JP4479874B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4479874B2
JP4479874B2 JP2001363285A JP2001363285A JP4479874B2 JP 4479874 B2 JP4479874 B2 JP 4479874B2 JP 2001363285 A JP2001363285 A JP 2001363285A JP 2001363285 A JP2001363285 A JP 2001363285A JP 4479874 B2 JP4479874 B2 JP 4479874B2
Authority
JP
Japan
Prior art keywords
positive electrode
manganese
secondary battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001363285A
Other languages
Japanese (ja)
Other versions
JP2002231246A (en
Inventor
英明 前田
昌市 藤野
光昭 畑谷
浩康 渡邊
典幹 杉山
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2001363285A priority Critical patent/JP4479874B2/en
Publication of JP2002231246A publication Critical patent/JP2002231246A/en
Application granted granted Critical
Publication of JP4479874B2 publication Critical patent/JP4479874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、二次電池としての初期放電容量を維持し、且つ、高温下での充放電サイクル特性が改善された非水電解質二次電池を得ることができる正極活物質を提供する。
【0002】
【従来の技術】
近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。
【0003】
従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiCo1−XNi、LiNiO等が一般的に知られており、なかでもLiCoOを用いたリチウムイオン二次電池は高い充放電電圧と充放電容量を有する点で優れているが、更なる特性改善が求められている。
【0004】
即ち、LiCoOを用いたリチウムイオン二次電池は充放電の繰り返しを行うと放電容量が低下する傾向があり、この原因は、リチウムイオンの脱挿入反応の際にLiCoOの格子が収縮・膨張することによってLiCoOの結晶構造が崩壊し、充放電サイクル特性の劣化につながっているものと推定されている。
【0005】
ノートパソコンなど二次電池で作動する装置はその使用に伴って高温になるため、高温下での充放電サイクル特性に優れた二次電池が要求されている。
【0006】
また、LiCoOを用いた二次電池は高い電圧で作動させることができるが、高電圧のため電解液との反応が起こりやすく、充放電サイクル特性が低下しやすい。
【0007】
そこで、高温下での充放電サイクル特性に優れた二次電池が製造できるLiCoOが要求されている。
【0008】
従来、結晶構造の安定化などの諸特性改善のために、コバルト酸リチウム粒子粉末にマンガンを含有させる方法(特公平7−32017号公報、特開平4−28162号公報)やマグネシウムを含有させる方法(特開平4−171659号公報、特開平5−54889号公報、特開平6−168722号公報、特開平11−102704号公報、特開2000−11993号公報、特開2000−123834号公報)、湿式法によってマンガン又はマグネシウムを混合させる方法(特開平10−1316号公報、特開平11−67205号公報)及びコバルト酸リチウムの格子定数を制御することによって特性を向上させる方法(特開平6−181062号公報)等が知られている。
【0009】
【発明が解決しようとする課題】
前記諸特性を満たす正極活物質は現在最も要求されているところであるが、未だ得られていない。
【0010】
即ち、前出特公平7−32017号公報、特開平4−171659号公報、特開平4−28162号公報、特開平5−54889号公報、特開平6−168722号公報、特開平11−102704号公報、特開2000−11993号公報及び特開2000−123834号公報には、コバルト化合物、リチウム化合物及びマンガン又はマグネシウムとを乾式で混合させて、マンガン又はマグネシウムを含有するコバルト酸リチウム粒子粉末を得ることが記載されているが、マンガン又はマグネシウムの組成分布が不均一になり、リチウムイオンの脱挿入反応に伴い結晶構造の収縮膨張が起こり結晶格子が崩壊しやすく、これらを用いた二次電池は高温下での充放電サイクル特性に優れるとは言い難いものである。
【0011】
また、前出特開平10−1316号公報には、コバルト化合物と、マンガン化合物又はマグネシウム化合物を水酸化リチウム水溶液中に分散させて、加熱処理を行ってコバルト酸リチウム粒子を得る製造法が記載されているが、水熱処理を行う必要があり工業的とは言い難いものである。
【0012】
また、前出特開平11−67205号公報には、リチウム、コバルト及びマンガンの各水溶性塩とクエン酸とを溶液状態で混合した後、溶媒を除去してゲル化し、得られたゲルを乾燥し、焼成してコバルト酸リチウム粒子粉末を得る製造法が記載されているが、得られるコバルト酸リチウム粒子粉末は、BET比表面積値が大きく、電解液との反応性が増加するため好ましくない。
【0013】
また、前出特開平6−181062号公報には、c軸の格子定数が14.05Å以上であるコバルト酸リチウムが記載されているが、これを用いた二次電池はMn、Mgを含有させた場合と比較して高温下での充放電サイクル特性の改善効果が小さい。
【0014】
そこで、本発明は、初期放電容量に優れ、且つ、高温下での充放電サイクル特性に優れた非水電解質二次電池用正極活物質を提供することを技術的課題とする。
【0015】
【課題を解決する為の手段】
前記技術的課題は、次の通りの本発明によって達成できる。
【0016】
即ち、本発明は、組成がLiCo(1−x−y)MnMg(0.008≦x≦0.18、0≦y≦0.18)であり、c軸の格子定数が14.080〜14.160Åであり、平均粒子径が0.1〜7.0μmであることを特徴とする非水電解質二次電池用正極活物質、及び該非水電解質二次電池用正極活物質を含有する正極を用いたことを特徴とする非水電解質二次電池であって、該非水電解質二次電池用正極活物質を含有する正極を用いた非水電解質二次電池の60℃での50サイクル後の容量維持率が90〜99%である。
【0017】
また、本発明は、コバルト塩とマンガン塩又はマンガン塩及びマグネシウム塩とを含有する溶液をアルカリ水溶液により中和し、次いで、酸化反応を行ってマンガン又はマンガン及びマグネシウムを含有するコバルト酸化物を得、該コバルト酸化物とリチウム化合物とを混合し、該混合物を600〜950℃の温度範囲で熱処理することを特徴とする前記非水電解質二次電池用正極活物質の製造法である。
【0018】
本発明の構成をより詳しく説明すれば次の通りである。
【0019】
先ず、本発明に係る正極活物質について述べる。
【0020】
本発明に係る正極活物質は、マンガン又はマンガン及びマグネシウムを含有するコバルト酸リチウム粒子粉末であり、組成をLiCo(1−x−y)MnMgとした場合に、マンガン含有量xは0.008〜0.18である。0.008未満の場合は高温下での充放電サイクル特性に対する効果が小さく、0.18を超える場合には初期放電容量が著しく低下する。好ましくは0.01〜0.15である。また、マンガンと同時にマグネシウムを含有させることによって高温下での充放電サイクル特性をより改善することができる。マグネシウム含有量yは0〜0.18である。0.18を超える場合には、特性改善の効果が小さい。好ましくは0.01〜0.15、より好ましくは0.01〜0.10、更により好ましくは0.01〜0.07である。
【0021】
本発明に係る正極活物質の格子定数はc軸が14.080〜14.160Åであり、好ましくは14.080〜14.155Å、より好ましくは14.080〜14.153Åである。c軸の格子定数が14.080Å未満の場合には、リチウムイオンの脱挿入反応に伴う格子の収縮・膨張が顕著になり、高温下での充放電サイクル特性が低下する。マンガンの置換量を増加させることによって14.160Åを超える正極活物質を得ることができるが、初期放電容量も低下することになるため好ましくない。また、a軸は2.81〜2.83Åが好ましく、より好ましくは2.815〜2.825Åである。
【0022】
本発明に係る正極活物質の平均粒子径は0.1〜7.0μm、好ましくは0.1〜6.0μm、より好ましくは0.2〜5.0μm、更に好ましくは0.5〜5.0μmである。平均粒子径が0.1μm未満の場合には、充填密度の低下や電解液との反応性が増加するため好ましくない。5.0μmを超える場合には、工業的に生産することが困難となる。
【0023】
本発明に係る正極活物質のBET比表面積は0.1〜2.5m/gが好ましく、より好ましくは0.1〜2.0m/g、更により好ましくは0.1〜1.7m/gである。BET比表面積値が0.1m/g未満の場合には、工業的に生産することが困難となる。2.5m/gを超える場合には充填密度の低下や電解液との反応性が増加するため好ましくない。
【0024】
本発明に係る正極活物質の結晶子サイズは、400〜1200Åが好ましく、より好ましくは450〜1000Å、更により好ましくは500〜850Åである。
【0025】
次に、本発明に係る正極活物質の製造法について述べる。
【0026】
本発明に係る正極活物質は、マンガン又はマンガン及びマグネシウムを含有するコバルト酸化物とリチウム化合物を混合して、熱処理することで得られる。
【0027】
マンガン又はマンガン及びマグネシウムを含有するコバルト酸化物は、コバルト塩を溶解した水溶液にマンガン塩水溶液又はマンガン塩及びマグネシウム塩の水溶液を添加して混合溶液とし、該混合溶液にアルカリを加えて中和反応を行った後、酸化反応を行って得ることができる。
【0028】
アルカリ種としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア等の水溶液を用いることができ、水酸化ナトリウム水溶液、炭酸ナトリウム水溶液及びこれらの混合溶液を用いるのが好ましい。
【0029】
マンガン塩の添加量は、コバルトに対してMn換算で0.1〜20mol%であり、好ましくは1.0〜18mol%である。また、マグネシウムの添加量はコバルトに対してMg換算で0.1〜20mol%であり、好ましくは1.0〜18mol%である。
【0030】
中和反応に用いるアルカリ量は、反応溶液中のコバルトとマンガンとの水酸化物又はコバルトとマンガン及びマグネシウムとの水酸化物中の金属塩の中和分に対して当量比1.0〜1.2を添加することが好ましい。
【0031】
酸化反応は、酸素含有ガスを通気することによって行う。反応温度は30℃以上が好ましく、より好ましくは30〜95℃である。反応時間は5〜20時間行うことが好ましい。
【0032】
マンガン又はマンガン及びマグネシウムを含有するコバルト酸化物は、平均粒子径0.01〜2.0μmが好ましく、より好ましくは0.05〜1.0μmであり、BET比表面積値0.5〜50m/gが好ましく、より好ましくは10〜40m/gである。
【0033】
前記マンガン又はマンガン及びマグネシウムを含有するコバルト酸化物は、コバルトとマンガン又はマンガン及びマグネシウムとが原子レベルで均一に分布しているため、リチウム化合物と混合し熱処理を行った場合、均一にコバルトサイトに置換することが可能となる。
【0034】
前記マンガン又はマンガン及びマグネシウムを含有するコバルト酸化物とリチウム化合物とを混合して、熱処理を行う。
【0035】
マンガン又はマンガン及びマグネシウムを含有するコバルト酸化物とリチウム化合物との混合は、均一に混合することができれば乾式、湿式のどちらでもよい。
【0036】
リチウムの混合比は、コバルト及びマンガンに対してモル比で0.95〜1.05であることが好ましい。
【0037】
熱処理温度は、高温規則相であるLiCoOが生成する600℃〜950℃であることが好ましい。600℃未満の場合には擬スピネル構造を有する低温相であるLiCoOが生成し、950℃を超える場合にはリチウムとコバルトの位置がランダムである高温不規則相のLiCoOが生成する。
【0038】
本発明に係る正極活物質を用いて正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。
【0039】
本発明に係る正極活物質を用いて二次電池を製造する場合には、前記正極、負極及び電解質から構成される。
【0040】
負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。
【0041】
また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルとの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類やジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。
【0042】
さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を前記溶媒に溶解して用いることができる。
【0043】
本発明に係る正極活物質を用いて製造した二次電池は、初期放電容量が135〜160mAh/gが好ましく、より好ましくは138〜160mAh/g、更に好ましくは140〜160mAh/gであり、60℃での50サイクル後の容量維持率は90〜99%が好ましく、より好ましくは92〜99%であり、更に好ましくは95〜99%である。
【0044】
【発明の実施の形態】
本発明の代表的な実施の形態は、次の通りである。
【0045】
正極活物質の同定は、粉末X線回折(RIGAKU Cu−Kα 40kV 40mA)を用いた。また、該粉末X線回折の各々の回折ピークから格子定数を計算した。
【0046】
正極活物質の結晶子サイズは、前記粉末X線回折の各々の回折ピークから計算した。
【0047】
また、元素分析にはプラズマ発光分析装置(セイコー電子工業製 SPS4000)を用いた。
【0048】
正極活物質の電池特性は、下記製造法によって正極、負極及び電解液を調製しコイン型の電池セルを作製して評価した。
【0049】
<正極の作製>
正極活物質と導電剤であるアセチレンブラック及び結着剤のポリフッ化ビニリデンを重量比で85:10:5となるように精秤し、乳鉢で十分に混合してからN−メチル−2−ピロリドンに分散させて正極合剤スラリーを調製した。次に、このスラリーを集電体のアルミニウム箔に150μmの膜厚で塗布し、150℃で真空乾燥してからφ16mmの円板状に打ち抜き正極板とした。
【0050】
<負極の作製>
金属リチウム箔をφ16mmの円板状に打ち抜いて負極を作製した。
【0051】
<電解液の調製>
炭酸エチレンと炭酸ジエチルとの体積比50:50の混合溶液に電解質として六フッ化リン酸リチウム(LiPF)を1モル/リットル混合して電解液とした。
【0052】
<コイン型電池セルの組み立て>
アルゴン雰囲気のグローブボックス中でSUS316製のケースを用い、前記正極と負極の間にポリプロピレン製のセパレータを介し、さらに電解液を注入してCR2032型のコイン電池を作製した。
【0053】
<電池評価>
前記コイン型電池を用いて、二次電池の充放電試験を行った。測定条件は、60℃の温度下で、正極に対する電流密度を0.2mA/cmとし、カットオフ電圧が3.0Vから4.25Vの間で充放電を繰り返した。
【0054】
<正極活物質の製造>
0.5mol/lのコバルトを含有する水溶液5800mlに、硫酸マンガン109.5ml(コバルトに対して5mol%)を添加し、更に、コバルト及びマンガンの中和分に対して1.05当量の水酸化ナトリウム水溶液を添加し中和反応させた。次いで、空気を吹き込みながら90℃で8時間酸化反応を行ってマンガン含有コバルト酸化物240.8gを得た。得られたマンガン含有コバルト酸化物はX線回折の結果、Co単相であり、Mn含有量がコバルトに対してMn換算で5mol%、平均粒子径が0.05μm、BET比表面積値が23m/gであった。
【0055】
前記マンガン含有コバルト酸化物とリチウム化合物とを、リチウム/(コバルト+マンガン)のモル比が1.03となるよう所定量を十分混合し、混合粉を酸化雰囲気下、900℃で10時間焼成してマンガン含有コバルト酸リチウム粒子粉末を得た。
【0056】
得られたマンガン含有コバルト酸リチウム粒子粉末は、平均粒子径1.0μm、BET比表面積値は0.6m/g、格子定数a軸長が2.820Å、c軸長が14.100Å、結晶子サイズは642Åであった。Mn含有量はLiCo1−xMnとした場合にxが0.05であった。
【0057】
ここに得たマンガン含有コバルト酸リチウム粒子粉末を用いて作製したコイン型電池は、初期放電容量が150mAh/g、60℃での50サイクル後の容量維持率が95%/50cycleであった。
【0058】
【作用】
本発明において最も重要な点は、マンガン又はマンガン及びマグネシウムを含有するコバルト酸リチウム粒子粉末からなる正極活物質を用いた二次電池は、二次電池としての初期放電容量を維持し、しかも、高温下での充放電サイクル特性に優れるという点である。
【0059】
初期放電容量を維持できるのは、本来のLiCoOが有する初期放電容量を低下させない範囲でマンガン、マグネシウムを含有させたことによる。
【0060】
正極活物質のc軸の格子定数が大きいのは、湿式酸化反応によりマンガン又はマンガン及びマグネシウムをコバルト酸化物中に含有させるので、原子レベルでコバルトとマンガン又はマグネシウムが均一に分布し、該コバルト酸化物を用いて得られる正極活物質は、マンガン及びマグネシウムがコバルトサイトに均一に置換することによるものと本発明者は推定している。
【0061】
また、c軸の格子定数があらかじめ大きいので、リチウムイオンの脱挿入反応が容易に行われ、リチウムイオンの脱挿入反応に伴う結晶構造のc軸方向の収縮膨張による格子の崩壊を抑制することができるので、高温下での充放電サイクル特性も優れるものと推定している。
【0062】
一方、リチウム化合物、コバルト化合物及びマンガン化合物又はマグネシウム化合物を乾式混合し仮焼した場合には、マンガン又はマグネシウムの組成分布が不均一となり、本発明の効果は得られない。
【0063】
【実施例】
次に、実施例並びに比較例を挙げる。
【0064】
実施例1〜8、比較例1〜4
マンガン、マグネシウムの含有量を種々変化させた以外は前記発明の実施の形態と同様にして正極活物質を製造し、次いで、該正極活物質を用いてコイン型電池を製造した。
【0065】
このときの製造条件を表1及び表2に、得られた正極活物質の諸特性及びコイン型電池の電池特性を表3に示す。
【0066】
比較例5及び6
比較例5及び6は各原料を乾式法により混合し、焼成して得た。
【0067】
このときの製造条件を表2に、得られた正極活物質の諸特性及びコイン型電池の電池特性を表3に示す。
【0068】
【表1】

Figure 0004479874
【0069】
【表2】
Figure 0004479874
【0070】
【表3】
Figure 0004479874
【0071】
本発明に係る正極活物質を用いて作製したコイン型電池は、初期放電容量140mAh/g以上を有し、60℃での50サイクル後の容量維持率が95%以上と高いレベルにある。
【0072】
また、比較例に示す通り、Mn含有量xが0.008以下の場合ではその効果は十分ではなく、0.18以上では初期放電容量が低下しすぎてしまう。また、コバルト酸リチウム粒子粉末を製造する方法において、中和反応によって得られたMgのみを含有させた酸化コバルトを用いた場合及び各原料を乾式法により混合した場合では、高温下での充放電サイクル特性の改善効果が見られない。
【0073】
【発明の効果】
本発明に係る正極活物質を用いれば、二次電池としての初期放電容量を維持し、且つ、高温下での充放電サイクル特性が改善された非水電解質二次電池を得ることができる。[0001]
[Industrial application fields]
The present invention provides a positive electrode active material capable of obtaining a nonaqueous electrolyte secondary battery that maintains an initial discharge capacity as a secondary battery and has improved charge / discharge cycle characteristics at high temperatures.
[0002]
[Prior art]
In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having advantages such as a high charge / discharge voltage and a large charge / discharge capacity has attracted attention.
[0003]
Conventionally, as positive electrode active substances useful for high energy-type lithium ion secondary batteries having 4V-grade voltage, LiMn 2 O 4 of spinel structure, LiMnO 2 having a zigzag layer structure, LiCoO 2 of layered rock-salt structure, LiCo 1-X Ni X O 2 , LiNiO 2 and the like are generally known, and among them, a lithium ion secondary battery using LiCoO 2 is excellent in that it has a high charge / discharge voltage and charge / discharge capacity. There is a need for further improvement in characteristics.
[0004]
That is, the lithium ion secondary battery using LiCoO 2 tends to have a reduced discharge capacity when repeated charging and discharging are performed. This is because the LiCoO 2 lattice contracts and expands during the lithium ion deinsertion reaction. By doing so, it is presumed that the crystal structure of LiCoO 2 collapses, leading to deterioration of charge / discharge cycle characteristics.
[0005]
Since devices operating on secondary batteries such as notebook computers become hot as they are used, secondary batteries with excellent charge / discharge cycle characteristics at high temperatures are required.
[0006]
In addition, a secondary battery using LiCoO 2 can be operated at a high voltage. However, due to the high voltage, a reaction with the electrolytic solution is likely to occur, and charge / discharge cycle characteristics are likely to be deteriorated.
[0007]
Therefore, LiCoO 2 capable of producing a secondary battery excellent in charge / discharge cycle characteristics at high temperature is required.
[0008]
Conventionally, in order to improve various characteristics such as stabilization of the crystal structure, a method of containing manganese in lithium cobaltate particles (Japanese Patent Publication No. 7-32017, Japanese Patent Laid-Open No. 4-28162) and a method of containing magnesium (JP-A-4-171659, JP-A-5-54889, JP-A-6-168722, JP-A-11-102704, JP-A-2000-111993, JP-A-2000-123834), A method of mixing manganese or magnesium by a wet method (JP-A-10-1316, JP-A-11-67205) and a method of improving characteristics by controlling the lattice constant of lithium cobaltate (JP-A-6-181062) Etc.) are known.
[0009]
[Problems to be solved by the invention]
A positive electrode active material that satisfies the above-mentioned properties is currently most demanded, but has not yet been obtained.
[0010]
That is, the aforementioned Japanese Patent Publication No. 7-32017, JP-A-4-171659, JP-A-4-28162, JP-A-5-54889, JP-A-6-168722, JP-A-11-102704. In Japanese Patent Laid-Open No. 2000-11993 and Japanese Patent Laid-Open No. 2000-123834, a cobalt compound, a lithium compound, and manganese or magnesium are mixed in a dry process to obtain lithium cobalt oxide particle powder containing manganese or magnesium. However, the composition distribution of manganese or magnesium becomes non-uniform, the crystal structure shrinks and expands with the lithium ion deinsertion reaction, and the crystal lattice is likely to collapse. It is difficult to say that it is excellent in charge / discharge cycle characteristics at high temperatures.
[0011]
In addition, the above-mentioned JP-A-10-1316 discloses a production method in which a cobalt compound and a manganese compound or a magnesium compound are dispersed in a lithium hydroxide aqueous solution and subjected to heat treatment to obtain lithium cobalt oxide particles. However, it is difficult to say that it is industrial because hydrothermal treatment is required.
[0012]
Further, in the above-mentioned JP-A-11-67205, after mixing each water-soluble salt of lithium, cobalt and manganese and citric acid in a solution state, the solvent is removed to gel, and the resulting gel is dried. However, although a production method for obtaining lithium cobalt oxide particle powder by firing is described, the obtained lithium cobalt oxide particle powder has a large BET specific surface area value and increases reactivity with the electrolytic solution, which is not preferable.
[0013]
Further, in the above-mentioned Japanese Patent Application Laid-Open No. 6-181062, lithium cobalt oxide having a c-axis lattice constant of 14.05% or more is described, but a secondary battery using this contains Mn and Mg. Compared with the case, the effect of improving the charge / discharge cycle characteristics at a high temperature is small.
[0014]
Then, this invention makes it a technical subject to provide the positive electrode active material for nonaqueous electrolyte secondary batteries which was excellent in the initial stage discharge capacity and excellent in the charge / discharge cycle characteristic under high temperature.
[0015]
[Means for solving the problems]
The technical problem can be achieved by the present invention as follows.
[0016]
That is, according to the present invention, the composition is LiCo (1-xy) Mn x Mg y O 2 (0.008 ≦ x ≦ 0.18, 0 ≦ y ≦ 0.18), and the lattice constant of the c axis is 14. Positive electrode active material for nonaqueous electrolyte secondary battery , and positive electrode active material for nonaqueous electrolyte secondary battery, characterized in that it has a particle diameter of 14.080 to 14.160 mm and an average particle size of 0.1 to 7.0 μm A nonaqueous electrolyte secondary battery using a positive electrode containing a positive electrode containing the positive electrode active material for a nonaqueous electrolyte secondary battery at 60 ° C. The capacity maintenance rate after 50 cycles is 90 to 99% .
[0017]
The present invention also provides a cobalt oxide containing manganese or manganese and magnesium by neutralizing a solution containing a cobalt salt and a manganese salt or a manganese salt and a magnesium salt with an alkaline aqueous solution and then performing an oxidation reaction. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the cobalt oxide and a lithium compound are mixed and the mixture is heat-treated at a temperature range of 600 to 950 ° C.
[0018]
The configuration of the present invention will be described in more detail as follows.
[0019]
First, the positive electrode active material according to the present invention will be described.
[0020]
The positive electrode active material according to the present invention is manganese or lithium cobaltate particles containing manganese and magnesium, and the composition is LiCo (1-xy) Mn x Mg y O 2 , manganese content x Is 0.008 to 0.18. If it is less than 0.008, the effect on the charge / discharge cycle characteristics at high temperatures is small, and if it exceeds 0.18, the initial discharge capacity is significantly reduced. Preferably it is 0.01-0.15. Moreover, charging and discharging cycle characteristics at high temperature can be further improved by containing magnesium simultaneously with manganese. The magnesium content y is 0-0.18. When it exceeds 0.18, the effect of improving the characteristics is small. Preferably it is 0.01-0.15, More preferably, it is 0.01-0.10, More preferably, it is 0.01-0.07.
[0021]
The lattice constant of the positive electrode active material according to the present invention is such that the c-axis is 14.080 to 14.160 Å, preferably 14.080 to 14.155 Å, more preferably 14.080 to 14.153 Å. When the lattice constant of the c-axis is less than 14.080 mm, the lattice contraction / expansion accompanying the lithium ion deinsertion reaction becomes significant, and the charge / discharge cycle characteristics at high temperatures deteriorate. Although the positive electrode active material exceeding 14.160cm can be obtained by increasing the amount of substitution of manganese, it is not preferable because the initial discharge capacity is also reduced. Further, the a-axis is preferably 2.81 to 2.83 mm, more preferably 2.815 to 2.825 mm.
[0022]
The average particle diameter of the positive electrode active material according to the present invention is 0.1 to 7.0 μm, preferably 0.1 to 6.0 μm, more preferably 0.2 to 5.0 μm, and still more preferably 0.5 to 5. 0 μm. An average particle size of less than 0.1 μm is not preferable because the packing density is lowered and the reactivity with the electrolytic solution is increased. When it exceeds 5.0 μm, it is difficult to produce industrially.
[0023]
The BET specific surface area of the positive electrode active material according to the present invention is preferably 0.1 to 2.5 m 2 / g, more preferably 0.1 to 2.0 m 2 / g, still more preferably 0.1 to 1.7 m. 2 / g. When the BET specific surface area value is less than 0.1 m 2 / g, it is difficult to produce industrially. If it exceeds 2.5 m 2 / g, the filling density is lowered and the reactivity with the electrolytic solution is increased.
[0024]
The crystallite size of the positive electrode active material according to the present invention is preferably 400 to 1200 Å, more preferably 450 to 1000 Å, and even more preferably 500 to 850 Å.
[0025]
Next, a method for producing the positive electrode active material according to the present invention will be described.
[0026]
The positive electrode active material according to the present invention is obtained by mixing and heat treating manganese or a cobalt oxide containing manganese and magnesium and a lithium compound.
[0027]
Cobalt oxide containing manganese or manganese and magnesium is mixed with an aqueous solution of manganese salt or an aqueous solution of manganese salt and magnesium salt in an aqueous solution in which a cobalt salt is dissolved, and an alkali is added to the mixed solution for neutralization reaction. Can be obtained by carrying out an oxidation reaction.
[0028]
As the alkali species, for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia or the like can be used, and an aqueous sodium hydroxide solution, an aqueous sodium carbonate solution, or a mixed solution thereof is preferably used.
[0029]
The addition amount of manganese salt is 0.1-20 mol% in conversion of Mn with respect to cobalt, Preferably it is 1.0-18 mol%. Moreover, the addition amount of magnesium is 0.1-20 mol% in conversion of Mg with respect to cobalt, Preferably it is 1.0-18 mol%.
[0030]
The amount of alkali used for the neutralization reaction is equivalent to 1.0 to 1 with respect to the neutralized content of the metal salt in the hydroxide of cobalt and manganese or the hydroxide of cobalt, manganese and magnesium in the reaction solution. .2 is preferably added.
[0031]
The oxidation reaction is performed by venting oxygen-containing gas. The reaction temperature is preferably 30 ° C. or higher, more preferably 30 to 95 ° C. The reaction time is preferably 5 to 20 hours.
[0032]
The cobalt oxide containing manganese or manganese and magnesium preferably has an average particle size of 0.01 to 2.0 μm, more preferably 0.05 to 1.0 μm, and a BET specific surface area value of 0.5 to 50 m 2 / g is preferable, More preferably, it is 10-40 m < 2 > / g.
[0033]
In the cobalt oxide containing manganese or manganese and magnesium, cobalt and manganese or manganese and magnesium are uniformly distributed at an atomic level. Therefore, when mixed with a lithium compound and heat-treated, the cobalt oxide is uniformly distributed on the cobalt site. It can be replaced.
[0034]
The manganese or cobalt oxide containing manganese and magnesium and a lithium compound are mixed and heat treatment is performed.
[0035]
Mixing of manganese or cobalt oxide containing manganese and magnesium with a lithium compound may be either dry or wet as long as it can be uniformly mixed.
[0036]
The mixing ratio of lithium is preferably 0.95 to 1.05 in terms of molar ratio with respect to cobalt and manganese.
[0037]
The heat treatment temperature is preferably 600 ° C. to 950 ° C. at which LiCoO 2 that is a high-temperature ordered phase is generated. If it is less than 600 ° C. is LiCoO 2 is produced a low-temperature phase having a pseudo-spinel structure, the position of lithium and cobalt to produce the LiCoO 2 hot disordered phase is random in the case of more than 950 ° C..
[0038]
When a positive electrode is produced using the positive electrode active material according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
[0039]
When manufacturing a secondary battery using the positive electrode active material which concerns on this invention, it is comprised from the said positive electrode, a negative electrode, and electrolyte.
[0040]
As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite, or the like can be used.
[0041]
In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
[0042]
Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the solvent and used.
[0043]
The secondary battery manufactured using the positive electrode active material according to the present invention preferably has an initial discharge capacity of 135 to 160 mAh / g, more preferably 138 to 160 mAh / g, and still more preferably 140 to 160 mAh / g. The capacity maintenance rate after 50 cycles at ° C is preferably 90 to 99%, more preferably 92 to 99%, and still more preferably 95 to 99%.
[0044]
DETAILED DESCRIPTION OF THE INVENTION
A typical embodiment of the present invention is as follows.
[0045]
For identification of the positive electrode active material, powder X-ray diffraction (RIGAKU Cu-Kα 40 kV 40 mA) was used. The lattice constant was calculated from each diffraction peak of the powder X-ray diffraction.
[0046]
The crystallite size of the positive electrode active material was calculated from each diffraction peak of the powder X-ray diffraction.
[0047]
In addition, a plasma emission analyzer (SEPS Electronics SPS4000) was used for elemental analysis.
[0048]
The battery characteristics of the positive electrode active material were evaluated by preparing a positive electrode, a negative electrode, and an electrolytic solution by the following production method to produce a coin-type battery cell.
[0049]
<Preparation of positive electrode>
A positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are precisely weighed so that the weight ratio is 85: 10: 5, and thoroughly mixed in a mortar, and then N-methyl-2-pyrrolidone. To prepare a positive electrode mixture slurry. Next, this slurry was applied to an aluminum foil as a current collector with a film thickness of 150 μm, vacuum-dried at 150 ° C., and then punched into a disk shape of φ16 mm to obtain a positive electrode plate.
[0050]
<Production of negative electrode>
A metal lithium foil was punched into a disk shape of φ16 mm to produce a negative electrode.
[0051]
<Preparation of electrolyte>
An electrolyte solution was prepared by mixing 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 50:50.
[0052]
<Assembly of coin-type battery cells>
A SUS316 case was used in a glove box in an argon atmosphere, and a CR2032-type coin battery was manufactured by injecting an electrolyte solution through a polypropylene separator between the positive electrode and the negative electrode.
[0053]
<Battery evaluation>
A charge / discharge test of a secondary battery was performed using the coin-type battery. Measurement conditions were such that the current density with respect to the positive electrode was 0.2 mA / cm 2 at a temperature of 60 ° C., and charge / discharge was repeated with a cut-off voltage of 3.0 V to 4.25 V.
[0054]
<Manufacture of positive electrode active material>
To 5800 ml of an aqueous solution containing 0.5 mol / l of cobalt, 109.5 ml of manganese sulfate (5 mol% with respect to cobalt) was added, and 1.05 equivalent of hydroxylation with respect to the neutralized content of cobalt and manganese. A sodium aqueous solution was added to carry out a neutralization reaction. Next, an oxidation reaction was performed at 90 ° C. for 8 hours while blowing air to obtain 240.8 g of manganese-containing cobalt oxide. As a result of X-ray diffraction, the obtained manganese-containing cobalt oxide is a Co 3 O 4 single phase, the Mn content is 5 mol% in terms of Mn with respect to cobalt, the average particle size is 0.05 μm, and the BET specific surface area value. Was 23 m 2 / g.
[0055]
A predetermined amount of the manganese-containing cobalt oxide and the lithium compound is sufficiently mixed so that the molar ratio of lithium / (cobalt + manganese) is 1.03, and the mixed powder is fired at 900 ° C. for 10 hours in an oxidizing atmosphere. Thus, manganese-containing lithium cobalt oxide particle powder was obtained.
[0056]
The obtained manganese-containing lithium cobalt oxide particle powder has an average particle size of 1.0 μm, a BET specific surface area value of 0.6 m 2 / g, a lattice constant a-axis length of 2.820 mm, c-axis length of 14.100 mm, crystals The child size was 642cm. When Mn content was LiCo 1-x Mn x O 2 , x was 0.05.
[0057]
The coin-type battery produced using the manganese-containing lithium cobalt oxide particle powder obtained here had an initial discharge capacity of 150 mAh / g and a capacity retention rate of 50% after 50 cycles at 60 ° C. was 95% / 50 cycle.
[0058]
[Action]
The most important point in the present invention is that the secondary battery using the positive electrode active material composed of manganese or lithium cobaltate particles containing manganese and magnesium maintains the initial discharge capacity as the secondary battery, and is also high temperature. It is the point which is excellent in the charge / discharge cycle characteristic below.
[0059]
The reason why the initial discharge capacity can be maintained is that manganese and magnesium are contained within a range in which the initial discharge capacity of the original LiCoO 2 is not lowered.
[0060]
The positive electrode active material has a large c-axis lattice constant because manganese or manganese and magnesium are contained in the cobalt oxide by a wet oxidation reaction, so that cobalt and manganese or magnesium are uniformly distributed at the atomic level. The present inventor presumes that the positive electrode active material obtained by using the product is obtained by uniformly replacing manganese and magnesium with cobalt sites.
[0061]
In addition, since the c-axis lattice constant is large in advance, the lithium ion deinsertion reaction is easily performed, and the collapse of the lattice due to the contraction and expansion in the c-axis direction of the crystal structure accompanying the lithium ion deinsertion reaction can be suppressed. Therefore, it is presumed that the charge / discharge cycle characteristics at high temperatures are also excellent.
[0062]
On the other hand, when a lithium compound, a cobalt compound and a manganese compound or a magnesium compound are dry-mixed and calcined, the composition distribution of manganese or magnesium becomes non-uniform, and the effect of the present invention cannot be obtained.
[0063]
【Example】
Next, examples and comparative examples are given.
[0064]
Examples 1-8, Comparative Examples 1-4
A positive electrode active material was produced in the same manner as in the above embodiment except that the contents of manganese and magnesium were variously changed, and then a coin-type battery was produced using the positive electrode active material.
[0065]
Manufacturing conditions at this time are shown in Tables 1 and 2, and various characteristics of the obtained positive electrode active material and battery characteristics of the coin-type battery are shown in Table 3.
[0066]
Comparative Examples 5 and 6
In Comparative Examples 5 and 6, the raw materials were mixed by a dry method and fired.
[0067]
The production conditions at this time are shown in Table 2, and the characteristics of the obtained positive electrode active material and the battery characteristics of the coin-type battery are shown in Table 3.
[0068]
[Table 1]
Figure 0004479874
[0069]
[Table 2]
Figure 0004479874
[0070]
[Table 3]
Figure 0004479874
[0071]
The coin-type battery manufactured using the positive electrode active material according to the present invention has an initial discharge capacity of 140 mAh / g or more, and has a high capacity maintenance rate of 95% or more after 50 cycles at 60 ° C.
[0072]
Further, as shown in the comparative example, when the Mn content x is 0.008 or less, the effect is not sufficient, and when it is 0.18 or more, the initial discharge capacity is too low. In addition, in the method for producing lithium cobalt oxide particle powder, when cobalt oxide containing only Mg obtained by neutralization reaction is used and when each raw material is mixed by a dry method, charging / discharging at a high temperature is performed. There is no improvement in cycle characteristics.
[0073]
【The invention's effect】
By using the positive electrode active material according to the present invention, it is possible to obtain a nonaqueous electrolyte secondary battery that maintains the initial discharge capacity as a secondary battery and that has improved charge / discharge cycle characteristics at high temperatures.

Claims (2)

コバルト塩とマンガン塩又はマンガン塩及びマグネシウム塩とを含有する溶液をアルカリ水溶液により中和し、次いで、酸化反応を行ってマンガン又はマンガン及びマグネシウムを含有するコバルト酸化物を得、該コバルト酸化物とリチウム化合物とを混合し、該混合物を600〜950℃の温度範囲で熱処理して、組成がLiCo (1−x−y) Mn Mg (0.008≦x≦0.18、0≦y≦0.18)であり、c軸の格子定数が14.080〜14.160Åであり、平均粒子径が0.1〜7.0μmである非水電解質二次電池用正極活物質を得ることを特徴とする非水電解質二次電池用正極活物質の製造法。A solution containing a cobalt salt and a manganese salt or a manganese salt and a magnesium salt is neutralized with an alkaline aqueous solution, and then an oxidation reaction is performed to obtain a cobalt oxide containing manganese or manganese and magnesium, Lithium compound is mixed, and the mixture is heat-treated at a temperature range of 600 to 950 ° C., so that the composition is LiCo (1-xy) Mn x Mg y O 2 (0.008 ≦ x ≦ 0.18, 0 ≦ y ≦ 0.18), a positive electrode active material for a non-aqueous electrolyte secondary battery having a c-axis lattice constant of 14.080 to 14.160 and an average particle diameter of 0.1 to 7.0 μm. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery. 請求項1記載の非水電解質二次電池用正極活物質の製造法によって得られた非水電解質二次電池用正極活物質を含有する正極を用いたことを特徴とする非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising a positive electrode containing a positive electrode active material for a nonaqueous electrolyte secondary battery obtained by the method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 1. .
JP2001363285A 2000-11-29 2001-11-28 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Expired - Lifetime JP4479874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363285A JP4479874B2 (en) 2000-11-29 2001-11-28 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-363511 2000-11-29
JP2000363511 2000-11-29
JP2001363285A JP4479874B2 (en) 2000-11-29 2001-11-28 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002231246A JP2002231246A (en) 2002-08-16
JP4479874B2 true JP4479874B2 (en) 2010-06-09

Family

ID=26604854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363285A Expired - Lifetime JP4479874B2 (en) 2000-11-29 2001-11-28 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4479874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806341B2 (en) 2014-11-28 2017-10-31 Samsung Sdi Co., Ltd. Positive active material, positive electrode including the same, and lithium secondary battery including the positive electrode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179565B2 (en) 2001-12-06 2007-02-20 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell
JP4344359B2 (en) 2003-08-19 2009-10-14 Agcセイミケミカル株式会社 Positive electrode material for lithium secondary battery and method for producing the same
JP4739780B2 (en) * 2005-03-11 2011-08-03 三洋電機株式会社 Non-aqueous electrolyte battery
JPWO2016125726A1 (en) * 2015-02-05 2017-11-16 マクセルホールディングス株式会社 Lithium secondary battery
KR20230009528A (en) 2018-08-03 2023-01-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material and manufacturing method of positive electrode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806341B2 (en) 2014-11-28 2017-10-31 Samsung Sdi Co., Ltd. Positive active material, positive electrode including the same, and lithium secondary battery including the positive electrode

Also Published As

Publication number Publication date
JP2002231246A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
JP4998753B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR102168980B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP4431064B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
KR100309773B1 (en) Positive active material for lithium secondary battery and method of preparing the same
JP3611188B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP4305629B2 (en) Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
JP2023523667A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
US20220109139A1 (en) Method for producing positive electrode active material for lithium ion secondary battery, and molded body
JP2023523668A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP2023509595A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
US6756154B2 (en) Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
JP7262851B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP7230227B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP2024516811A (en) Positive electrode active material, its manufacturing method, and lithium secondary battery including positive electrode containing the same
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4479874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term