JP4973825B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4973825B2
JP4973825B2 JP2000347082A JP2000347082A JP4973825B2 JP 4973825 B2 JP4973825 B2 JP 4973825B2 JP 2000347082 A JP2000347082 A JP 2000347082A JP 2000347082 A JP2000347082 A JP 2000347082A JP 4973825 B2 JP4973825 B2 JP 4973825B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
electrode active
lithium
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000347082A
Other languages
Japanese (ja)
Other versions
JP2002151077A (en
Inventor
英明 前田
典幹 杉山
浩康 渡邊
光昭 畑谷
昌市 藤野
英昭 貞村
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to JP2000347082A priority Critical patent/JP4973825B2/en
Publication of JP2002151077A publication Critical patent/JP2002151077A/en
Application granted granted Critical
Publication of JP4973825B2 publication Critical patent/JP4973825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、二次電池としての初期放電容量を維持し、且つ、高温下での充放電サイクル特性が改善された非水電解質二次電池を得ることができる正極活物質を提供する。
【0002】
【従来の技術】
近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。
【0003】
従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、岩塩型構造のLiMnO、LiCoO、LiCo1−XNi、LiNiO等が一般的に知られており、なかでもLiCoOは高い充放電電圧と充放電容量を有する点で優れているが、更なる特性改善が求められている。
【0004】
即ち、ノートパソコンなど二次電池で作動する装置はその使用に伴って高温になるため、二次電池として高温下での充放電サイクル特性に優れることが要求される。また、LiCoOは高い電圧で作動することができるが、高電圧のため電解液との反応が起こりやすく、充放電サイクル特性が低下しやすい。
【0005】
そこで、高温下での充放電サイクル特性に優れたLiCoOが要求されている。
【0006】
従来、コバルト酸リチウム粒子粉末の諸特性改善のために、コバルト酸リチウム粒子表面をアルミニウム化合物で被覆する方法(特開平8−102332号公報、特開平9−171813号公報等)、コバルト酸リチウム粒子中にアルミニウムを含有させる方法(特公平4−24831号公報等)が知られており、また、コバルト酸リチウム粒子表面を、リン、ホウ素、酸化ジルコニウム、酸化サマリウムなどで被覆する方法(特許第3054829号公報、特許第3044812号公報、特許第2855877号公報、特許第3003431号公報等)が知られている。
【0007】
【発明が解決しようとする課題】
前記諸特性を満たす正極活物質は現在最も要求されいるところであるが、未だ得られていない。
【0008】
即ち、前出特開平8−102332号公報には、コバルト酸リチウム粒子表面の一部にアルミニウム酸化物などの低活性酸化物を分散保持させることが記載されているが、後出比較例4に示す通り、コバルト酸リチウム粒子表面に保持されているアルミニウム酸化物の結合力が弱いので、充放電サイクル特性が十分とは言い難いものである。
【0009】
前出特開平9−171813号公報にはコバルト酸リチウム粒子表面をリチウム・水酸化アルミニウム複合物で被覆することが記載されているが、初期充放電容量が低下し、また、充放電サイクル特性に優れているとは言い難いものである。
【0010】
前出特公平4−24831号公報記載のコバルト酸リチウム粒子粉末中にアルミニウムを含有させる方法の場合には、初期充放電容量が低下し、また、電解液との反応を抑制する効果が得られないため、充放電サイクル特性が十分とは言い難いものである。
【0011】
また、前出アルミニウム化合物以外の異種元素(リン、ホウ素、酸化ジルコニウム、酸化サマリウムなど)で被覆した場合には、電解液との反応を抑制することが困難なため、充放電サイクル特性が十分とは言い難いものである。
【0012】
そこで、本発明は、初期放電容量に優れ、且つ、高温下での充放電サイクル特性に優れた正極活物質を得ることを技術的課題とする。
【0013】
【課題を解決する為の手段】
前記技術的課題は、次の通りの本発明によって達成できる。
【0014】
即ち、本発明は、非水電解質二次電池用正極活物質の製造法であって、コバルト酸リチウム粒子を分散させた水溶液中にアルミニウム塩を添加し、該溶液のpHを調整して微細な水酸化アルミニウムコロイドをコバルト酸リチウム粒子の粒子表面に吸着させた後、ろ過、水洗、乾燥して水酸化アルミニウムコロイドを吸着させたコバルト酸リチウム粒子粉末を得、次いで、該コバルト酸リチウム粒子粉末を酸化雰囲気中、600℃〜900℃の温度範囲で熱処理して非水電解質二次電池用正極活物質を得るものであり、得られる非水電解質二次電池用正極活物質は、コバルト酸リチウム粒子粉末の粒子表面の一部に酸化アルミニウムが被覆されており、前記酸化アルミニウムの被覆量がコバルト酸リチウム粒子粉末中のコバルトに対し1〜4mol%である非水電解質二次電池用正極活物質であって、該非水電解質二次電池用正極活物質を用いて作製した二次電池の初期放電容量が140〜150mAh/gであって、60℃での50サイクル後の容量維持率が97%以上であることを特徴とする非水電解質二次電池用正極活物質の製造法である。
【0016】
また、本発明は、前記非水電解質二次電池用正極活物質の製造方法によって得られた非水電解質二次電池用正極活物質を用いた非水電解質二次電池である。
【0017】
本発明の構成をより詳しく説明すれば次の通りである。
【0018】
先ず、本発明に係る正極活物質について述べる。
【0019】
本発明に係る正極活物質は、コバルト酸リチウム粒子粉末の粒子表面の一部が酸化アルミニウムで被覆されている。
【0020】
本発明においては、酸化アルミニウムはコバルト酸リチウム粒子粉末の粒子表面の一部を被覆しており、酸化アルミニウムがコバルト酸リチウム粒子粉末の粒子表面全体を被覆した場合には、初期放電容量が低下する。酸化アルミニウムの含有量はAl換算でコバルト酸リチウム粒子粉末のコバルトに対して1.0〜4.0mol%である。1.0mol%未満の場合にはサイクル容量維持率向上の効果が小さく、4.0mol%を超える場合には初期放電容量が著しく低下する。好ましくは1.05〜3.90mol%である。
【0021】
本発明に係る正極活物質の平均粒子径は1.0〜10μmが好ましい。平均粒子径が1.0μm未満の場合には、充填密度の低下や電解液との反応性が増加するため好ましくない。10μmを超える場合には、工業的に生産することが困難となる。
【0022】
本発明に係る正極活物質のBET比表面積は0.1〜1.5m/gが好ましい。BET比表面積値が0.1m/g未満の場合には、工業的に生産することが困難となる。1.5m/gを超える場合には充填密度の低下や電解液との反応性が増加するため好ましくない。
【0023】
本発明に係る正極活物質の格子定数はa軸長が2.81〜2.82Å、c軸長が14.045〜14.065Åであることが好ましい。
【0024】
次に、本発明に係る正極活物質の製造法について述べる。
【0025】
本発明に係る正極活物質は、コバルト酸リチウム粒子を分散させた水溶液中にアルミニウム塩を添加し、次いで、前記水溶液のpHを調整することで微細な水酸化アルミニウムコロイドをコバルト酸リチウムの粒子表面に吸着させ、ろ過、水洗、乾燥して水酸化アルミニウムコロイドを吸着させたコバルト酸リチウム粒子粉末を得、次いで、該コバルト酸リチウム粒子粉末を酸化雰囲気中において600〜900℃で熱処理することで得られる。
【0026】
本発明におけるコバルト酸リチウム粒子粉末は、通常の方法で得られるものであって、例えば、リチウム化合物とコバルト化合物を混合して加熱処理して得る固相法や、溶液中でリチウム化合物とコバルト化合物を反応させてコバルト酸リチウム粒子を得る湿式法のいずれの方法で得られたものでもよい。
【0027】
コバルト酸リチウム粒子粉末は、平均粒子径が1.0〜10μm、BET比表面積値が0.1〜1.5m/g、Li/Co比が0.95〜1.05、格子定数がa軸長2.81〜2.82Å、c軸長14.045〜14.065Åであることが好ましい。
【0028】
アルミニウム塩としては硫酸アルミニウム、硝酸アルミニウム、アルミン酸ソーダ等を用いることができる。
【0029】
アルミニウム塩の添加量は、コバルト酸リチウム粒子粉末のコバルトに対して1〜4mol%であることが好ましい。
【0030】
アルミニウム塩を添加した水溶液は、シュウ酸、酢酸、水酸化ナトリウム、アンモニア等を添加して水溶液のpHを調整し、コバルト酸リチウム粒子の粒子表面に微細な水酸化アルミニウムコロイドを吸着させる。水溶液のpHは8.0〜10.0にすることが好ましい。水溶液のpHが前記範囲外の場合には微細な水酸化アルミニウムコロイドを生成・吸着させることが困難となる。
【0031】
熱処理の雰囲気としては、酸化雰囲気であり、好ましくは大気中である。熱処理温度としては、600〜900℃であることが好ましい。600℃未満の場合には水酸化アルミニウム水和物が残存し、900℃を超える場合には、粒子間の焼結が進行するため好ましくない。保持時間は、1〜5時間が好ましい。1時間より短い場合には分解反応が不十分であり、5時間より長い場合には生産性とコストの面から好ましくない。
【0032】
本発明に係る正極活物質を用いて正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。
【0033】
本発明に係る正極活物質を用いて二次電池を製造する場合には、前記正極、負極及び電解質から構成される。
【0034】
負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。
【0035】
また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。
【0036】
さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。
【0037】
本発明に係る正極活物質を用いて製造した二次電池は、初期放電容量が140〜150mAh/g、60℃での50サイクル後の容量維持率が97%以上であり、過充電試験における充放電容量が低い。
【0038】
【発明の実施の形態】
本発明の代表的な実施の形態は、次の通りである。
【0039】
表面処理後および焼成後の生成物の同定については、粉末X線回折(RIGAKU Cu−Kα 40kV 40mA)を用いた。また、前記粉末X線回折の各々の回折ピークから格子定数を計算した。
【0040】
また、元素分析にはプラズマ発光分析装置(セイコー電子工業製 SPS4000)を用いた。
【0041】
正極活物質の電池特性は、下記製造法によって正極、負極及び電解液を調製しコイン型の電池セルを作製して評価した。
【0042】
<正極の作製>
正極活物質と導電剤であるアセチレンブラック及び結着剤のポリフッ化ビニリデンを重量比で85:10:5となるように精秤し、乳鉢で十分に混合してからN−メチル−2−ピロリドンに分散させて正極合剤スラリーを調整した。次に、このスラリーを集電体のアルミニウム箔に150μmの膜厚で塗布し、150℃で真空乾燥してからφ16mmの円板状に打ち抜き正極板とした。
【0043】
<負極の作製>
金属リチウム箔をφ16mmの円板状に打ち抜いて負極を作製した。
【0044】
<電解液の調製>
炭酸エチレンと炭酸ジエチルとの体積比50:50の混合溶液に電解質として六フッ化リン酸リチウム(LiPF)を1モル/リットル混合して電解液とした。
【0045】
<コイン型電池セルの組み立て>
アルゴン雰囲気のグローブボックス中でSUS316製のケースを用い、上記正極と負極の間にポリプロピレン製のセパレータを介し、さらに電解液を注入してCR2032型のコイン電池を作製した。
【0046】
<電池評価>
前記コイン型電池を用いて、二次電池の充放電試験を行った。測定条件としては、60℃の温度下で、正極に対する電流密度を0.2mA/cmとし、カットオフ電圧が3.0Vから4.25Vの間で充放電を繰り返した。また、過充電試験については20℃の温度下で4.95Vまで充電を行った。
【0047】
<正極活物質の製造>
リチウムとコバルトのモル比が1:1となるよう所定量の炭酸リチウムと酸化コバルトを十分に混合し、酸化雰囲気下、900℃で10時間焼成してコバルト酸リチウム粒子粉末を得た。
【0048】
得られたコバルト酸リチウム粒子粉末は、平均長軸径が8.0μm、BET比表面積値が0.6m/g、格子定数がa軸2.817Å、c軸14.057Åであった。
【0049】
次に、得られたコバルト酸リチウム粒子を水溶液中に分散させ、アルミニウムの含有量がコバルトに対して1.25mol%になるようにアルミン酸ナトリウムを投入した。その後、酢酸を用いてpHを9付近に調整し、水洗、乾燥を行って、コバルト酸リチウム粒子の粒子表面に微細な水酸化アルミニウムコロイドが吸着したコバルト酸リチウム粒子を得た。次いで、得られた水酸化アルミニウムコロイドを吸着させたコバルト酸リチウム粒子を酸化雰囲気下、600℃で5時間焼成することにより正極活物質を得た。
【0050】
得られた正極活物質は、平均長軸径が8.0μm、BET比表面積値が0.6m/g、格子定数がa軸2.817Å、c軸14.059Å、アルミニウムの含有量がコバルトに対して1.20mol%であった。アルミニウム含有量は添加量に対してほぼ全量が残存しており、且つ、焼成後の格子定数が被覆処理前と比較して変化しないことから、アルミニウムはコバルト酸リチウムの格子中にドープされることなく、粒子表面上に酸化物の状態で存在するものと推定できる。
【0051】
前記正極活物質を用いて作製したコイン型電池は、初期放電容量が150mAh/g、60℃での50サイクル後の容量維持率が98%/50cycle、過充電試験が257mAh/gであった。
【0052】
【作用】
本発明において最も重要な点は、本発明に係る正極活物質は、コバルト酸リチウム粒子表面の一部を酸化アルミニウムで被覆することによって、二次電池としての初期放電容量を保持したまま、且つ、高温下での充放電サイクル特性に優れるという点である。
【0053】
本発明においては、湿式反応によってコバルト酸リチウム粒子表面に直接微細な水酸化アルミニウムコロイドを生成・吸着させて、次いで、酸化雰囲気中で熱処理することにより、微細な酸化アルミニウム粒子をコバルト酸リチウム粒子の粒子表面の一部に化学的に結合させている。
【0054】
従って、コバルト酸リチウム粒子と酸化アルミニウムを乾式混合しただけの場合には、混合が不均一であったり互いの粒子が単なる物理吸着にすぎないため本発明の効果は得られない。また、水酸化アルミニウムと混合した後で熱処理した場合にも、均一な混合状態とならないため本発明の効果が得られない。
【0055】
本発明において初期放電容量を保持できるのは、本来のコバルト酸リチウム粒子が有する初期放電容量を低下させない範囲で酸化アルミニウムを含有させたことによる。
【0056】
本発明において高温特性が改善できるのは、コバルト酸リチウム粒子の粒子表面の一部が酸化アルミニウムで被覆した正極活物質を用いることにより、高温時(60℃)又は4.8V以上の高電位で予想される粒子表面部のCo(IV)と電解液の反応(酸化分解)が抑制されるためである。
【0057】
【実施例】
次に、実施例並びに比較例を挙げる。
【0058】
実施例1〜3、比較例1〜4
アルミニウム塩の添加量、熱処理条件を種々変化させた以外は前記発明の実施の形態と同様にして正極活物質を製造し、次いでコイン型電池を製造した。
【0059】
このときの製造条件を表1に、得られた正極活物質の諸特性及びコイン型電池の電池特性を表2に示す。
【0060】
なお、比較例1では表面処理を行わなかった。比較例2及び3では熱処理を行わなかった。比較例4では熱処理条件を300℃で行った。
【0061】
【表1】
【0062】
【表2】
【0063】
本発明に係る正極活物質を用いて作製したコイン電池の電池特性は、初期放電容量が140mAh/g以上を保持し、60℃での50サイクル後の容量維持率が97%以上と高いレベルにある。さらに、過充電試験においても被覆処理前の充電容量と比較するとその値が減少しており、正極活物質の粒子表面と電解液との反応抑制が示唆される。
【0064】
また、図1及び2に示すように、得られた正極活物質は処理前のコバルト酸リチウム粒子粉末のX線回折の回折パターンと同様であることから、酸化アルミニウムは単相で存在することなく、コバルト酸リチウム粒子の表面に被覆されているものと推定できる。比較例に示す通り、水酸化アルミニウムを被覆しただけでは、過充電容量に極端な減少が確認されるものの、同時に初期放電容量も120mAh/g付近と低く、サイクル容量維持率についても改善効果が見られない。また、熱処理温度についても300℃ではその効果が十分と言えない。
【0065】
【発明の効果】
本発明に係る正極活物質を用いることで、二次電池としての初期放電容量を維持し、且つ、高温特性が改善された非水電解質二次電池を得ることができる。
【図面の簡単な説明】
【図1】発明の実施の形態において、処理前のコバルト酸リチウム粒子粉末のX線回折パターン
【図2】実施例2で得られた正極活物質のX線回折パターン
[0001]
[Industrial application fields]
The present invention provides a positive electrode active material capable of obtaining a nonaqueous electrolyte secondary battery that maintains an initial discharge capacity as a secondary battery and has improved charge / discharge cycle characteristics at high temperatures.
[0002]
[Prior art]
In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having advantages such as a high charge / discharge voltage and a large charge / discharge capacity has attracted attention.
[0003]
Conventionally, as a positive electrode active material useful for a high energy type lithium ion secondary battery having a voltage of 4 V class, spinel type structure LiMn 2 O 4 , rock salt type structure LiMnO 2 , LiCoO 2 , LiCo 1-X Ni X O 2 , LiNiO 2 and the like are generally known, and LiCoO 2 is excellent in that it has a high charge / discharge voltage and charge / discharge capacity, but further improvement in characteristics is required.
[0004]
That is, since a device that operates with a secondary battery such as a notebook computer becomes hot as it is used, it is required that the secondary battery has excellent charge / discharge cycle characteristics at high temperatures. In addition, LiCoO 2 can operate at a high voltage, but due to the high voltage, reaction with the electrolyte is likely to occur, and charge / discharge cycle characteristics are likely to deteriorate.
[0005]
Therefore, LiCoO 2 having excellent charge / discharge cycle characteristics at high temperatures is required.
[0006]
Conventionally, in order to improve various characteristics of lithium cobalt oxide particles, a method of coating the surface of lithium cobalt oxide particles with an aluminum compound (JP-A-8-102332, JP-A-9-171818, etc.), lithium cobaltate particles There is known a method of containing aluminum (Japanese Patent Publication No. 4-24831), and a method of coating the surface of lithium cobaltate particles with phosphorus, boron, zirconium oxide, samarium oxide or the like (Japanese Patent No. 3054829). And Japanese Patent No. 3044812, Japanese Patent No. 2855877, and Japanese Patent No. 3003431 are known.
[0007]
[Problems to be solved by the invention]
A positive electrode active material that satisfies the above-mentioned properties is currently most demanded, but has not yet been obtained.
[0008]
That is, in the above-mentioned JP-A-8-102332, it is described that a low activity oxide such as aluminum oxide is dispersed and held on a part of the surface of lithium cobaltate particles. As shown, since the binding force of the aluminum oxide held on the lithium cobalt oxide particle surface is weak, it is difficult to say that the charge / discharge cycle characteristics are sufficient.
[0009]
In the above-mentioned JP-A-9-171913, it is described that the surface of lithium cobalt oxide particles is coated with a lithium / aluminum hydroxide composite, but the initial charge / discharge capacity is reduced and the charge / discharge cycle characteristics are improved. It is hard to say that it is excellent.
[0010]
In the case of the method in which aluminum is contained in the lithium cobalt oxide particle powder described in the aforementioned Japanese Patent Publication No. 4-24831, the initial charge / discharge capacity is reduced, and the effect of suppressing the reaction with the electrolytic solution is obtained. Therefore, it is difficult to say that the charge / discharge cycle characteristics are sufficient.
[0011]
In addition, when it is coated with a different element other than the above-mentioned aluminum compound (phosphorus, boron, zirconium oxide, samarium oxide, etc.), it is difficult to suppress the reaction with the electrolytic solution, so that the charge / discharge cycle characteristics are sufficient. Is hard to say.
[0012]
Therefore, the present invention has a technical problem to obtain a positive electrode active material that is excellent in initial discharge capacity and excellent in charge / discharge cycle characteristics at high temperatures.
[0013]
[Means for solving the problems]
The technical problem can be achieved by the present invention as follows.
[0014]
That is, the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, in which an aluminum salt is added to an aqueous solution in which lithium cobaltate particles are dispersed, and the pH of the solution is adjusted to obtain a fine particle. After the aluminum hydroxide colloid is adsorbed on the surface of the lithium cobalt oxide particles, filtration, washing and drying are performed to obtain a lithium cobalt oxide particle powder adsorbing the aluminum hydroxide colloid. A positive electrode active material for a non-aqueous electrolyte secondary battery is obtained by heat treatment in an oxidizing atmosphere at a temperature range of 600 ° C. to 900 ° C. The obtained positive electrode active material for a non-aqueous electrolyte secondary battery is composed of lithium cobalt oxide particles Part of the particle surface of the powder is coated with aluminum oxide, and the coating amount of the aluminum oxide is 1 to 4 with respect to cobalt in the lithium cobalt oxide particle powder. The initial discharge capacity of a positive electrode active material for a non-aqueous electrolyte secondary battery that is ol%, the secondary battery prepared using the positive electrode active material for a non-aqueous electrolyte secondary battery is 140 to 150 mAh / g, A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the capacity retention rate after 50 cycles at 60 ° C. is 97% or more.
[0016]
Moreover, this invention is a nonaqueous electrolyte secondary battery using the positive electrode active material for nonaqueous electrolyte secondary batteries obtained by the manufacturing method of the said positive electrode active material for nonaqueous electrolyte secondary batteries.
[0017]
The configuration of the present invention will be described in more detail as follows.
[0018]
First, the positive electrode active material according to the present invention will be described.
[0019]
In the positive electrode active material according to the present invention, a part of the particle surface of the lithium cobalt oxide particle powder is coated with aluminum oxide.
[0020]
In the present invention, the aluminum oxide covers a part of the particle surface of the lithium cobalt oxide particle powder, and when the aluminum oxide covers the entire particle surface of the lithium cobalt oxide particle powder, the initial discharge capacity decreases. . Content of aluminum oxide is 1.0-4.0 mol% with respect to cobalt of lithium cobalt oxide particle powder in terms of Al. When the amount is less than 1.0 mol%, the effect of improving the cycle capacity retention rate is small, and when the amount exceeds 4.0 mol%, the initial discharge capacity is significantly reduced. Preferably it is 1.05 to 3.90 mol%.
[0021]
The average particle diameter of the positive electrode active material according to the present invention is preferably 1.0 to 10 μm. An average particle size of less than 1.0 μm is not preferable because the packing density is lowered and the reactivity with the electrolytic solution is increased. When it exceeds 10 μm, it is difficult to produce industrially.
[0022]
The BET specific surface area of the positive electrode active material according to the present invention is preferably 0.1 to 1.5 m 2 / g. When the BET specific surface area value is less than 0.1 m 2 / g, it is difficult to produce industrially. If it exceeds 1.5 m 2 / g, the filling density is lowered and the reactivity with the electrolytic solution is increased.
[0023]
As for the lattice constant of the positive electrode active material according to the present invention, the a-axis length is preferably 2.81 to 2.82 mm and the c-axis length is preferably 14.451 to 14.065 mm.
[0024]
Next, a method for producing the positive electrode active material according to the present invention will be described.
[0025]
The positive electrode active material according to the present invention is obtained by adding an aluminum salt to an aqueous solution in which lithium cobalt oxide particles are dispersed, and then adjusting the pH of the aqueous solution to form a fine aluminum hydroxide colloid on the surface of the lithium cobalt oxide particles. Obtained by adsorption, filtration, washing and drying to obtain lithium cobalt oxide particle powder adsorbed aluminum hydroxide colloid, and then heat treating the lithium cobalt oxide particle powder at 600 to 900 ° C. in an oxidizing atmosphere. It is done.
[0026]
The lithium cobalt oxide particle powder in the present invention is obtained by a usual method. For example, a solid phase method obtained by mixing and heat-treating a lithium compound and a cobalt compound, or a lithium compound and a cobalt compound in a solution. It may be obtained by any method of the wet method in which lithium cobaltate particles are obtained by reacting.
[0027]
The lithium cobalt oxide particle powder has an average particle size of 1.0 to 10 μm, a BET specific surface area value of 0.1 to 1.5 m 2 / g, a Li / Co ratio of 0.95 to 1.05, and a lattice constant of a It is preferable that the axial length is 2.81 to 2.82 mm and the c-axis length is 14.045 to 14.065 mm.
[0028]
As the aluminum salt, aluminum sulfate, aluminum nitrate, sodium aluminate or the like can be used.
[0029]
It is preferable that the addition amount of aluminum salt is 1-4 mol% with respect to the cobalt of lithium cobaltate particle powder.
[0030]
The aqueous solution to which the aluminum salt is added adjusts the pH of the aqueous solution by adding oxalic acid, acetic acid, sodium hydroxide, ammonia, etc., and adsorbs the fine aluminum hydroxide colloid on the particle surface of the lithium cobalt oxide particles. The pH of the aqueous solution is preferably 8.0 to 10.0. When the pH of the aqueous solution is outside the above range, it is difficult to generate and adsorb fine aluminum hydroxide colloid.
[0031]
The atmosphere for the heat treatment is an oxidizing atmosphere, preferably in the air. The heat treatment temperature is preferably 600 to 900 ° C. When the temperature is lower than 600 ° C., aluminum hydroxide hydrate remains, and when the temperature exceeds 900 ° C., sintering between particles proceeds, which is not preferable. The holding time is preferably 1 to 5 hours. When it is shorter than 1 hour, the decomposition reaction is insufficient, and when it is longer than 5 hours, it is not preferable from the viewpoint of productivity and cost.
[0032]
When a positive electrode is produced using the positive electrode active material according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
[0033]
When manufacturing a secondary battery using the positive electrode active material which concerns on this invention, it is comprised from the said positive electrode, a negative electrode, and electrolyte.
[0034]
As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite, or the like can be used.
[0035]
In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
[0036]
Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.
[0037]
The secondary battery manufactured using the positive electrode active material according to the present invention has an initial discharge capacity of 140 to 150 mAh / g, a capacity maintenance rate of 50% after 50 cycles at 60 ° C., and is charged in an overcharge test. Discharge capacity is low.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
A typical embodiment of the present invention is as follows.
[0039]
Powder X-ray diffraction (RIGAKU Cu-Kα 40 kV 40 mA) was used for identification of the product after the surface treatment and after firing. The lattice constant was calculated from each diffraction peak of the powder X-ray diffraction.
[0040]
In addition, a plasma emission analyzer (SEPS Electronics SPS4000) was used for elemental analysis.
[0041]
The battery characteristics of the positive electrode active material were evaluated by preparing a positive electrode, a negative electrode, and an electrolytic solution by the following production method to produce a coin-type battery cell.
[0042]
<Preparation of positive electrode>
A positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are precisely weighed so that the weight ratio is 85: 10: 5, and thoroughly mixed in a mortar, and then N-methyl-2-pyrrolidone. The positive electrode mixture slurry was prepared by dispersing in the mixture. Next, this slurry was applied to an aluminum foil as a current collector with a film thickness of 150 μm, vacuum-dried at 150 ° C., and then punched into a disk shape of φ16 mm to obtain a positive electrode plate.
[0043]
<Production of negative electrode>
A metal lithium foil was punched into a disk shape of φ16 mm to produce a negative electrode.
[0044]
<Preparation of electrolyte>
An electrolyte solution was prepared by mixing 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 50:50.
[0045]
<Assembly of coin-type battery cells>
Using a case made of SUS316 in a glove box in an argon atmosphere, a CR2032-type coin battery was manufactured by injecting an electrolyte solution through a polypropylene separator between the positive electrode and the negative electrode.
[0046]
<Battery evaluation>
A charge / discharge test of a secondary battery was performed using the coin-type battery. As measurement conditions, under a temperature of 60 ° C., the current density with respect to the positive electrode was set to 0.2 mA / cm 2, and charging / discharging was repeated between a cutoff voltage of 3.0 V and 4.25 V. Moreover, about the overcharge test, it charged to 4.95V under the temperature of 20 degreeC.
[0047]
<Manufacture of positive electrode active material>
A predetermined amount of lithium carbonate and cobalt oxide were sufficiently mixed so that the molar ratio of lithium to cobalt was 1: 1, and calcined at 900 ° C. for 10 hours in an oxidizing atmosphere to obtain lithium cobalt oxide particle powder.
[0048]
The obtained lithium cobalt oxide particle powder had an average major axis diameter of 8.0 μm, a BET specific surface area value of 0.6 m 2 / g, lattice constants of a-axis 2.817Å, and c-axis 14.057Å.
[0049]
Next, the obtained lithium cobaltate particles were dispersed in an aqueous solution, and sodium aluminate was added so that the aluminum content was 1.25 mol% with respect to cobalt. Thereafter, the pH was adjusted to about 9 using acetic acid, washed with water, and dried to obtain lithium cobalt oxide particles having fine aluminum hydroxide colloids adsorbed on the surface of the lithium cobalt oxide particles. Next, the obtained lithium cobalt oxide particles adsorbing the aluminum hydroxide colloid were fired at 600 ° C. for 5 hours in an oxidizing atmosphere to obtain a positive electrode active material.
[0050]
The obtained positive electrode active material had an average major axis diameter of 8.0 μm, a BET specific surface area value of 0.6 m 2 / g, lattice constants of a-axis 2.817 mm, c-axis 14.059 mm, and an aluminum content of cobalt. It was 1.20 mol% with respect to this. Almost all of the aluminum content remains with respect to the added amount, and the lattice constant after firing does not change compared to that before the coating treatment, so aluminum is doped into the lattice of lithium cobaltate. Therefore, it can be presumed that the oxide exists on the particle surface.
[0051]
The coin-type battery manufactured using the positive electrode active material had an initial discharge capacity of 150 mAh / g, a capacity retention rate after 50 cycles at 60 ° C. of 98% / 50 cycles, and an overcharge test of 257 mAh / g.
[0052]
[Action]
The most important point in the present invention is that the positive electrode active material according to the present invention covers the surface of the lithium cobalt oxide particles with aluminum oxide, thereby maintaining the initial discharge capacity as a secondary battery, and It is the point which is excellent in the charge / discharge cycle characteristic under high temperature.
[0053]
In the present invention, a fine aluminum hydroxide colloid is generated and adsorbed directly on the surface of the lithium cobalt oxide particles by a wet reaction, and then heat-treated in an oxidizing atmosphere, whereby the fine aluminum oxide particles are converted into lithium cobalt oxide particles. It is chemically bonded to a part of the particle surface.
[0054]
Therefore, when only lithium cobalt oxide particles and aluminum oxide are dry-mixed, the effect of the present invention cannot be obtained because the mixing is not uniform or the particles are merely physical adsorption. In addition, even when heat treatment is performed after mixing with aluminum hydroxide, the effect of the present invention cannot be obtained because a uniform mixed state is not obtained.
[0055]
The reason why the initial discharge capacity can be maintained in the present invention is that aluminum oxide is contained within a range that does not decrease the initial discharge capacity of the original lithium cobalt oxide particles.
[0056]
In the present invention, high temperature characteristics can be improved by using a positive electrode active material in which a part of the particle surface of lithium cobalt oxide particles is coated with aluminum oxide, at a high temperature (60 ° C.) or at a high potential of 4.8 V or higher. This is because the expected reaction (oxidative decomposition) between Co (IV) on the particle surface portion and the electrolytic solution is suppressed.
[0057]
【Example】
Next, examples and comparative examples are given.
[0058]
Examples 1-3, Comparative Examples 1-4
A positive electrode active material was produced in the same manner as in the above embodiment except that the amount of aluminum salt added and heat treatment conditions were variously changed, and then a coin-type battery was produced.
[0059]
The production conditions at this time are shown in Table 1, and the characteristics of the obtained positive electrode active material and the battery characteristics of the coin-type battery are shown in Table 2.
[0060]
In Comparative Example 1, no surface treatment was performed. In Comparative Examples 2 and 3, no heat treatment was performed. In Comparative Example 4, the heat treatment was performed at 300 ° C.
[0061]
[Table 1]
[0062]
[Table 2]
[0063]
The battery characteristics of the coin battery manufactured using the positive electrode active material according to the present invention are such that the initial discharge capacity is maintained at 140 mAh / g or more, and the capacity retention rate after 50 cycles at 60 ° C. is as high as 97% or more. is there. Furthermore, in the overcharge test, the value is reduced as compared with the charge capacity before the coating treatment, suggesting that the reaction between the particle surface of the positive electrode active material and the electrolytic solution is suppressed.
[0064]
Moreover, as shown in FIGS. 1 and 2, since the obtained positive electrode active material is similar to the diffraction pattern of the X-ray diffraction of the lithium cobalt oxide particle powder before treatment, aluminum oxide does not exist in a single phase. It can be estimated that the surface of the lithium cobalt oxide particles is coated. As shown in the comparative example, although an excessive decrease in the overcharge capacity was confirmed only by coating with aluminum hydroxide, the initial discharge capacity was also as low as around 120 mAh / g, and the cycle capacity maintenance rate was improved. I can't. Also, the heat treatment temperature is not sufficient at 300 ° C.
[0065]
【Effect of the invention】
By using the positive electrode active material according to the present invention, it is possible to obtain a nonaqueous electrolyte secondary battery that maintains an initial discharge capacity as a secondary battery and has improved high-temperature characteristics.
[Brief description of the drawings]
1 is an X-ray diffraction pattern of a lithium cobalt oxide particle powder before treatment in an embodiment of the invention. FIG. 2 is an X-ray diffraction pattern of a positive electrode active material obtained in Example 2.

Claims (2)

  1. 非水電解質二次電池用正極活物質の製造法であって、コバルト酸リチウム粒子を分散させた水溶液中にアルミニウム塩を添加し、該溶液のpHを調整して微細な水酸化アルミニウムコロイドをコバルト酸リチウム粒子の粒子表面に吸着させた後、ろ過、水洗、乾燥して水酸化アルミニウムコロイドを吸着させたコバルト酸リチウム粒子粉末を得、次いで、該コバルト酸リチウム粒子粉末を酸化雰囲気中、600℃〜900℃の温度範囲で熱処理して非水電解質二次電池用正極活物質を得るものであり、得られる非水電解質二次電池用正極活物質は、コバルト酸リチウム粒子粉末の粒子表面の一部に酸化アルミニウムが被覆されており、前記酸化アルミニウムの被覆量がコバルト酸リチウム粒子粉末中のコバルトに対し1〜4mol%である非水電解質二次電池用正極活物質であって、該非水電解質二次電池用正極活物質を用いて作製した二次電池の初期放電容量が140〜150mAh/gであって、60℃での50サイクル後の容量維持率が97%以上であることを特徴とする非水電解質二次電池用正極活物質の製造法。 A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, in which an aluminum salt is added to an aqueous solution in which lithium cobaltate particles are dispersed, and the pH of the solution is adjusted to convert a fine aluminum hydroxide colloid to cobalt. The lithium cobalt oxide particles are adsorbed on the surface of the lithium acid particles, filtered, washed with water, and dried to obtain lithium cobalt oxide particles having adsorbed aluminum hydroxide colloid, and then the lithium cobalt oxide particles are heated to 600 ° C. in an oxidizing atmosphere. A positive electrode active material for a non-aqueous electrolyte secondary battery is obtained by heat treatment in a temperature range of ˜900 ° C. The obtained positive electrode active material for a non-aqueous electrolyte secondary battery is one of the particle surfaces of the lithium cobalt oxide particle powder. The aluminum oxide is coated on the part, and the coating amount of the aluminum oxide is 1 to 4 mol% with respect to the cobalt in the lithium cobalt oxide particle powder. A positive electrode active material for an electrolyte secondary battery, wherein the secondary battery prepared using the positive electrode active material for a non-aqueous electrolyte secondary battery has an initial discharge capacity of 140 to 150 mAh / g, and 50 cycles at 60 ° C. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the subsequent capacity retention rate is 97% or more .
  2. 請求項1記載の非水電解質二次電池用正極活物質の製造方法によって得られた非水電解質二次電池用正極活物質を用いた非水電解質二次電池。The nonaqueous electrolyte secondary battery using the positive electrode active material for nonaqueous electrolyte secondary batteries obtained by the manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries of Claim 1.
JP2000347082A 2000-11-14 2000-11-14 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery Expired - Lifetime JP4973825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347082A JP4973825B2 (en) 2000-11-14 2000-11-14 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347082A JP4973825B2 (en) 2000-11-14 2000-11-14 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002151077A JP2002151077A (en) 2002-05-24
JP4973825B2 true JP4973825B2 (en) 2012-07-11

Family

ID=18820867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347082A Expired - Lifetime JP4973825B2 (en) 2000-11-14 2000-11-14 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4973825B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257427A (en) * 2002-02-28 2003-09-12 Sumitomo Chem Co Ltd Electrode material for nonaqueous secondary battery
JP4553095B2 (en) * 2002-05-29 2010-09-29 戸田工業株式会社 Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
US20040121234A1 (en) * 2002-12-23 2004-06-24 3M Innovative Properties Company Cathode composition for rechargeable lithium battery
JP4794866B2 (en) * 2004-04-08 2011-10-19 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4798964B2 (en) * 2004-05-28 2011-10-19 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US7709149B2 (en) 2004-09-24 2010-05-04 Lg Chem, Ltd. Composite precursor for aluminum-containing lithium transition metal oxide and process for preparation of the same
US9240593B2 (en) 2005-04-28 2016-01-19 Sumitomo Chemical Company, Limited Active material for nonaqueous secondary battery and method for producing same
JP5040073B2 (en) * 2005-07-05 2012-10-03 ソニー株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5040076B2 (en) * 2005-07-06 2012-10-03 ソニー株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2007280943A (en) * 2006-03-15 2007-10-25 Sumitomo Chemical Co Ltd Positive electrode active material powder
JP2009245917A (en) * 2007-09-26 2009-10-22 Sanyo Electric Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing same, and positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009099523A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Lithium secondary battery
JP2010140737A (en) * 2008-12-11 2010-06-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
KR101787141B1 (en) * 2010-06-09 2017-10-18 도다 고교 가부시끼가이샤 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP6017811B2 (en) * 2012-03-28 2016-11-02 日産自動車株式会社 Pretreatment method for lithium ion secondary battery
KR20140038884A (en) * 2012-09-21 2014-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electrode material for power storage device, electrode for power storage device, and power storage device
US10115962B2 (en) * 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
US9634321B2 (en) 2013-03-12 2017-04-25 Sachem, Inc. Oxide shell formation on inorganic substrate via oxidative polyoxoanion salt deposition
SG11201506150SA (en) 2013-03-12 2015-09-29 Sachem Inc Oxide shell formation on inorganic substrates via lithium polyoxoanion salt deposition
KR101958880B1 (en) 2015-01-23 2019-03-15 샌트랄 글래스 컴퍼니 리미티드 Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery
JP6007994B2 (en) 2015-01-23 2016-10-19 セントラル硝子株式会社 Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery using the same
JP6245312B2 (en) 2016-05-30 2017-12-13 セントラル硝子株式会社 Non-aqueous electrolyte secondary battery electrolyte and non-aqueous electrolyte secondary battery using the same
JP2018158864A (en) 2017-03-22 2018-10-11 東ソー・ファインケム株式会社 Aluminum oxide article
US10851124B2 (en) 2017-04-10 2020-12-01 Central Glass Co., Ltd. Method for producing phosphoryl imide salt, method for producing nonaqueous electrolyte solution containing said salt, and method for producing nonaqueous secondary battery
JP2019053983A (en) 2017-09-12 2019-04-04 セントラル硝子株式会社 Non-aqueous electrolyte additive, electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell
JP2019053984A (en) 2017-09-12 2019-04-04 セントラル硝子株式会社 Additive agent for nonaqueous electrolyte solution, nonaqueous electrolyte solution, and nonaqueous electrolyte battery
WO2019111983A1 (en) 2017-12-06 2019-06-13 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
WO2019117101A1 (en) 2017-12-12 2019-06-20 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using same
CN112470322A (en) 2018-08-16 2021-03-09 中央硝子株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438339B2 (en) * 1994-08-09 2003-08-18 住友電気工業株式会社 Metal oxide coating method and metal oxide coating
JPH08183605A (en) * 1994-12-28 1996-07-16 Dainippon Printing Co Ltd Production of metal oxide film by coating
JP3172388B2 (en) * 1995-02-27 2001-06-04 三洋電機株式会社 Lithium secondary battery
US6372385B1 (en) * 1998-02-10 2002-04-16 Samsung Display Devices Co., Ltd. Active material for positive electrode used in lithium secondary battery and method of manufacturing same
KR100326455B1 (en) * 1999-03-30 2002-02-28 김순택 Positive active material for lithium secondary battery and method of preparing the same

Also Published As

Publication number Publication date
JP2002151077A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
Du et al. Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying coating with nano-Al2O3
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
KR102140969B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
KR101395478B1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery using said positive electrode active material
US7504180B2 (en) Positive electrode material for lithium secondary battery and process for producing the same
US7445871B2 (en) Process of preparing a surface-treated positive active material for a lithium secondary battery
EP1150367B1 (en) Positive electrode active material and non-aqueous elecrolyte cell
CN1208866C (en) Lithium secondary battery by use of composite material covered with nano surface as active material of positive polar
JP3195175B2 (en) Non-aqueous solvent secondary battery
US5993998A (en) Positive active material for lithium battery, lithium battery having the same and method for producing the same
Yang et al. Preparation and rate capability of carbon coated LiNi1/3Co1/3Mn1/3O2 as cathode material in lithium ion batteries
JP4211865B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4713051B2 (en) Battery active material and method for producing the same
KR101358516B1 (en) Method for producing positive electrode active material and nonaqueous electrolyte battery using same
KR100437339B1 (en) A method of preparing active material for battery and active material prepared therefrom
EP1291941B1 (en) Active material for battery and method of preparing the same
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP4462451B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4766040B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
JP5158787B2 (en) NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL
US7732096B2 (en) Lithium metal oxide electrodes for lithium batteries
JP4859487B2 (en) Nonaqueous electrolyte secondary battery
JP4574877B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP3869182B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Ref document number: 4973825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term