JP2002313337A - Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it - Google Patents

Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it

Info

Publication number
JP2002313337A
JP2002313337A JP2001115386A JP2001115386A JP2002313337A JP 2002313337 A JP2002313337 A JP 2002313337A JP 2001115386 A JP2001115386 A JP 2001115386A JP 2001115386 A JP2001115386 A JP 2001115386A JP 2002313337 A JP2002313337 A JP 2002313337A
Authority
JP
Japan
Prior art keywords
lithium
compound
positive electrode
sodium
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001115386A
Other languages
Japanese (ja)
Inventor
Masanori Soma
正典 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001115386A priority Critical patent/JP2002313337A/en
Publication of JP2002313337A publication Critical patent/JP2002313337A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material or use in a nonaqueous electrolyte secondary battery having increased initial capacity, without impairing formability and filling ability for a positive electrode, and a method for manufacturing it. SOLUTION: A Na-Li-Mn composite oxide is synthesized by mixing a manganese compound raw material comprising a spherical or elliptical secondary particle with a Na compound and a Li compound so as to keep it in shape, and the Na-Li-Mn composite oxide expressed by a formula of Nax [Liy Mn1-y ]O2 (where, 0.66<=x<=1.0, and 0<y<=0.18) is used as a precursor, the precursor is treated in a solution containing a Li ion or molten salt, and thereby a Na ion contained in the precursor is exchanged for a Li ion by ion exchange. The Na-Li-Mn composite oxide is obtained by mixing the Na compound, the Li compound and the Mn compound so that the mol ratio of Na, Li and Mn becomes x:y:1-y (where, 0.66<=x<=1.0, and 0<y<=0.18), and by applying heat treatment at 600<= or more for 10 hours or more and suddenly cooling it to a room temperature of less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解質二次
電池用正極活物質およびその製造方法に関し、特に、高
いサイクル特性を損なうことなく、電極としての成形性
や充填性を向上させ、さらに、電池として高い初期容量
を具備させることが可能となる非水系電解質二次電池用
正極活物質およびその製造方法に関する。
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same, and more particularly, to improving the moldability and filling properties of an electrode without impairing high cycle characteristics. The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, which can have a high initial capacity as a battery, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、携帯電話やノート型パソコンなど
の携帯機器の普及にともない、高いエネルギー密度を有
する小型、軽量な二次電池の要求が高まっている。この
ようなものとして非水電解液タイプのリチウムイオン二
次電池があり、研究開発が盛んに行われ、実用化されて
きている。
2. Description of the Related Art In recent years, with the spread of portable devices such as cellular phones and notebook computers, demands for small and lightweight secondary batteries having a high energy density have been increasing. As such a device, a non-aqueous electrolyte type lithium ion secondary battery has been actively developed and put into practical use.

【0003】このリチウムイオン二次電池は、リチウム
含有複合酸化物を活物質とする正極と、リチウム金属、
リチウム合金、金属酸化物あるいはカーボンのような、
Liを吸蔵・放出することが可能な材料を活物質とする
負極と、非水電解液を含むセパレータまたは固体電解質
を主要構成要素とする。
This lithium ion secondary battery has a positive electrode using a lithium-containing composite oxide as an active material, a lithium metal,
Such as lithium alloys, metal oxides or carbon,
The main components are a negative electrode using a material capable of inserting and extracting Li as an active material, and a separator or a solid electrolyte containing a non-aqueous electrolyte.

【0004】これらの構成要素のうち、正極活物質とし
て検討されているものには、層状型リチウムコバルト複
合酸化物(LiCoO2)、層状型リチウムニッケル複
合酸化物(LiNiO2)、スピネル型リチウムマンガ
ン複合酸化物(LiMn24)等が挙げられる。
Among these components, those considered as positive electrode active materials include layered lithium-cobalt composite oxide (LiCoO 2 ), layered lithium-nickel composite oxide (LiNiO 2 ), and spinel-type lithium manganese. Composite oxides (LiMn 2 O 4 ) and the like can be mentioned.

【0005】特に、層状型リチウムコバルト複合酸化物
を正極に用いた二次電池では、優れた初期容量特性やサ
イクル特性を得るための開発がこれまで数多く行われ、
すでにさまざまな成果が得られて実用化に至っている。
しかし、リチウムコバルト複合酸化物は、原料に希産で
高価なCoを用いるため、正極活物質のコストアップさ
らには二次電池のコストアップの大きな原因となってい
る。
In particular, in a secondary battery using a layered lithium-cobalt composite oxide for a positive electrode, many developments have been made to obtain excellent initial capacity characteristics and cycle characteristics.
Various results have already been obtained and are now in practical use.
However, since lithium cobalt composite oxide uses rare and expensive Co as a raw material, it is a major cause of an increase in the cost of the positive electrode active material and an increase in the cost of the secondary battery.

【0006】また、Coよりも安価なNiを用いた層状
型リチウムニッケル複合酸化物は、コスト的にも容量的
にも有利であり、リチウムコバルト複合酸化物の有力な
代替材料として開発が進められている.しかし、このリ
チウムニッケル複合酸化物を正極活物質に用いた二次電
池は、充電状態での正極活物質の不安定性から、高温に
保持すると分解、発熱、発火などの危険性を有してお
り、安全性に関して解決しなければならない問題が多く
残っている。
A layered lithium-nickel composite oxide using Ni, which is less expensive than Co, is advantageous in terms of cost and capacity, and is being developed as a promising alternative to lithium-cobalt composite oxide. ing. However, secondary batteries using this lithium-nickel composite oxide as the positive electrode active material have the danger of decomposition, heat generation, ignition, etc. when maintained at high temperatures due to the instability of the positive electrode active material in the charged state. However, there are still many issues that need to be solved regarding safety.

【0007】また、スピネル型リチウムマンガン複合酸
化物は、CoやNiよりもさらに安価なMnを用いてお
り、かつ充電状態での安全性にも優れているため、次世
代の正極材料として期待されている。しかし、リチウム
コバルト複合酸化物やリチウムニッケル複合酸化物に比
べて容量が小さいことが問題となっている。
The spinel-type lithium manganese composite oxide uses Mn, which is cheaper than Co and Ni, and is excellent in safety in a charged state, so that it is expected as a next-generation cathode material. ing. However, there is a problem that the capacity is smaller than that of the lithium cobalt composite oxide or the lithium nickel composite oxide.

【0008】スピネル型リチウムマンガン複合酸化物
(LiMn24)では、リチウムイオンの挿入・脱離に
伴って3V(vs.Li+/Li)と4V(vs.Li+/L
i)付近の2つの充放電プラトー領域を持つことが知ら
れている。一般には、4V領域のみを用いて充放電を行
うため、LiとMnのみからなる純粋な量論組成のLi
Mn24では130mAh/g程度の容量しか得られな
い。さらに、純粋なLiMn24はサイクル特性が非常
に悪いため、一般には、マンガンサイトの一部を他の金
属元素で置換するなどの対策がとられているが、充分な
サイクル特性を得るために置換量を増加させると、初期
容量が100mAh/g以下にまでひどく低下してしま
うことが問題である。
In the spinel-type lithium manganese composite oxide (LiMn 2 O 4 ), 3 V (vs. Li + / Li) and 4 V (vs. Li + / L) accompanying insertion / desorption of lithium ions.
It is known to have two charge / discharge plateau regions near i). Generally, since charge and discharge are performed using only the 4 V region, a pure stoichiometric Li composed only of Li and Mn is used.
With Mn 2 O 4 , only a capacity of about 130 mAh / g can be obtained. Furthermore, since pure LiMn 2 O 4 has extremely poor cycle characteristics, measures such as substituting a part of manganese sites with other metal elements are generally taken, but in order to obtain sufficient cycle characteristics. When the replacement amount is increased, the initial capacity is seriously reduced to 100 mAh / g or less.

【0009】LiMn24を活物質として用いた場合で
も、3V領域とともに4V領域を併用すれば、200m
Ah/g以上の高い初期容量を得ることができる。しか
し、確かに高い初期容量が得られるものの、充放電サイ
クルに伴う容量劣化が非常に激しいため、実用的な電池
を得ることはできない。
Even when LiMn 2 O 4 is used as an active material, 200 m
A high initial capacity of Ah / g or more can be obtained. However, although a high initial capacity can be obtained, a practical battery cannot be obtained because the capacity greatly deteriorates due to charge / discharge cycles.

【0010】一方、従来のスピネル型リチウムマンガン
複合酸化物(LiMn24)とは異なり、LiCoO2
やLiNiO2に類似した層状構造を有するリチウムマ
ンガン複合酸化物(LiMnO2)の研究が盛んに行わ
れている。
On the other hand, unlike the conventional spinel-type lithium manganese composite oxide (LiMn 2 O 4 ), LiCoO 2
Research on a lithium manganese composite oxide (LiMnO 2 ) having a layered structure similar to that of LiNiO 2 has been actively conducted.

【0011】層状リチウムマンガン複合酸化物は、リチ
ウム原料とマンガン原料から固相法で直接合成すること
ができないため、例えば、ナトリウム化合物とマンガン
化合物から、前駆体として層状ナトリウム−マンガン複
合酸化物を固相法により合成し、300℃以下の低温
で、溶媒中もしくは溶融塩中において、ナトリウムイオ
ンをリチウムイオンへイオン交換することによって得
る。この層状リチウムマンガン複合酸化物を用いた電池
で、2.0V〜4.5V(vs.Li+/Li)の電位範囲
で充放電サイクルを行うと、200mAh/g以上の高
い初期容量が得られる。しかし、充放電サイクルに伴っ
て、結晶構造が徐々にスピネル構造へ変化してしまい、
スピネル型リチウムマンガン複合酸化物(LiMn
24)として、3V領域および4V領域を併用して充放
電することになるため、やはり容量が大きく減少してし
まう。
Since a layered lithium-manganese composite oxide cannot be directly synthesized from a lithium raw material and a manganese raw material by a solid phase method, for example, a layered sodium-manganese composite oxide is solidified as a precursor from a sodium compound and a manganese compound. It is synthesized by a phase method, and is obtained by ion exchange of sodium ions into lithium ions in a solvent or a molten salt at a low temperature of 300 ° C. or lower. When a charge / discharge cycle is performed in a battery using the layered lithium manganese composite oxide in a potential range of 2.0 V to 4.5 V (vs. Li + / Li), a high initial capacity of 200 mAh / g or more can be obtained. . However, with the charge / discharge cycle, the crystal structure gradually changed to a spinel structure,
Spinel-type lithium manganese composite oxide (LiMn
As 2 O 4 ), charging and discharging are performed using both the 3 V region and the 4 V region, so that the capacity is also greatly reduced.

【0012】上記の問題を解決するものとして、Journa
l of the Electrochemical Society,146,3560(1999)で
は、マンガンサイトの一部をリチウムイオンで置換する
ことによって、高容量でサイクル特性に優れたO2型層
状リチウムマンガン複合酸化物を得られることが報告さ
れている。
As a solution to the above problem, Journa
l of the Electrochemical Society, 146 , 3560 (1999) reports that by replacing part of manganese sites with lithium ions, it is possible to obtain O2 type layered lithium manganese composite oxides with high capacity and excellent cycle characteristics. Have been.

【0013】従来の層状リチウムマンガン複合酸化物
は、単位格子中にマンガン酸化物層が3層存在するO3
型層状構造を有している。O3型層状構造は、スピネル
型LiMn24に非常に近い結晶構造であるため、充放
電サイクル中にマンガンイオンが移動してスピネル構造
に変化してしまい、容量劣化が起きる。
The conventional layered lithium manganese composite oxide is composed of O3 in which three manganese oxide layers exist in a unit cell.
It has a mold layered structure. Since the O3-type layered structure has a crystal structure very similar to spinel-type LiMn 2 O 4 , manganese ions move during a charge / discharge cycle and change to a spinel structure, resulting in capacity degradation.

【0014】これに対して、O2型層状リチウムマンガ
ン複合酸化物は、単位格子中にマンガン酸化物層が2層
存在するO2型層状構造であり、スピネル構造へ変化す
るためには、マンガン−酸素結合を切断しなくてはなら
ず、スピネル化が起こりにくい。このため、サイクル特
性に優れていると考えられている。
On the other hand, the O2-type layered lithium manganese composite oxide has an O2-type layered structure in which two manganese oxide layers exist in a unit cell. To change into a spinel structure, manganese-oxygen is required. The bond must be broken, and spinelization is unlikely to occur. Therefore, it is considered that the cycle characteristics are excellent.

【0015】しかし、上記報告では、均一な化合物を得
るために、合成時に原料化合物を微粉砕・混合するた
め、合成後の正極活物質の密度が低くなり、電極を作製
した場合に成形性の悪化、充填密度の低下が生じるとい
った問題を有していた。
However, according to the above report, the raw material compounds are finely pulverized and mixed at the time of synthesis in order to obtain a uniform compound, so that the density of the positive electrode active material after the synthesis becomes low, and when the electrode is manufactured, the moldability is reduced. There was a problem that deterioration and reduction of the packing density occurred.

【0016】[0016]

【発明が解決しようとする課題】このように、層状リチ
ウムマンガン複合酸化物を正極活物質とした非水系電解
質二次電池においては、高いサイクル特性を維持したま
ま、電極としての成形性および充填性を向上させ、電池
として高い初期容量を具備させることが困難な問題点を
有していた。
As described above, in a non-aqueous electrolyte secondary battery using a layered lithium manganese composite oxide as a positive electrode active material, the moldability and filling property as an electrode are maintained while maintaining high cycle characteristics. And it is difficult to provide a high initial capacity as a battery.

【0017】本発明は、このような問題点に着目してな
されたもので、その目的とするところは、高密度のO2
型層状リチウムマンガン複合酸化物を合成することによ
って、正極としての成形性および充填性を損なわずに、
初期容量の向上した二次電池を組み立てることができる
非水系電解質二次電池用正極活物質およびその製造方法
を提供することにある。
The present invention has been made in view of such a problem.
By synthesizing a layered lithium-manganese composite oxide, without impairing the moldability and filling properties of the positive electrode,
An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery capable of assembling a secondary battery having an improved initial capacity, and a method for producing the same.

【0018】[0018]

【課題を解決するための手段】上記問題を解決するた
め、本発明者らが鋭意研究を重ねた結果、Mnの一部が
Liで置換されたO2型層状リチウムマンガン複合酸化
物を正極活物質に適用するに際し、一次粒子が凝集して
球状または楕円球状の二次粒子を構成したマンガン化合
物原料を、その形状を崩さないようにナトリウム化合物
およびリチウム化合物と混合して、ナトリウム−リチウ
ム−マンガン複合酸化物を合成し、ナトリウムイオンを
リチウムイオンへイオン交換することにより、リチウム
マンガン複合酸化物を得る。該リチウムマンガン複合酸
化物を用いることによって、成形性および充填性に優
れ、高いサイクル特性を維持したまま単位体積当たりの
放電容量が大きい二次電池を構成できることを見出し、
本発明を完成するに至った。
Means for Solving the Problems In order to solve the above problems, the present inventors have conducted intensive studies and found that an O2 type layered lithium manganese composite oxide in which Mn is partially replaced with Li is used as a positive electrode active material. When applied to, manganese compound raw material primary particles aggregated to form spherical or oval spherical secondary particles, sodium compound and lithium compound so as not to lose its shape, sodium-lithium-manganese composite An oxide is synthesized, and a sodium-ion ion is exchanged for a lithium ion to obtain a lithium-manganese composite oxide. By using the lithium-manganese composite oxide, it has been found that a secondary battery having excellent moldability and filling properties and a large discharge capacity per unit volume can be configured while maintaining high cycle characteristics,
The present invention has been completed.

【0019】すなわち、本発明の非水系電解質二次電池
用正極活物質は、Mnの一部がLiで置換されたO2型
層状リチウムマンガン複合酸化物の一次粒子が凝集して
構成された球状または楕円球状の二次粒子から基本的に
なり、一次粒子が凝集して構成された球状または楕円球
状の二次粒子からなるマンガン化合物原料を、形状を崩
さないようにナトリウム化合物、リチウム化合物と混合
してナトリウム−リチウム−マンガン複合酸化物を合成
し、該複合酸化物に含有されるナトリウムイオンをリチ
ウムイオンへイオン交換することにより得られる。
That is, the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has a spherical shape or a structure in which primary particles of an O2-type layered lithium manganese composite oxide in which a part of Mn is replaced by Li are aggregated. A manganese compound raw material consisting of spherical or elliptical secondary particles, which is basically made up of elliptical secondary particles and is formed by agglomeration of primary particles, is mixed with a sodium compound and a lithium compound so as not to lose their shape. To obtain a sodium-lithium-manganese composite oxide, and ion-exchange sodium ions contained in the composite oxide into lithium ions.

【0020】結晶構造が空間群P3mlで表され、単位
格子中にマンガン酸化物層が2層存在し、リチウムイオ
ンが酸化物イオンの八面体位置に存在するO2型層状構
造であり、Lix[LiyMn1-y]O2(ただし、0.6
6≦x≦1.0かつ0<y≦0.18)で表される。
The crystal structure is represented by space group P3ml, manganese oxide layer is present two layers in the unit cell, the lithium ion is O2 type layered structures present in octahedral sites of the oxide ion, Li x [ Li y Mn 1-y ] O 2 (provided that 0.6
6 ≦ x ≦ 1.0 and 0 <y ≦ 0.18).

【0021】また、本発明の非水系電解質二次電池用正
極活物質の製造方法は、一次粒子が凝集して球状または
楕円球状の二次粒子を構成したマンガン化合物原料を、
その形状を崩さないようにナトリウム化合物およびリチ
ウム化合物と混合して、ナトリウム−リチウム−マンガ
ン複合酸化物を合成して、式Nax[LiyMn1-y]O2
(ただし、0.66≦x≦1.0かつ0<y≦0.1
8)で表されるナトリウム−リチウム−マンガン複合酸
化物を前駆体とし、リチウムイオンを含む溶液または溶
融塩中において該前駆体を処理することにより、該前駆
体に含有されるナトリウムイオンをリチウムイオンへイ
オン交換する。
Further, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention provides a method for producing a manganese compound raw material in which primary particles are aggregated to form spherical or elliptical secondary particles.
A sodium-lithium-manganese composite oxide is synthesized by mixing with a sodium compound and a lithium compound so as not to lose its shape, and has the formula Na x [Li y Mn 1-y ] O 2
(However, 0.66 ≦ x ≦ 1.0 and 0 <y ≦ 0.1
The sodium-lithium-manganese composite oxide represented by 8) is used as a precursor, and the precursor is treated in a solution or a molten salt containing lithium ions, whereby sodium ions contained in the precursor are converted into lithium ions. Ion exchange.

【0022】前記ナトリウム−リチウム−マンガン複合
酸化物は、Na、Li、Mnのモル比がx:y:1−y
(ただし、0.66≦x≦1.0かつ0<y≦0.1
8)となるように、ナトリウム化合物、リチウム化合
物、マンガン化合物を混合し、600℃以上の温度で1
0時間以上熱処理し、室温以下に急冷して、得る。
In the sodium-lithium-manganese composite oxide, the molar ratio of Na, Li and Mn is x: y: 1-y
(However, 0.66 ≦ x ≦ 1.0 and 0 <y ≦ 0.1
8) A sodium compound, a lithium compound and a manganese compound are mixed so that
Heat-treated for 0 hour or more and quenched to room temperature or lower to obtain.

【0023】あるいは、Na、Li、Mnのモル比が
x:y:1−y(ただし、0.66≦x≦1.0かつ0
<y≦0.18)となるように、ナトリウム化合物およ
びリチウム化合物を、加熱融解するかもしくは溶媒に溶
解し、マンガン化合物に含浸させて、600℃以上の温
度で10時間以上熱処理し、室温以下に急冷して得る。
Alternatively, the molar ratio of Na, Li, and Mn is x: y: 1-y (provided that 0.66 ≦ x ≦ 1.0 and 0
<Y ≦ 0.18) Sodium compound and lithium compound are heated and melted or dissolved in a solvent, impregnated with a manganese compound, and heat-treated at a temperature of 600 ° C. or more for 10 hours or more, and at room temperature or less. Get quenched.

【0024】前記ナトリウム化合物は、炭酸ナトリウ
ム、水酸化ナトリウムまたは硝酸ナトリウムであり、前
記リチウム化合物は、炭酸リチウム、水酸化リチウム、
水酸化リチウム一水和物および硝酸リチウムから選択さ
れる1種以上であり、前記マンガン化合物は、二酸化マ
ンガンであり、二次粒子の形状が球状または楕円球状で
あることが好ましい。
The sodium compound is sodium carbonate, sodium hydroxide or sodium nitrate, and the lithium compound is lithium carbonate, lithium hydroxide,
Preferably, the manganese compound is at least one selected from lithium hydroxide monohydrate and lithium nitrate, and the manganese compound is manganese dioxide, and the secondary particles have a spherical or elliptical spherical shape.

【0025】[0025]

【発明の実施の形態】本発明に係る非水系電解質二次電
池用正極活物質は、Lix[LiyMn1-y]O2(0≦x
≦1.0かつ0<y≦0.18)で表される層状リチウ
ムマンガン複合酸化物であって、該リチウムマンガン複
合酸化物の二次粒子の形状が球状または楕円球状であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is Li x [Li y Mn 1-y ] O 2 (0 ≦ x
≦ 1.0 and 0 <y ≦ 0.18), wherein the secondary particles of the lithium manganese composite oxide have a spherical or elliptical spherical shape.

【0026】このような粉体特性をもつリチウムマンガ
ン複合酸化物は次のようにして得る。
A lithium manganese composite oxide having such powder characteristics is obtained as follows.

【0027】先ず、二次粒子の形状が球状または楕円球
状であるマンガン化合物の粉体特性が損なわれるような
粉砕混合工程を経ずに、例えば、ナトリウム化合物およ
びリチウム化合物の両者を溶解した水溶液に、マンガン
化合物を投入し、蒸発乾固させるなどの方法によって、
Na、Li、Mnのモル比がx:y:1−y(ただし、
0.66≦x≦1.0かつ0<y≦0.18)となる混
合物を得て、この混合物を熱処理後、急冷することによ
って、前駆体のナトリウム−リチウム−マンガン複合酸
化物を合成する。
First, without passing through a pulverizing and mixing step in which the powder characteristics of a manganese compound whose secondary particles are spherical or elliptical are impaired, for example, an aqueous solution in which both a sodium compound and a lithium compound are dissolved is used. , By adding a manganese compound and evaporating it to dryness,
The molar ratio of Na, Li, and Mn is x: y: 1-y (however,
A mixture satisfying 0.66 ≦ x ≦ 1.0 and 0 <y ≦ 0.18) is obtained, and the mixture is heat-treated and rapidly cooled to synthesize a precursor sodium-lithium-manganese composite oxide. .

【0028】次に、このナトリウム−リチウム−マンガ
ン複合酸化物を、ハロゲン化リチウムを溶解させた溶媒
中で攪拌・加熱し、ナトリウムイオンをリチウムイオン
へイオン交換することにより、得ることができる。
Next, the sodium-lithium-manganese composite oxide can be obtained by stirring and heating in a solvent in which lithium halide is dissolved to exchange sodium ions for lithium ions.

【0029】Na、Li、Mnのモル比x:y:1−y
が,0.66≦x≦1.0かつ0<y≦0.18の範囲
において、O2型層状リチウムマンガン複合酸化物を得
ることができ、この範囲を外れると、O2構造ではない
層状リチウムマンガン化合物などの異なる化合物が多く
生成してしまうため、電池のサイクル特性が悪化してし
まう。
The molar ratio of Na, Li and Mn x: y: 1-y
Can be obtained in the range of 0.66 ≦ x ≦ 1.0 and 0 <y ≦ 0.18. If the range is out of this range, the layered lithium manganese oxide having no O2 structure can be obtained. Since many different compounds such as compounds are generated, the cycle characteristics of the battery deteriorate.

【0030】本発明で用いるマンガン化合物としては、
酸化マンガン、水酸化マンガン、塩化マンガン、炭酸マ
ンガン、硝酸マンガン、硫酸マンガン、酢酸マンガンな
どが挙げられ、二次粒子の形状が球状または楕円球状で
あるような粉体特性をもつものであれば好適に用いるこ
とが可能であるが、好ましくは、二酸化マンガンであ
る。
The manganese compound used in the present invention includes:
Manganese oxide, manganese hydroxide, manganese chloride, manganese carbonate, manganese nitrate, manganese sulfate, manganese acetate, and the like can be mentioned, and it is preferable that the secondary particles have powder characteristics such as spherical or elliptical spherical. But manganese dioxide is preferred.

【0031】また、ナトリウム化合物としては、炭酸ナ
トリウム、水酸化ナトリウム、硝酸ナトリウムなどが好
ましい。
As the sodium compound, sodium carbonate, sodium hydroxide, sodium nitrate and the like are preferable.

【0032】リチウム化合物としては、炭酸リチウム、
水酸化リチウム、水酸化リチウム一水和物、硝酸リチウ
ムなどが好ましい。
As the lithium compound, lithium carbonate,
Preferred are lithium hydroxide, lithium hydroxide monohydrate, lithium nitrate and the like.

【0033】これらのナトリウム化合物およびリチウム
化合物は、マンガン化合物と混合・熱処理して、前駆体
のナトリウム−リチウム−マンガン複合酸化物を合成す
る際に溶融状態になるため、マンガン化合物との固相反
応が均一に速やかに進行することが期待できる。この結
果、前駆体をイオン交換した後も、マンガン化合物原料
の粉体特性を損なわずに、組成的に均一なリチウムマン
ガン複合酸化物を得ることができる。
The sodium compound and the lithium compound are mixed and heat-treated with the manganese compound to be in a molten state when the precursor sodium-lithium-manganese composite oxide is synthesized. Can be expected to proceed uniformly and quickly. As a result, even after ion exchange of the precursor, a lithium manganese composite oxide having a uniform composition can be obtained without impairing the powder characteristics of the manganese compound raw material.

【0034】前記熱処理をする際の温度を600℃以上
とすることにより、異相を生じさせることなく、O2型
層状複合酸化物を得ることができる。
By setting the temperature at the time of the heat treatment to 600 ° C. or higher, an O 2 -type layered composite oxide can be obtained without generating a different phase.

【0035】本発明の非水系電解質二次電池用正極活物
質を用いることにより、高い初期容量とサイクル特性を
維持したまま、成形性や充填性を具備した二次電池を組
み立てることができる。
By using the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, a secondary battery having moldability and filling properties can be assembled while maintaining high initial capacity and cycle characteristics.

【0036】[0036]

【実施例】以下、本発明の実施例を比較例とともに詳述
する。
Hereinafter, examples of the present invention will be described in detail along with comparative examples.

【0037】(実施例1)市販の水酸化ナトリウム、水
酸化リチウム一水和物、球状二酸化マンガンを、Na、
Li、Mnのモル比が0.67:0.17:0.83と
なるように秤量した後、水酸化ナトリウムと水酸化リチ
ウム一水和物が完全に溶解する量の純水中に入れて、加
熱しながら攪拌し、水分を蒸発させ、乾燥粉末を得た。
Example 1 Commercially available sodium hydroxide, lithium hydroxide monohydrate and spherical manganese dioxide were converted to Na,
After weighing so that the molar ratio of Li and Mn is 0.67: 0.17: 0.83, the solution is put into pure water in an amount in which sodium hydroxide and lithium hydroxide monohydrate are completely dissolved. The mixture was stirred while heating to evaporate water to obtain a dry powder.

【0038】この乾燥粉末を、酸素気流中で、800℃
で20時間焼成した後、焼成物を炉外に速やかに取り出
し急冷した。
This dried powder is heated at 800 ° C. in an oxygen stream.
After firing for 20 hours, the fired product was quickly taken out of the furnace and rapidly cooled.

【0039】得られた焼成物を、誘導結合プラズマ原子
分光分析器(ICP)を用いて組成分析を行ったとこ
ろ、Na:Li:Mn=0.67:0.17:0.83
であり、仕込み組成と一致する結果が得られた。さら
に、CuのKα線を用いた粉末X線回折で分析したとこ
ろ、β−Na0.7MnO2に類似の六方晶層状構造を有す
る結晶構造であることが確認された。
The obtained fired product was subjected to composition analysis using an inductively coupled plasma atomic spectrometer (ICP). As a result, Na: Li: Mn = 0.67: 0.17: 0.83
And a result consistent with the charged composition was obtained. Further, the powder was analyzed by powder X-ray diffraction using Kα radiation of Cu. As a result, it was confirmed that the crystal had a hexagonal layered structure similar to β-Na 0.7 MnO 2 .

【0040】このナトリウム−リチウム−マンガン複合
酸化物を、臭化リチウムが1Mの濃度で溶解したヘキサ
ノール中に投入し、180℃で8時間加熱攪拌した後、
得られたスラリーを濾過した。濾紙上に残った固体をメ
タノールで洗浄し、80℃で乾燥して、正極活物質を得
た。
This sodium-lithium-manganese composite oxide was put into hexanol in which lithium bromide was dissolved at a concentration of 1 M, and heated and stirred at 180 ° C. for 8 hours.
The resulting slurry was filtered. The solid remaining on the filter paper was washed with methanol and dried at 80 ° C. to obtain a positive electrode active material.

【0041】得られた正極活物質を、誘導結合プラズマ
原子分光分析器(ICP)を用いて組成分析を行ったと
ころ、Na:Li:Mn=0.01:0.50:0.4
9であり、NaがほぼLiにイオン交換されていること
がわかった。さらにCuのKα線を用いた粉末X線回折
パターンをリートベルト解析によって分析したところ、
空間群P3mlを有するO2型層状構造のLi0.70[L
0.17Mn0.83]O2のパターンと非常によく一致し
た。
When the composition of the obtained positive electrode active material was analyzed using an inductively coupled plasma atomic spectrometer (ICP), Na: Li: Mn = 0.01: 0.50: 0.4.
9, indicating that Na was almost ion-exchanged to Li. Furthermore, when the powder X-ray diffraction pattern using Kα ray of Cu was analyzed by Rietveld analysis,
Li 0.70 [L of O2 type layered structure having space group P3ml
i 0.17 Mn 0.83 ] O 2 pattern was very good.

【0042】また、得られた正極活物質のタップ密度は
1.70g/cm3であった。
The tap density of the obtained positive electrode active material was 1.70 g / cm 3 .

【0043】得られた活物質を用いて、図1に示した三
極式セルを、以下のように作製し、充放電容量を測定し
た。
Using the obtained active material, the three-electrode cell shown in FIG. 1 was prepared as follows, and the charge / discharge capacity was measured.

【0044】活物質粉末87質量%に、アセチレンブラ
ック5質量%およびPVDF(ポリ沸化ビニリデン)8
質量%を混合し、NMP(n−メチルピロリドン)を加
え、ペースト化した。これを、20μm厚のアルミニウ
ム箔に、乾燥後の活物質質量が0.02g/cm2にな
るように塗布し、120℃で真空乾燥を行い、1cmφ
の円板状に打ち抜いて正極1とした。露点が−80℃に
管理されたAr雰囲気のグローブボックス中で、ガラス
セル5の中に、前記正極1と、リチウム金属を使用して
正極1と同一寸法に作成した対極3および参照極2と、
1MのLiClO4を支持塩とするエチレンカーボネー
ト(EC)とジエチルカーボネート(DEC)の等量混
合溶液を用いた電解液4を配置し、三極式セルを作製し
た。
To 87% by mass of the active material powder, 5% by mass of acetylene black and PVDF (polyvinylidene fluoride) 8
% By mass, and NMP (n-methylpyrrolidone) was added to form a paste. This was applied to an aluminum foil having a thickness of 20 μm so that the mass of the active material after drying was 0.02 g / cm 2 , and vacuum dried at 120 ° C.
And a positive electrode 1 was punched out. In a glove box in an Ar atmosphere in which the dew point is controlled at −80 ° C., the positive electrode 1 and a counter electrode 3 and a reference electrode 2 made to the same dimensions as the positive electrode 1 using lithium metal in a glass cell 5. ,
Electrolyte solution 4 using an equimolar mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting salt was arranged to produce a three-electrode cell.

【0045】電流密度を0.06mA/cm2とし、カ
ットオフ電圧4.6V−2.0Vで充放電試験を行っ
た。
A charge / discharge test was performed at a current density of 0.06 mA / cm 2 and a cutoff voltage of 4.6 V to 2.0 V.

【0046】得られた1サイクル目の放電容量(初期容
量)は125mAh/gであった。また、初期容量に対
する20サイクル目の放電容量の比(容量維持率)は7
0.0%であった。
The obtained first cycle discharge capacity (initial capacity) was 125 mAh / g. The ratio of the discharge capacity at the 20th cycle to the initial capacity (capacity maintenance ratio) was 7%.
0.0%.

【0047】(実施例2)水酸化ナトリウム、水酸化リ
チウム一水和物、球状二酸化マンガンを、Na、Li、
Mnのモル比が0.67:0.06:0.94となるよ
うに秤量した以外は、実施例1と同様に正極活物質を合
成した。
(Example 2) Sodium hydroxide, lithium hydroxide monohydrate and spherical manganese dioxide were converted to Na, Li,
A positive electrode active material was synthesized in the same manner as in Example 1, except that the Mn molar ratio was weighed so as to be 0.67: 0.06: 0.94.

【0048】得られた正極活物質のタップ密度は1.6
5g/cm3であった。
The tap density of the obtained positive electrode active material was 1.6.
It was 5 g / cm 3 .

【0049】さらに、得られた正極活物質を用いて実施
例1と同様に三極式セルを作製して、充放電試験を行っ
た。
Further, using the obtained positive electrode active material, a three-electrode cell was prepared in the same manner as in Example 1, and a charge / discharge test was performed.

【0050】得られた1サイクル目の放電容量(初期容
量)は150mAh/gであった。また、初期容量に対
する20サイクル目の放電容量の比(容量維持率)は6
8%であった。
The obtained first cycle discharge capacity (initial capacity) was 150 mAh / g. The ratio of the discharge capacity at the 20th cycle to the initial capacity (capacity maintenance rate) is 6
8%.

【0051】(比較例1)市販の炭酸ナトリウム、炭酸
リチウム、球状二酸化マンガンを、Na、Li、Mnの
モル比が0.67:0.17:0.83となるように秤
量した後、これらの化合物をエタノールを用いてボール
ミルで15時間湿式混合した。得られたスラリー状の混
合物を85℃大気中で3時間乾燥し、混合乾燥粉末を得
た。この混合乾燥粉末を、酸素気流中で、800℃で2
0時間焼成した後、焼成物を炉外に速やかに取り出し急
冷した。
Comparative Example 1 Commercially available sodium carbonate, lithium carbonate, and spherical manganese dioxide were weighed so that the molar ratio of Na, Li, and Mn was 0.67: 0.17: 0.83. Was wet-mixed with ethanol using a ball mill for 15 hours. The obtained slurry mixture was dried in an atmosphere at 85 ° C. for 3 hours to obtain a mixed dry powder. This mixed dry powder is placed in an oxygen stream at 800 ° C. for 2 hours.
After firing for 0 hours, the fired product was quickly taken out of the furnace and rapidly cooled.

【0052】得られた焼成物を、誘導結合プラズマ原子
分光分析器(ICP)を用いて組成分析を行ったとこ
ろ、Na:Li:Mn=0.67:0.17:0.83
であり、仕込み組成と一致する結果が得られた。さら
に、CuのKα線を用いた粉末X線回折で分析したとこ
ろ、β−Na0.7MnO2に類似の六方晶層状構造を有す
る結晶構造であることが確認された。
When the obtained fired product was subjected to composition analysis using an inductively coupled plasma atomic spectrometer (ICP), Na: Li: Mn = 0.67: 0.17: 0.83.
And a result consistent with the charged composition was obtained. Further, when analyzed by powder X-ray diffraction using Cu Kα ray, it was confirmed that the crystal structure had a hexagonal layered structure similar to β-Na 0.7 MnO 2 .

【0053】このナトリウム−リチウム−マンガン複合
酸化物を、臭化リチウムが1Mの濃度で溶解したヘキサ
ノール中に投入し、180℃で8時間、加熱攪拌した
後、得られたスラリーを濾過した。濾紙上に残った固体
をメタノールで洗浄し、80℃で乾燥して、正極活物質
を得た。
This sodium-lithium-manganese composite oxide was put into hexanol in which lithium bromide was dissolved at a concentration of 1 M, and the mixture was heated and stirred at 180 ° C. for 8 hours, and the obtained slurry was filtered. The solid remaining on the filter paper was washed with methanol and dried at 80 ° C. to obtain a positive electrode active material.

【0054】得られた正極活物質を、誘導結合プラズマ
原子分光分析器(ICP)を用いて組成分析を行ったと
ころ、Na:Li:Mn=0.01:0.50:0.4
9であり、NaがほぼLiにイオン交換されていること
がわかった。さらにCuのKα線を用いた粉末X線回折
パターンをリートベルト解析によって分析したところ、
空間群P3mlを有するO2型層状構造のLi0.70[L
0.17Mn0.83]O2のパターンと非常によく一致し
た。
When the composition of the obtained positive electrode active material was analyzed using an inductively coupled plasma atomic spectrometer (ICP), Na: Li: Mn = 0.01: 0.50: 0.4.
9, indicating that Na was almost ion-exchanged to Li. Furthermore, when the powder X-ray diffraction pattern using Kα ray of Cu was analyzed by Rietveld analysis,
Li 0.70 [L of O2 type layered structure having space group P3ml
i 0.17 Mn 0.83 ] O 2 pattern was very good.

【0055】また、得られた正極活物質のタップ密度は
0.50g/cm3であった。
The tap density of the obtained positive electrode active material was 0.50 g / cm 3 .

【0056】さらに、得られた正極活物質を用いて実施
例1と同様の方法で3極式セルを作製して充放電試験を
行った。
Further, a three-electrode cell was prepared in the same manner as in Example 1 using the obtained positive electrode active material, and a charge / discharge test was performed.

【0057】得られた1サイクル目の放電容量(初期容
量)は160mAh/gであった。また、初期容量に対
する20サイクル目の放電容量の比(容量維持率)は7
0%であった。
The obtained first cycle discharge capacity (initial capacity) was 160 mAh / g. The ratio of the discharge capacity at the 20th cycle to the initial capacity (capacity maintenance ratio) was 7%.
It was 0%.

【0058】(比較例2)市販の水酸化リチウム、球状
二酸化マンガンを、Li、Mnのモル比が1:2となる
ように秤量した後、これらの化合物を、二酸化マンガン
の二次粒子がもつ球状または楕円球状の形状が崩れない
程度の力で混合し、800℃で10時間焼成して、正極
活物質を得た。
(Comparative Example 2) Commercially available lithium hydroxide and spherical manganese dioxide were weighed so that the molar ratio of Li and Mn was 1: 2, and then these compounds were contained in secondary particles of manganese dioxide. The mixture was mixed with such a force that the spherical or elliptical spherical shape did not collapse, and fired at 800 ° C. for 10 hours to obtain a positive electrode active material.

【0059】得られた正極活物質を、誘導結合プラズマ
原子分光分析器(ICP)を用いて組成分析を行ったと
ころ、Li:Mn=1:2であり、仕込み組成と一致す
る結果が得られた。さらに、CuのKα線を用いた粉末
X線回折で分析したところ、LiMn24のスピネル構
造であることが確認された。
When the composition of the obtained positive electrode active material was analyzed using an inductively coupled plasma atomic spectrometer (ICP), Li: Mn = 1: 2, and a result consistent with the charged composition was obtained. Was. Further, when the powder was analyzed by powder X-ray diffraction using Cu Kα ray, it was confirmed that the powder had a spinel structure of LiMn 2 O 4 .

【0060】また、得られた正極活物質のタップ密度は
1.72g/cm3であった。
The tap density of the obtained positive electrode active material was 1.72 g / cm 3 .

【0061】さらに、得られた正極活物質を用いて実施
例1と同様の方法で3極式セルを作製して充放電試験を
行った。
Further, using the obtained positive electrode active material, a three-electrode cell was prepared in the same manner as in Example 1, and a charge / discharge test was performed.

【0062】得られた1サイクル目の放電容量(初期容
量)は220mAh/gであった。また、初期容量に対
する20サイクル目の放電容量の比(容量維持率)は2
7%であった。
The obtained first cycle discharge capacity (initial capacity) was 220 mAh / g. The ratio of the discharge capacity at the 20th cycle to the initial capacity (capacity retention ratio) is 2
7%.

【0063】(評価)比較例1に示したように、原料を
微粉砕・混合して合成したO2型リチウムマンガン複合
酸化物では、確かに100mAh/g以上の比較的高い
初期特性と良好なサイクル特性を得ることができるが、
活物質の密度が低くなってしまい、体積あたりの高い容
量を具備した電極を得ることができない。
(Evaluation) As shown in Comparative Example 1, the O2 type lithium manganese composite oxide synthesized by finely pulverizing and mixing the raw materials certainly has a relatively high initial characteristic of 100 mAh / g or more and a good cycle. You can get the characteristics,
The density of the active material becomes low, and an electrode having a high capacity per volume cannot be obtained.

【0064】また、比較例2に示したように、球状また
は楕円球状の二次粒子から構成されるスピネル型リチウ
ムマンガン複合酸化物では、比較的高い密度と大きな初
期容量を得ることができるが、サイクル特性が極めて悪
い。
As shown in Comparative Example 2, the spinel-type lithium manganese composite oxide composed of spherical or elliptical secondary particles can obtain a relatively high density and a large initial capacity. Very poor cycle characteristics.

【0065】これらに対して、実施例1および2のよう
に、球状または楕円球状の二次粒子から構成される本発
明のO2型リチウムマンガン複合酸化物では、100m
Ah/g以上の比較的高い初期容量と、良好のサイクル
特性とを同時に得ることができる。
On the other hand, as in Examples 1 and 2, the O2 type lithium manganese composite oxide of the present invention composed of spherical or oval spherical secondary particles has a thickness of 100 m.
A relatively high initial capacity of Ah / g or more and good cycle characteristics can be simultaneously obtained.

【0066】[0066]

【発明の効果】以上述べた通り、本発明の非水系電解質
二次電池用正極活物質は、非水系電解質二次電池として
の高いサイクル特性を維持したまま、正極としての成形
性および充填性の向上を図ることが可能であり、単位体
積当たりの初期容量が大きい二次電池を提供することが
できるという効果がある。
As described above, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention maintains the high cycle characteristics of a non-aqueous electrolyte secondary battery while maintaining the moldability and filling properties of the positive electrode. Thus, a secondary battery having a large initial capacity per unit volume can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例に係る3極式セルを示す側面図であ
る。
FIG. 1 is a side view showing a three-electrode cell according to an embodiment.

【符号の説明】[Explanation of symbols]

1 正極(評価用電極) 2 参照極(Li) 3 対極(Li) 4 電解液 5 ガラスセル DESCRIPTION OF SYMBOLS 1 Positive electrode (evaluation electrode) 2 Reference electrode (Li) 3 Counter electrode (Li) 4 Electrolyte 5 Glass cell

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB01 AB02 AB05 AC06 AD06 AE05 5H029 AJ03 AK03 AL12 AM03 AM05 AM07 CJ02 CJ08 CJ15 CJ23 DJ16 DJ17 HJ00 HJ02 HJ13 HJ14 5H050 AA08 BA15 CA09 CB12 FA17 FA19 GA02 GA10 GA13 GA16 GA23 HA02 HA13 HA14 HA20 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G048 AA04 AB01 AB02 AB05 AC06 AD06 AE05 5H029 AJ03 AK03 AL12 AM03 AM05 AM07 CJ02 CJ08 CJ15 CJ23 DJ16 DJ17 HJ00 HJ02 HJ13 HJ14 5H050 AA08 BA15 CA09 CB12 FA17 GA19 GA02 HA13 HA14 HA20

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Mnの一部がLiで置換されたO2型層
状リチウムマンガン複合酸化物の一次粒子が凝集して構
成された球状または楕円球状の二次粒子から基本的にな
ることを特徴とする非水系電解質二次電池用正極活物
質。
1. A spherical or elliptical secondary particle formed by agglomeration of primary particles of an O2 type layered lithium manganese composite oxide in which a part of Mn is substituted by Li. Positive electrode active material for non-aqueous electrolyte secondary batteries.
【請求項2】 Mnの一部がLiで置換されたO2型層
状リチウムマンガン複合酸化物において、一次粒子が凝
集して構成された球状または楕円球状の二次粒子からな
るマンガン化合物原料を、形状を崩さないようにナトリ
ウム化合物、リチウム化合物と混合してナトリウム−リ
チウム−マンガン複合酸化物を合成し、該複合酸化物に
含有されるナトリウムイオンをリチウムイオンへイオン
交換することにより得られるリチウムマンガン複合酸化
物であることを特徴とする非水系電解質二次電池用正極
活物質。
2. An O2-type layered lithium manganese composite oxide in which a part of Mn is replaced with Li, a manganese compound raw material comprising spherical or elliptical secondary particles formed by agglomeration of primary particles is formed. A lithium-manganese composite obtained by mixing a sodium compound and a lithium compound to synthesize a sodium-lithium-manganese composite oxide and exchanging sodium ions contained in the composite oxide into lithium ions so as not to destroy A positive electrode active material for a non-aqueous electrolyte secondary battery, which is an oxide.
【請求項3】 結晶構造が空間群P3mlで表され、単
位格子中にマンガン酸化物層が2層存在し、リチウムイ
オンが酸化物イオンの八面体位置に存在するO2型層状
構造であり、Lix[LiyMn1-y]O2(ただし、0.
66≦x≦1.0かつ0<y≦0.18)で表されるこ
とを特徴とする請求項1または2に記載の非水系電解質
二次電池用正極活物質。
3. An O2-type layered structure in which a crystal structure is represented by a space group P3ml, two manganese oxide layers are present in a unit cell, and lithium ions are present at octahedral positions of the oxide ions. x [Li y Mn 1-y ] O 2 (provided that 0.
The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is represented by the following formula: 66 ≦ x ≦ 1.0 and 0 <y ≦ 0.18).
【請求項4】 一次粒子が凝集して構成された球状また
は楕円球状の二次粒子からなるマンガン化合物原料を、
形状を崩さないようにナトリウム化合物、リチウム化合
物と混合して合成して、式Nax[LiyMn1-y]O
2(ただし、0.66≦x≦1.0かつ0<y≦0.1
8)で表されるナトリウム−リチウム−マンガン複合酸
化物を前駆体とし、リチウムイオンを含む溶液または溶
融塩中において該前駆体を処理することにより、該前駆
体に含有されるナトリウムイオンをリチウムイオンへイ
オン交換することを特徴とする非水系電解質二次電池用
正極活物質を得る製造方法。
4. A manganese compound raw material comprising spherical or elliptical secondary particles formed by aggregating primary particles,
The compound is synthesized by mixing with a sodium compound and a lithium compound so as not to lose its shape, and has the formula Na x [Li y Mn 1-y ] O
2 (However, 0.66 ≦ x ≦ 1.0 and 0 <y ≦ 0.1
The sodium-lithium-manganese composite oxide represented by 8) is used as a precursor, and the precursor is treated in a solution or a molten salt containing lithium ions, whereby sodium ions contained in the precursor are converted into lithium ions. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by performing ion exchange.
【請求項5】 Na、Li、Mnのモル比がx:y:1
−y(ただし、0.66≦x≦1.0かつ0<y≦0.
18)となるように、ナトリウム化合物、リチウム化合
物、マンガン化合物を混合し、600℃以上の温度で1
0時間以上熱処理し、室温以下に急冷することにより、
前記ナトリウム−リチウム−マンガン複合酸化物を得る
ことを特徴とする請求項4に記載の非水系電解質二次電
池用正極活物質の製造方法。
5. Molar ratio of Na, Li, Mn is x: y: 1.
−y (where 0.66 ≦ x ≦ 1.0 and 0 <y ≦ 0.
18), a sodium compound, a lithium compound and a manganese compound are mixed, and the mixture is heated at a temperature of
Heat treatment for 0 hour or more, and quenching to room temperature or less,
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 4, wherein the sodium-lithium-manganese composite oxide is obtained.
【請求項6】 Na、Li、Mnのモル比がx:y:1
−y(ただし、0.66≦x≦1.0かつ0<y≦0.
18)となるように、ナトリウム化合物およびリチウム
化合物を、加熱融解するかもしくは溶媒に溶解し、マン
ガン化合物に含浸させて、600℃以上の温度で10時
間以上熱処理し、室温以下に急冷することにより、前記
ナトリウム−リチウム−マンガン複合酸化物を得ること
を特徴とする請求項4に記載の非水系電解質二次電池用
正極活物質の製造方法。
6. The molar ratio of Na, Li, and Mn is x: y: 1.
−y (where 0.66 ≦ x ≦ 1.0 and 0 <y ≦ 0.
18) so that the sodium compound and the lithium compound are heated and melted or dissolved in a solvent, impregnated with a manganese compound, heat-treated at a temperature of 600 ° C. or more for 10 hours or more, and rapidly cooled to a room temperature or less. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 4, wherein the sodium-lithium-manganese composite oxide is obtained.
【請求項7】 前記ナトリウム化合物が、炭酸ナトリウ
ム、水酸化ナトリウムまたは硝酸ナトリウムであること
を特徴とする請求項5または6に記載の非水系電解質二
次電池用正極活物質の製造方法。
7. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 5, wherein the sodium compound is sodium carbonate, sodium hydroxide or sodium nitrate.
【請求項8】 前記リチウム化合物が、炭酸リチウム、
水酸化リチウム、水酸化リチウム一水和物および硝酸リ
チウムから選択される1種以上であることを特徴とする
請求項5または6に記載の非水系電解質二次電池用正極
活物質の製造方法。
8. The method according to claim 1, wherein the lithium compound is lithium carbonate,
7. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 5, wherein the method is at least one selected from lithium hydroxide, lithium hydroxide monohydrate and lithium nitrate.
【請求項9】 前記マンガン化合物が二酸化マンガンで
あることを特徴とする請求項5または6に記載の非水系
電解質二次電池用正極活物質の製造方法。
9. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 5, wherein the manganese compound is manganese dioxide.
JP2001115386A 2001-04-13 2001-04-13 Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it Pending JP2002313337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001115386A JP2002313337A (en) 2001-04-13 2001-04-13 Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115386A JP2002313337A (en) 2001-04-13 2001-04-13 Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it

Publications (1)

Publication Number Publication Date
JP2002313337A true JP2002313337A (en) 2002-10-25

Family

ID=18966294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115386A Pending JP2002313337A (en) 2001-04-13 2001-04-13 Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it

Country Status (1)

Country Link
JP (1) JP2002313337A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220898A (en) * 2003-01-14 2004-08-05 Toyota Central Res & Dev Lab Inc Positive active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
WO2007083434A1 (en) 2006-01-23 2007-07-26 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and process for producing the same
JP2010225348A (en) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2010232037A (en) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
US8048564B2 (en) 2007-06-25 2011-11-01 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method of forming positive electrode
JP2011243585A (en) * 2006-01-23 2011-12-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method thereof
US8263263B2 (en) 2007-03-22 2012-09-11 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2012204281A (en) * 2011-03-28 2012-10-22 Tokyo Univ Of Science Composite metal oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2014115772A1 (en) * 2013-01-23 2014-07-31 学校法人東京理科大学 Combined metal oxide, positive-electrode active substance for sodium secondary cell, positive electrode for sodium secondary cell, and sodium secondary cell
US8815449B2 (en) 2005-02-07 2014-08-26 Sanyo Electric Co., Ltd. Positive electrode and non-aqueous electrolyte secondary battery
WO2015012473A1 (en) * 2013-07-24 2015-01-29 주식회사 엘지화학 Lithium manganese-based oxide and positive electrode active substance comprising same
JP2015092455A (en) * 2013-09-30 2015-05-14 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP2017174558A (en) * 2016-03-22 2017-09-28 本田技研工業株式会社 Lithium composite oxide, method for manufacturing the same, positive electrode active material for secondary battery, and secondary battery
CN113036118A (en) * 2021-03-31 2021-06-25 蜂巢能源科技有限公司 Positive electrode material and preparation method and application thereof
CN115367804A (en) * 2022-09-23 2022-11-22 东莞理工学院 Preparation method of manganese-based sodium-ion battery positive electrode material with stable air
WO2022252503A1 (en) * 2021-06-04 2022-12-08 蜂巢能源科技有限公司 Positive electrode material, preparation method therefor, and lithium ion battery
CN117902631A (en) * 2024-03-14 2024-04-19 新乡学院 Layered metal oxide Na0.7MnO2.05And a method for preparing the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220898A (en) * 2003-01-14 2004-08-05 Toyota Central Res & Dev Lab Inc Positive active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
US8815449B2 (en) 2005-02-07 2014-08-26 Sanyo Electric Co., Ltd. Positive electrode and non-aqueous electrolyte secondary battery
JP2011243585A (en) * 2006-01-23 2011-12-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2007083434A1 (en) 2006-01-23 2007-07-26 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and process for producing the same
JP2007220650A (en) * 2006-01-23 2007-08-30 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
US8178243B2 (en) 2006-01-23 2012-05-15 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and method of manufacturing the same
US8349496B2 (en) 2006-01-23 2013-01-08 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and method of manufacturing the same
CN101944631B (en) * 2006-01-23 2014-11-05 三洋电机株式会社 Nonaqueous electrolyte secondary battery and process for producing the same
US8263263B2 (en) 2007-03-22 2012-09-11 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US8048564B2 (en) 2007-06-25 2011-11-01 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method of forming positive electrode
JP2010225348A (en) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2010232037A (en) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2012204281A (en) * 2011-03-28 2012-10-22 Tokyo Univ Of Science Composite metal oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2014115772A1 (en) * 2013-01-23 2014-07-31 学校法人東京理科大学 Combined metal oxide, positive-electrode active substance for sodium secondary cell, positive electrode for sodium secondary cell, and sodium secondary cell
US9780370B2 (en) 2013-07-24 2017-10-03 Lg Chem, Ltd. Lithium manganese-based oxide and cathode active material including the same
KR101513496B1 (en) 2013-07-24 2015-04-20 주식회사 엘지화학 Lithium Manganese-based Oxide and Cathode Active Material Containing the Same
WO2015012473A1 (en) * 2013-07-24 2015-01-29 주식회사 엘지화학 Lithium manganese-based oxide and positive electrode active substance comprising same
JP2015092455A (en) * 2013-09-30 2015-05-14 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP2017174558A (en) * 2016-03-22 2017-09-28 本田技研工業株式会社 Lithium composite oxide, method for manufacturing the same, positive electrode active material for secondary battery, and secondary battery
CN113036118A (en) * 2021-03-31 2021-06-25 蜂巢能源科技有限公司 Positive electrode material and preparation method and application thereof
CN113036118B (en) * 2021-03-31 2023-10-03 蜂巢能源科技有限公司 Positive electrode material and preparation method and application thereof
WO2022252503A1 (en) * 2021-06-04 2022-12-08 蜂巢能源科技有限公司 Positive electrode material, preparation method therefor, and lithium ion battery
CN115367804A (en) * 2022-09-23 2022-11-22 东莞理工学院 Preparation method of manganese-based sodium-ion battery positive electrode material with stable air
CN115367804B (en) * 2022-09-23 2024-04-16 东莞理工学院 Preparation method of air-stable manganese-based sodium ion battery positive electrode material
CN117902631A (en) * 2024-03-14 2024-04-19 新乡学院 Layered metal oxide Na0.7MnO2.05And a method for preparing the same

Similar Documents

Publication Publication Date Title
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
US8574765B2 (en) Li-Ni composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
US7608365B1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
JP2002289261A (en) Non-aqueous electrolyte secondary battery
JP2002313337A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it
KR20040052463A (en) Positive plate material and cell comprising it
JP3661183B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2003123749A (en) Positive electron active material for nonaqueous electrolyte secondary battery
WO2024095975A1 (en) Method for manufacturing positive electrode active material for lithium-ion secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2996234B1 (en) Non-aqueous electrolyte secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2002260660A (en) Positive electrode material for nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2002298843A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2002184404A (en) Positive electrode material and nonaqueous electrolyte battery
JP2002151079A (en) Positive electrode active material for non-aqueous system electrolyte secondary battery, and its manufacturing method
KR100326456B1 (en) A positive active material for a lithium secondary battery and A method of preparing the same
WO2024095974A1 (en) Positive-electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2024095979A1 (en) Method for producing positive electrode active material for lithium ion secondary batteries
WO2024095978A1 (en) Method for manufacturing positive electrode active material for lithium-ion secondary battery
WO2024095980A1 (en) Method for manufacturing positive electrode active material for lithium-ion secondary battery