特長がある。
Also, Li 4/3 showing such a superlattice structure
The feature of the present invention is that Mn 5/3 O 4 is synthesized by firing a mixture of lithium nitrate and a manganese compound at 500 to 600 ° C. in an oxygen atmosphere.

【0012】[0012]

【発明の実施の形態】本発明は、Li4/3 Mn5/3 4 の種
々の合成方法及び合成条件を検討した結果得られた発見
に基づいてなされたものである。すなわち、従来、当該
物質を合成する際、リチウム化合物とマンガン化合物を
混合し、空気中400 〜450 ℃で焼成するという方法及び
条件が採用されていた。これに対して、雰囲気ガスとし
て、空気の代わりに酸素を用いると、超格子構造を有す
ると考えられる結晶が得られることがわかった。本願発
明者らが合成したLi4/3 Mn5/3 4 の組成を有する試料
は、X線回折測定及びリートベルト解析から空間群Fd3m
に帰属することがわかった。また、この結晶の(1,1,1)
面に相当する角度(2θ= 18.5°)より低角度側に(1/
2,1/2,1/2) 面(2θ=9.2°)、(1/3,1/3,1/3) 面(2
θ=6.3°)、(1/6,1/6,1/6) 面(2θ=3.1°)に相当す
るX線回折ピークが認められることを発見した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is based on the findings obtained as a result of examining various synthetic methods and synthetic conditions of Li 4/3 Mn 5/3 O 4 . That is, conventionally, when synthesizing the substance, a method and conditions have been adopted in which a lithium compound and a manganese compound are mixed and fired in air at 400 to 450 ° C. On the other hand, it was found that when oxygen was used as the atmospheric gas instead of air, a crystal believed to have a superlattice structure was obtained. The sample having the composition of Li 4/3 Mn 5/3 O 4 synthesized by the inventors of the present application was confirmed to have a space group Fd3m by X-ray diffraction measurement and Rietveld analysis.
Was found to belong to. Also, the (1,1,1) of this crystal
To the lower angle side (1 / (2θ = 18.5 °))
2,1 / 2,1 / 2) surface (2θ = 9.2 °), (1 / 3,1 / 3,1 / 3) surface (2
It was discovered that X-ray diffraction peaks corresponding to the (1 / 6,1 / 6,1 / 6) plane (2θ = 3.1 °) were observed.

【0013】Li4/3 Mn5/3 4 の(1,1,1) 面に垂直な方
向から、この結晶構造を眺めると、図1のように層状構
造をとっているように見える。四面体8(a) サイトはリ
チウムイオンで占められ、八面体16(d) サイトはリチウ
ムイオンとマンガンイオンとで占められている。上述の
低角度側に認められるX線回折ピークは、この八面体16
(d) サイトにリチウムイオンとマンガンイオンとが1:
5の割合で規則正しく配列していることを、換言すると
超格子構造を有していることを示唆している。
When this crystal structure is viewed from the direction perpendicular to the (1,1,1) plane of Li 4/3 Mn 5/3 O 4 , it appears to have a layered structure as shown in FIG. The tetrahedral 8 (a) sites are occupied by lithium ions and the octahedral 16 (d) sites are occupied by lithium ions and manganese ions. The X-ray diffraction peak observed on the low angle side is the octahedron 16
(d) Lithium ions and manganese ions in the site are 1:
It suggests that they are regularly arranged at a ratio of 5, that is, they have a superlattice structure.

【0014】このような構造を有するLi4/3 Mn5/3 4
を用いて従来公知の方法で電極を作製し、有機電解液中
で正極としての充放電試験(2.0 〜3.5Vの範囲、放電→
充電の繰り返し)を行うと、約2.8Vできわめて平坦な放
電曲線を示し、1サイクル目には150mAh/g、100 サイク
ル目には142mAh/gの放電容量密度が得られた。充放電の
過程でのX線回折パターンには、ほとんど変化が認めら
れず、リチウムを約0.95原子挿入(放電)した試料で
は、その格子定数も0.05A程度しか増加しないことが確
認された。このように充放電サイクルの進行に伴う放電
容量密度の低下の度合いが従来よりも極めて小さいの
は、本発明にかかる正極活物質材料が上述のように超格
子構造を有していることに由来すると考えられる。な
お、前述のM.N.Richard らは、リチウムイオンの挿入
(放電)、脱離(充電)過程は、主として四面体8(a)
サイトのリチウムイオンが関与していると考えているよ
うであるが、放電過程から出発する場合には、図1の八
面体16(d) サイトと等価である16(c) サイトにリチウム
イオンが挿入されているものと考えられる。この場合に
は、放・充電反応は次のように記述することができる。
Li 4/3 Mn 5/3 O 4 having such a structure
An electrode was prepared by a conventionally known method using, and a charge / discharge test (range of 2.0 to 3.5 V, discharge →
After repeated charging), an extremely flat discharge curve was obtained at about 2.8 V, and a discharge capacity density of 150 mAh / g at the first cycle and 142 mAh / g at the 100th cycle was obtained. Almost no change was observed in the X-ray diffraction pattern during the charge / discharge process, and it was confirmed that the lattice constant of the sample in which lithium was inserted (discharged) by about 0.95 atoms only increased by about 0.05 A. Thus, the degree of decrease in discharge capacity density with the progress of charge / discharge cycles is extremely smaller than that of the conventional one because the positive electrode active material according to the present invention has the superlattice structure as described above. It is thought that. The above-mentioned MNR Richards et al. Mainly used the tetrahedron 8 (a) for insertion (discharge) and desorption (charge) of lithium ions.
It seems that the lithium ions at the site are involved, but when starting from the discharge process, lithium ions are found at the 16 (c) site, which is equivalent to the octahedral 16 (d) site in Fig. 1. It is considered to have been inserted. In this case, the discharge / charge reaction can be described as follows.

【0015】[0015]

【化2】 Embedded image

【0016】[0016]

【実施例】以下、本発明を好適な実施例を用いて説明す
る。 [実施例]化学合成二酸化マンガン粉末(IC No.22)と
硝酸リチウム粉末のモル比が5:4の粉末を混合してか
ら、 550℃,500℃,450℃と温度を変えて48時間、酸素雰
囲気下で加熱処理した。つづいて、室温まで自然冷却し
て、本発明にかかる正極活物質を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to preferred embodiments. [Example] After chemically synthesized manganese dioxide powder (IC No. 22) and lithium nitrate powder were mixed at a molar ratio of 5: 4, the temperature was changed to 550 ° C, 500 ° C, 450 ° C for 48 hours, Heat treatment was performed under an oxygen atmosphere. Then, it was naturally cooled to room temperature to obtain a positive electrode active material according to the present invention.

【0017】つぎに、正極活物質としてのリチウム含有
スピネル型マンガン複合酸化物87wt%,導電材としてカー
ボンブラック5wt%, 結着材としてポリフッ化ビニリデ
ン5wt% を含むn-メチル-2ピロリドン3wt% の混合液と
をドライルームで混合して、ペースト状にしてから集電
体のチタン網に塗布したのち、80℃で乾燥して、大きさ
が25mm×25mm×0.25mmの本発明にかかる正極板( 正極活
物質:91mg,理論容量13.5mAh)を製作した。加熱処理温度
を 550℃および 500℃とした場合の正極板をそれぞれ
(A)(B) とした。
Next, 87 wt% of lithium-containing spinel-type manganese composite oxide as a positive electrode active material, 5 wt% of carbon black as a conductive material, and 3 wt% of n-methyl-2pyrrolidone containing 5 wt% of polyvinylidene fluoride as a binder. The mixed solution is mixed in a dry room to form a paste, which is then applied to the titanium net of the current collector, dried at 80 ° C., and the positive electrode plate according to the present invention having a size of 25 mm × 25 mm × 0.25 mm (Positive electrode active material: 91 mg, theoretical capacity 13.5 mAh) was manufactured. The positive plate when the heat treatment temperature was 550 ° C and 500 ° C respectively
(A) and (B).

【0018】この正極板1枚と対極に同じ大きさのリチ
ウム金属板2枚と、電解液に1M の過塩素酸リチウムを
含むエチレンカーボネートとジエチルカーボネートとの
混合溶液300ml を用いて試験電池を製作した。なお、正
極の電位測定には、金属リチウムの基準電極を用いた。
この電池を25℃, 0.5mA/cm2 の電流密度で2.0Vまで放電
し、同じ電流密度で3.3Vまで充電するというサイクル試
験をおこなった。
A test battery was manufactured using one positive electrode plate and two lithium metal plates of the same size as the counter electrode, and 300 ml of a mixed solution of ethylene carbonate and diethyl carbonate containing 1 M lithium perchlorate as an electrolyte. did. A metallic lithium reference electrode was used for measuring the potential of the positive electrode.
A cycle test was conducted in which this battery was discharged to 2.0 V at 25 ° C. and a current density of 0.5 mA / cm 2 , and charged to 3.3 V at the same current density.

【0019】サイクル経過にともなう容量の値の変化を
活物質単位重量当たりの容量で図2に示す。参考のため
に、従来から報告のあるような、炭酸マンガン粉末と炭
酸リチウム粉末のモル比が5:2の粉末を混合して得た
場合のもので、加熱処理温度を 850℃および 750℃とし
た場合の従来の正極板をそれぞれ (C)(D) とした。図
より、本発明による正極板 (A)(B) は、従来の正極板
(C)(D) よりも容量が高く、しかも充放電サイクルに
ともなう容量低下が少ないことがわかる。またその充放
電挙動は非常にスムースで(図3)、充電初期及び充電
末期また、放電初期及び放電末期の電位差が、従来のも
のに比べて極めて小さいことがわかった。
The change in the value of the capacity with the progress of cycles is shown in FIG. 2 as the capacity per unit weight of the active material. For reference, it was obtained by mixing powders of manganese carbonate powder and lithium carbonate powder with a molar ratio of 5: 2 as reported previously, and the heat treatment temperature was 850 ° C and 750 ° C. In that case, the conventional positive electrode plates were designated as (C) and (D), respectively. From the figure, the positive plates (A) and (B) according to the present invention are the same as the conventional positive plates.
It can be seen that the capacity is higher than those of (C) and (D), and that the capacity decrease with charge / discharge cycle is small. Further, the charging / discharging behavior was very smooth (FIG. 3), and it was found that the potential difference between the initial stage of charging and the final stage of charging and the initial stage of discharging and the final stage of discharging was extremely small compared to the conventional one.

【0020】何故、本発明にかかる正極板が、従来のも
のに比較して、高容量で、充放電のサイクル性能がすぐ
れているのかを調べるために、それぞれの活物質につい
てのX 線回折分析を低回折角度側に注目しておこなっ
た。その結果、加熱処理後の本発明による活物質は、Li
4/3 Mn5/3 4 の(1/2,1/2,1/2) 面、(1/3,1/3,1/3) 面
および(1/6,1/6,1/6) 面の規則配列を示すピークを示し
ているのに対して従来のものにはそれがないことがわか
った。これは、明らかにスピネル構造の一単位格子の秩
序をこえるものであり、超格子構造を示唆するものであ
る。本発明による加熱処理温度が 550℃,500℃で合成し
た正極活物質のX線回折図形を図4に示す。
In order to investigate why the positive electrode plate according to the present invention has a higher capacity and a better charging / discharging cycle performance than the conventional one, an X-ray diffraction analysis of each active material was conducted. Was focused on the low diffraction angle side. As a result, the active material according to the present invention after the heat treatment was
The (1 / 2,1 / 2,1 / 2) plane, (1 / 3,1 / 3,1 / 3) plane and (1 / 6,1 / 6,1) plane of 4/3 Mn 5/3 O 4 It was found that while the peaks showing the regular arrangement of the / 6) plane are shown, the conventional one does not. This clearly exceeds the order of one unit lattice of the spinel structure and suggests a superlattice structure. FIG. 4 shows an X-ray diffraction pattern of the positive electrode active material synthesized at the heat treatment temperatures of 550 ° C. and 500 ° C. according to the present invention.

【0021】また、100 サイクルの充放電試験が終了後
極板の状態を調べたところ、従来のものは電極のはがれ
が認められたのに対して、本発明のものには認められな
かったことからも、その効果は著しいといえる。
Further, when the state of the electrode plate was examined after completion of the 100-cycle charge / discharge test, peeling of the electrode was observed in the conventional one, but not in the present invention. From the above, it can be said that the effect is remarkable.

【0022】[0022]

【発明の効果】以上述べたように、本発明にかかる正極
活物質は単位結晶格子の枠をこえた秩序構造、超格子構
造を持つ点で、極めて新規な従来にない発想によって得
られる活物質である。しかも、本発明にかかる正極活物
質を使用した正極板における充放電特性にみられるよう
に、容量低下が極めて少なくしかも放電電位が安定で変
動も少ないといった著しい改善効果を得ることができ
る。加えて、充放電による活物質の膨張・収縮も全くな
いため、この活物質を適用した正極板は、充放電による
活物質の脱落やはがれが小さくなり、正極板の長寿命化
がはかれる。本発明の工業的価値は極めて大きい。
INDUSTRIAL APPLICABILITY As described above, the positive electrode active material according to the present invention has an ordered structure and a superlattice structure which are beyond the unit crystal lattice frame, and is an active material obtained by a very novel and unconventional idea. Is. Moreover, as can be seen from the charge and discharge characteristics of the positive electrode plate using the positive electrode active material according to the present invention, it is possible to obtain a remarkable improvement effect such that the capacity decrease is extremely small, the discharge potential is stable, and the fluctuation is small. In addition, since there is no expansion or contraction of the active material due to charge / discharge, the positive electrode plate to which this active material is applied has less detachment or peeling off of the active material due to charge / discharge, and the life of the positive electrode plate can be extended. The industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるスピネル構造の(1,1,1) 面に垂
直な方向から見た場合の結晶配列を示した概念図
FIG. 1 is a conceptual diagram showing a crystal arrangement when viewed from a direction perpendicular to a (1,1,1) plane of a spinel structure according to the present invention.

【図2】本発明にかかる実施例の正極活物質の充放電サ
イクルに伴う容量推移を示す図
FIG. 2 is a diagram showing a capacity transition of a positive electrode active material according to an example of the present invention during charge / discharge cycles.

【図3】本発明にかかる正極活物質の充放電特性を示す
FIG. 3 is a diagram showing charge / discharge characteristics of the positive electrode active material according to the present invention.

【図4】本発明にかかる正極活物質の超格子ピークを示
すX線回折図形
FIG. 4 is an X-ray diffraction pattern showing a superlattice peak of the positive electrode active material according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹原 善一郎 京都府京都市西京区大枝西新林町6−10− 14 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Zenichiro Takehara 6-10-14 Oeda Nishishinbayashi-cho, Nishikyo-ku, Kyoto City, Kyoto Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Li4/3 Mn5/3 4 の組成を有し、その結
晶が空間群Fd3mに帰属されるスピネル構造を有し、かつ
超格子構造を有することを特徴とするリチウム電池用正
極活物質。
1. A lithium battery having a composition of Li 4/3 Mn 5/3 O 4, a crystal thereof having a spinel structure belonging to a space group Fd3m, and a superlattice structure. Positive electrode active material.
【請求項2】 CuKα線を用いた粉末X線回折図形にお
いて、2θが9.2 °、6.3 °、3.1 °に空間群Fd3mの(1
/2,1/2,1/2) 、(1/3,1/3,1/3) 、(1/6,1/6,1/6) に相当
する回折ピークを持つことを特徴とする請求項1記載の
リチウム電池用正極活物質。
2. In a powder X-ray diffraction pattern using CuKα rays, 2θ of 9.2 °, 6.3 °, 3.1 ° in the space group Fd3m (1
/ 2,1 / 2,1 / 2), (1 / 3,1 / 3,1 / 3), (1 / 6,1 / 6,1 / 6) The positive electrode active material for a lithium battery according to claim 1.
【請求項3】 硝酸リチウムと、マンガン酸化物とを化
学量論比になるように混合し、酸素雰囲気中、500 〜 6
00℃で焼成することを特徴とする請求項1記載のリチウ
ム電池用正極活物質の製造方法。
3. Lithium nitrate and manganese oxide are mixed in a stoichiometric ratio, and the mixture is mixed in an oxygen atmosphere at 500-6.
The method for producing a positive electrode active material for a lithium battery according to claim 1, wherein the positive electrode active material is fired at 00 ° C.
JP07946496A 1996-03-07 1996-03-07 Cathode active material for lithium battery and method for producing the same Expired - Fee Related JP3746099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07946496A JP3746099B2 (en) 1996-03-07 1996-03-07 Cathode active material for lithium battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07946496A JP3746099B2 (en) 1996-03-07 1996-03-07 Cathode active material for lithium battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09245795A true JPH09245795A (en) 1997-09-19
JP3746099B2 JP3746099B2 (en) 2006-02-15

Family

ID=13690616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07946496A Expired - Fee Related JP3746099B2 (en) 1996-03-07 1996-03-07 Cathode active material for lithium battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3746099B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060678A1 (en) * 1999-03-30 2000-10-12 Matsushita Electric Industrial Co., Ltd. Electrode material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using the same
JP2001180937A (en) * 1999-12-27 2001-07-03 Japan Metals & Chem Co Ltd Spinel type lithium manganese compound oxide and manufacturing method
JP2002050357A (en) * 2000-08-01 2002-02-15 Mitsubishi Electric Corp Battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060678A1 (en) * 1999-03-30 2000-10-12 Matsushita Electric Industrial Co., Ltd. Electrode material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using the same
US6582853B1 (en) 1999-03-30 2003-06-24 Matsushita Electric Industrial Co., Ltd. Electrode material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using the same
JP2001180937A (en) * 1999-12-27 2001-07-03 Japan Metals & Chem Co Ltd Spinel type lithium manganese compound oxide and manufacturing method
JP4636642B2 (en) * 1999-12-27 2011-02-23 日本電工株式会社 Spinel type lithium manganese composite oxide and method for producing the same
JP2002050357A (en) * 2000-08-01 2002-02-15 Mitsubishi Electric Corp Battery

Also Published As

Publication number Publication date
JP3746099B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
EP1130663B1 (en) Positive electrode material for battery and nonaqueous electrolyte secondary battery
JP3045998B2 (en) Interlayer compound and method for producing the same
US6277521B1 (en) Lithium metal oxide containing multiple dopants and method of preparing same
JP3008793B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
US7608365B1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
EP1130665B1 (en) Positive electrode material for battery and nonaqueous electrolyte secondary battery
JPH08298115A (en) Positive electrode active material for lithium battery and manufacture thereof
JP2000277116A (en) Lithium secondary battery
EP1132985A2 (en) Positive electrode material for nonaqueous electrolyte secondary battery and battery using the same
JP3325423B2 (en) Non-aqueous electrolyte secondary battery, positive electrode active material for battery and method for producing the same
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2002313337A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it
JP2001023617A (en) Manufacture of lithium secondary battery
JP2003187801A (en) Method of making positive electrode active material for lithium secondary cell
EP0841711A1 (en) Lithium battery
JP2000323122A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacture thereof
JP2002050401A (en) Nonaqueous electrolyte lithium ion secondary cell
EP1130664B1 (en) Positive electrode material and cell for nonaqueous electrolyte secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP3746099B2 (en) Cathode active material for lithium battery and method for producing the same
JP3631150B2 (en) Method for selecting lithium manganate and method for producing lithium secondary battery
JP2002231246A (en) Positive electrode active maerail for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP4040271B2 (en) Lithium secondary battery and method for producing positive electrode active material used therefor
KR100269249B1 (en) Licoxmn2-xo4 as positive electrode material for 5v lithium secondary batteries

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051214

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051214

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees