JP4739780B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4739780B2
JP4739780B2 JP2005068855A JP2005068855A JP4739780B2 JP 4739780 B2 JP4739780 B2 JP 4739780B2 JP 2005068855 A JP2005068855 A JP 2005068855A JP 2005068855 A JP2005068855 A JP 2005068855A JP 4739780 B2 JP4739780 B2 JP 4739780B2
Authority
JP
Japan
Prior art keywords
battery
lithium
positive electrode
lithium cobaltate
temperature phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005068855A
Other languages
Japanese (ja)
Other versions
JP2006252997A (en
Inventor
敦志 柳井
佳典 喜田
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005068855A priority Critical patent/JP4739780B2/en
Publication of JP2006252997A publication Critical patent/JP2006252997A/en
Application granted granted Critical
Publication of JP4739780B2 publication Critical patent/JP4739780B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムの吸蔵,放出が可能な正極および負極と、ガンマブチロラクトンを含有する非水電解液とを備えた非水電解質電池に関わり、特に正極の改良による保存特性の向上を図ることができる非水電解質電池に関するものである。   The present invention relates to a non-aqueous electrolyte battery including a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte containing gamma-butyrolactone, and particularly to improve storage characteristics by improving the positive electrode. The present invention relates to a nonaqueous electrolyte battery that can be produced.

近年、携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。充放電に伴い、リチウムイオンが正、負極間を移動することにより充放電を行う非水電解質電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。また、最近ではその特徴を利用して、携帯電話等のモバイル用途に限らず、電動工具や電気自動車、ハイブリッド自動車に至る中〜大型電池用途についても展開が進みつつある。   In recent years, mobile information terminals such as mobile phones, notebook personal computers, and PDAs have been rapidly reduced in size and weight, and batteries as drive power sources are required to have higher capacities. A non-aqueous electrolyte battery that performs charge / discharge by moving lithium ions between the positive and negative electrodes along with charge / discharge has a high energy density and high capacity. As widely used. In recent years, the use of such features has led to the development of not only mobile applications such as mobile phones, but also medium to large battery applications ranging from electric tools, electric vehicles, and hybrid vehicles.

ここで、上記非水電解質電池の正極としてはリチウムを含有したコバルト酸化物が用いられているが、この中でも、コバルト酸リチウムに代表される層状岩塩型構造を有するリチウム含有遷移金属酸化物を単独で用いると、例えば下記特許文献1に示されるように、充電状態で高温雰囲気に曝された場合、及び異常充電により連続充電された場合などに、層状岩塩型構造を有するリチウム含有遷移金属酸化物から酸素が脱難し、電解液と発熱反応を起こす場合があるという問題がある。   Here, a cobalt oxide containing lithium is used as the positive electrode of the non-aqueous electrolyte battery. Among these, a lithium-containing transition metal oxide having a layered rock-salt structure represented by lithium cobaltate is used alone. For example, as shown in Patent Document 1 below, a lithium-containing transition metal oxide having a layered rock salt structure when exposed to a high temperature atmosphere in a charged state or when continuously charged by abnormal charging, etc. There is a problem in that oxygen is difficult to desorb and may cause an exothermic reaction with the electrolyte.

そこで、上記のような異常時に備えて、現在のところ、電池パック内部には安全性維持のための保護回路が備わっており、電圧や電流の制御が精密に行われている。また、電池缶自体には、過大電流が流れた際の異常発熱を防止する役目を担うPTC(Positive Temperature Coefficient)素子や、電池内のガス圧上昇時に備えての、電流遮断機能付きガス排出弁といった数多くの保護機能が備わっており、電池の安全対策は十分に施されている。しかしながら、近年、上記の保護機能を簡略化して低コスト化を図るという観点から、正極活物質と電解液との反応を抑制することが必要とされている。   Therefore, in preparation for such an abnormality as described above, at present, a protection circuit for maintaining safety is provided inside the battery pack, and voltage and current are precisely controlled. In addition, the battery can itself has a PTC (Positive Temperature Coefficient) element that plays a role in preventing abnormal heat generation when an excessive current flows, and a gas discharge valve with a current blocking function in case of a gas pressure increase in the battery Many safeguards such as the above are provided, and battery safety measures are sufficiently implemented. However, in recent years, it has been necessary to suppress the reaction between the positive electrode active material and the electrolytic solution from the viewpoint of simplifying the protective function and reducing the cost.

このようなことを考慮して、高沸点で熱的に安定なガンマブチロラクトンを溶媒として用いた非水電解液電池が提案されている。
しかし、ガンマブチロラクトンを電解質として用いた非水電解質電池は、ジエチルカーボネートを代表とする鎖状カーボネートを電解質として用いた非水電解質電池に比べて、十分な充電保存特性が得られなかった。その原因としては、正負極上でのガンマブチロラクトンの分解等が生じるということが考えられる。
In view of the above, a nonaqueous electrolyte battery using gamma-butyrolactone having a high boiling point and thermally stable as a solvent has been proposed.
However, a non-aqueous electrolyte battery using gamma-butyrolactone as an electrolyte has not been able to obtain sufficient charge storage characteristics compared to a non-aqueous electrolyte battery using a chain carbonate typified by diethyl carbonate as an electrolyte. As the cause, it is considered that gamma-butyrolactone is decomposed on the positive and negative electrodes.

そこで、下記特許文献2では、ガンマブチロラクトンを含有する非水電解質電池において、ガンマブチロラクトンの含有量や外装材の厚み等を最適化することにより、高温で貯蔵した際のガス発生を抑制し、かつ大電流放電特性及び充放電サイクル特性を向上させる手法が提案されている。   Therefore, in the following Patent Document 2, in a non-aqueous electrolyte battery containing gamma butyrolactone, by optimizing the content of gamma butyrolactone, the thickness of the exterior material, etc., gas generation when stored at high temperature is suppressed, and Techniques for improving large current discharge characteristics and charge / discharge cycle characteristics have been proposed.

特開平11−16566号公報Japanese Patent Laid-Open No. 11-16666

特開2000−235868号公報JP 2000-235868 A

しかしながら、ガンマブチロラクトンの含有量や外装材の厚み等を最適化するだけでは、劣化の主原因と考えられる高温保存中に正極表面上でガンマブチロラクトンが副反応を生じるため、高温での充電保存特性を十分に向上させることができないという課題を有していた。
本発明は、上記課題に鑑みなされたものであり、初期放電容量を低下させることなく、高温での充電保存特性を向上させることができる非水電解質電池を提供することを目的としている。
However, only by optimizing the content of gamma-butyrolactone and the thickness of the outer packaging, gamma-butyrolactone undergoes side reactions on the positive electrode surface during high-temperature storage, which is considered to be the main cause of deterioration. Has a problem that it cannot be sufficiently improved.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a nonaqueous electrolyte battery capable of improving the charge storage characteristics at high temperatures without reducing the initial discharge capacity.

上記目的を達成するために、本発明のうち請求項1記載の発明は、リチウムの吸蔵,放出が可能な負極と、層状岩塩型構造を有するコバルト酸リチウムからなる正極活物質を含有する正極と、溶媒及び溶質を含有する非水電解質とを備え、且つ、上記溶媒にはガンマブチロラクトンが含まれる非水電解質電池において、前記正極活物質には、低温相のコバルト酸リチウムが含有されていることを特徴とする。   In order to achieve the above object, the invention according to claim 1 of the present invention comprises a negative electrode capable of occluding and releasing lithium, and a positive electrode containing a positive electrode active material comprising lithium cobaltate having a layered rock salt structure. A non-aqueous electrolyte battery comprising a non-aqueous electrolyte containing a solvent and a solute, and wherein the solvent contains gamma-butyrolactone, wherein the positive electrode active material contains lithium cobalt oxide in a low temperature phase It is characterized by.

上記構成の如く、正極活物質に低温相のコバルト酸リチウムが含有されていれば、電池の初期放電容量を低下させることなく、充電保存特性を向上させることができる。これは、以下に示す理由によるものと考えられる。
即ち、正極活物質に低温相のコバルト酸リチウムが含有されていれば、高温保存中の電解液(ガンマブチロラクトン)と正極活物質との副反応は、先ず低温相のコバルト酸リチウムとの間で生じるため(即ち、低温相のコバルト酸リチウムとの間で集中して生じるため)、層状岩塩型構造を有するコバルト酸リチウムとの間で生じるのを抑制できる。したがって、層状岩塩型構造を有するコバルト酸リチウムの劣化が抑制されるため、充電保存特性の低下が抑制されたものと考えられる。
If the positive electrode active material contains lithium cobalt oxide in a low temperature phase as in the above configuration, the charge storage characteristics can be improved without reducing the initial discharge capacity of the battery. This is considered to be due to the following reasons.
That is, if the positive electrode active material contains lithium cobalt oxide in the low temperature phase, the side reaction between the electrolyte solution (gamma butyrolactone) and the positive electrode active material during high temperature storage is first performed between the lithium cobalt oxide in the low temperature phase. Since it occurs (that is, it concentrates with lithium cobaltate in a low temperature phase), it can be suppressed from occurring with lithium cobaltate having a layered rock salt structure. Therefore, since deterioration of lithium cobaltate having a layered rock salt type structure is suppressed, it is considered that a decrease in charge storage characteristics is suppressed.

また、低温相のコバルト酸リチウムは、層状岩塩型構造を有するコバルト酸リチウムに比べて充放電容量が小さいもののリチウムの挿入脱離が可能である(低温相のコバルト酸リチウムの放電容量は、層状岩塩型構造を有するコバルト酸リチウムの放電容量の40〜50%程度である)。したがって、低温相のコバルト酸リチウムを含有することによって、電池の初期放電容量が大幅に低下することもない。
これらのことから、電池の初期放電容量を低下させることなく、充電保存特性を改善させることができる。
In addition, lithium cobaltate in the low temperature phase has a smaller charge / discharge capacity than lithium cobaltate having a layered rock salt structure, but lithium can be inserted and desorbed (the discharge capacity of lithium cobaltate in the low temperature phase is layered) It is about 40 to 50% of the discharge capacity of lithium cobaltate having a rock salt structure). Therefore, the initial discharge capacity of the battery is not significantly reduced by containing the low-temperature phase lithium cobalt oxide.
Therefore, the charge storage characteristics can be improved without reducing the initial discharge capacity of the battery.

ここで、上記構成における低温相のコバルト酸リチウムとは、リチウム化合物とコバルト化合物とを300〜600℃の温度範囲で熱処理した場合に得られるコバルト酸リチウムを意味し、リチウム金属に対する電位で3.3〜3.9V付近に放電容量を有する。
一方、層状岩塩型構造を有するコバルト酸リチウムは、低温相のコバルト酸リチウムよりも高い熱処理温度で得られるものであり、リチウム金属に対する電位で3.8〜4.3V付近に放電容量を有する。
尚、本発明における低温相のコバルト酸リチウムは、その構造安定性や電気化学的特性を向上させるために、NiやMnなどの元素を適宜添加することが可能である。
Here, the low-temperature phase lithium cobaltate in the above configuration means lithium cobaltate obtained when a lithium compound and a cobalt compound are heat-treated in a temperature range of 300 to 600 ° C. It has a discharge capacity in the vicinity of 3 to 3.9V.
On the other hand, lithium cobaltate having a layered rock salt structure is obtained at a heat treatment temperature higher than that of low-temperature phase lithium cobaltate, and has a discharge capacity in the vicinity of 3.8 to 4.3 V as a potential relative to lithium metal.
In addition, in order to improve the structural stability and electrochemical characteristics of the low-temperature phase lithium cobalt oxide in the present invention, elements such as Ni and Mn can be appropriately added.

請求項2記載の発明は請求項1記載の発明において、上記溶媒の総量に対する上記ガンマブチロラクトンの量が50体積%以上に規制されることを特徴とする。
このように規制するのは、溶媒の総量に対する上記ガンマブチロラクトンの量が50体積%以上の場合に、ガンマブチロラクトンと正極活物質との副反応が多く生じるため、低温相のコバルト酸リチウムの添加効果が一層発揮されるからである。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, the amount of the gamma butyrolactone relative to the total amount of the solvent is regulated to 50% by volume or more.
The reason for this regulation is that when the amount of gamma-butyrolactone relative to the total amount of the solvent is 50% by volume or more, side reactions between gamma-butyrolactone and the positive electrode active material often occur. This is because it is further demonstrated.

請求項3記載の発明は請求項1又は2記載の発明において、前記低温相のコバルト酸リチウムが、スピネル型構造又はこれに類似する構造を有することを特徴とする。
本発明における低温相のコバルト酸リチウムは、例えば、非特許文献1(Materials Research Bulletin、28、pp.235〜246、1992)及び非特許文献2(Solid State lonics、62、pp.53〜60、1993)に記載されているようなスピネル型構造に類似した構造を有する。そこで、上記文献に基づく場合の低温相のコバルト酸リチウムの結晶構造を特定すべく、上記構成の如くスピネル型構造又はこれに類似する構造と規定している。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the low-temperature phase lithium cobalt oxide has a spinel structure or a structure similar thereto.
The low-temperature phase lithium cobalt oxide in the present invention includes, for example, Non-Patent Document 1 (Materials Research Bulletin, 28, pp. 235-246, 1992) and Non-Patent Document 2 (Solid State lonics, 62, pp. 53-60, 1993) has a structure similar to the spinel structure. Therefore, in order to specify the crystal structure of the low-temperature phase lithium cobalt oxide based on the above document, it is defined as a spinel structure or a similar structure as described above.

但し、上記2つの文献は、400℃で熱処理した場合のコバルト酸リチウムの結晶構造についての報告であり、他の温度(例えば、600℃)で熱処理した場合には、他の結晶構造となることも考えられる。したがって、本発明における低温相のコバルト酸リチウムの結晶構造としては、300〜600℃の温度範囲で熱処理した場合に得られるコバルト酸リチウムの全ての結晶構造を含むものである。   However, the above two documents are reports on the crystal structure of lithium cobaltate when heat-treated at 400 ° C. When heat-treated at other temperatures (eg, 600 ° C), other crystal structures can be obtained. Is also possible. Accordingly, the crystal structure of the low-temperature phase lithium cobalt oxide in the present invention includes all the crystal structures of lithium cobalt oxide obtained when heat-treated in a temperature range of 300 to 600 ° C.

請求項4記載の発明は請求項1〜3記載の発明において、前記層状岩塩型構造を有するコバルト酸リチウムに対する、前記低温相のコバルト酸リチウムの割合が、0.01〜3質量%に規制されることを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the present invention, the ratio of the lithium cobaltate in the low temperature phase to the lithium cobaltate having the layered rock salt structure is regulated to 0.01 to 3 mass%. It is characterized by that.

このように規制するのは、低温相のコバルト酸リチウムの割合が0.01質量%未満であると、低温相のコバルト酸リチウムの添加効果が十分に発揮されない一方、低温相のコバルト酸リチウムの割合が3質量%を超えると、上述の如く低温相のコバルト酸リチウムは層状岩塩型構造を有するコバルト酸リチウムに比べて放電容量が小さいため、電池としての放電容量の低下を招くからである。   In this way, if the ratio of the low-temperature phase lithium cobaltate is less than 0.01% by mass, the effect of adding the low-temperature phase lithium cobaltate is not sufficiently exhibited, while the low-temperature phase lithium cobaltate When the ratio exceeds 3% by mass, the lithium cobaltate in the low temperature phase has a smaller discharge capacity than the lithium cobaltate having a layered rock salt structure as described above, so that the discharge capacity of the battery is reduced.

本発明によれば、層状岩塩型構造を有するコバルト酸リチウムの劣化が抑制されるため、電池の初期放電容量を低下させることなく、高温での充電保存特性を飛躍的に向上させることができるという優れた効果を奏する。   According to the present invention, since deterioration of lithium cobalt oxide having a layered rock salt structure is suppressed, it is possible to dramatically improve the charge storage characteristics at high temperatures without reducing the initial discharge capacity of the battery. Excellent effect.

以下、本発明をさらに詳細に説明するが、本発明は以下の最良の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail. However, the present invention is not limited to the following best modes, and can be appropriately modified and implemented without departing from the scope of the present invention.

(正極の作製)
先ず、Li2CO3とCo34とを、Li:Coのモル比が1.03:1となるようにして石川式らいかい乳鉢にて混合し、空気雰囲気中にて850℃で20時間熱処理後した後、粉砕することにより、層状岩塩型構造を有するコバルト酸リチウム(Li1.03CoO2)を得た。
次に、このコバルト酸リチウム(Li1.03CoO2)とCoCO3を、Li1.03CoO2とCoCO3とのモル比が1:0.03となるように秤量し、混合した。次いで、得られた粉末を400℃で20時間熱処理することで、層状岩塩型構造を有するコバルト酸リチウムに対して低温相のコバルト酸リチウム(LT)が3質量%含有されたコバルト酸リチウム(LT含有LiCoO2)からなる正極活物質を得た。
(Preparation of positive electrode)
First, Li 2 CO 3 and Co 3 O 4 are mixed in an Ishikawa type mortar so that the molar ratio of Li: Co is 1.03: 1, and 20 ° C. at 850 ° C. in an air atmosphere. After heat treatment for a time, pulverization gave lithium cobaltate (Li 1.03 CoO 2 ) having a layered rock salt structure.
Next, the lithium cobaltate (Li 1.03 CoO 2 ) and CoCO 3 were weighed and mixed so that the molar ratio of Li 1.03 CoO 2 and CoCO 3 was 1: 0.03. Next, the obtained powder was heat-treated at 400 ° C. for 20 hours, so that lithium cobaltate (LT) containing 3% by mass of lithium cobaltate (LT) in a low temperature phase with respect to lithium cobaltate having a layered rock salt structure was contained. A positive electrode active material comprising LiCoO 2 containing) was obtained.

この後、上記正極活物質と導電剤としての炭素粉末とを、90:5の質量比で混合し正極合剤を得た。しかる後、結着剤としてのフッ素樹脂粉末(ポリフッ化ビニリデン)をN−メチル−2−ピロリドンに溶解させた溶液を上記の正極合剤に加えてスラリーを調製し(スラリー中の正極合剤とポリフッ化ビニリデンとの質量比は95:5)、更に、このスラリーをアルミニウム箔からなる正極集電体の片面にドクターブレード法によって塗布した後、乾燥、圧延し、直径20mmの円板に切り出すことにより正極を作製した。   Thereafter, the positive electrode active material and the carbon powder as the conductive agent were mixed at a mass ratio of 90: 5 to obtain a positive electrode mixture. Thereafter, a slurry is prepared by adding a solution prepared by dissolving fluororesin powder (polyvinylidene fluoride) as a binder in N-methyl-2-pyrrolidone to the above positive electrode mixture (with the positive electrode mixture in the slurry). The mass ratio with polyvinylidene fluoride is 95: 5). Further, this slurry is applied to one side of a positive electrode current collector made of aluminum foil by a doctor blade method, dried, rolled, and cut into a disk having a diameter of 20 mm. Thus, a positive electrode was produced.

(負極の作製)
所定厚みのリチウム圧延板から直径20mmの円板を打ち抜くことにより、負極を作製した。
(Preparation of negative electrode)
A negative electrode was produced by punching a 20 mm diameter disc from a lithium rolled plate having a predetermined thickness.

(電解液の調製)
エチレンカーボネート(EC)とガンマブチロラクトン(γ−BL)とを体積比30:70の割合で混合した混合溶媒に、溶質としてのテトラフルオロホウ酸リチウム(LiBF4)を、濃度が1.2モル/リットルとなるように溶解させ、更に、上記混合溶媒100質量部に対し、ビニレンカーボネート2質量部と、界面活性剤としてのリン酸トリオクチルを2質量部の割合で添加することにより、電解液を調製した。
(Preparation of electrolyte)
In a mixed solvent obtained by mixing ethylene carbonate (EC) and gamma butyrolactone (γ-BL) at a volume ratio of 30:70, lithium tetrafluoroborate (LiBF 4 ) as a solute was added at a concentration of 1.2 mol / The electrolyte is prepared by adding 2 parts by weight of vinylene carbonate and 2 parts by weight of trioctyl phosphate as a surfactant to 100 parts by weight of the mixed solvent. did.

(電池の組立て)
図1に示すように、上記の如く作製した正極(作用極)2と、負極(対極)1との間に、ポリエチレン製の微多孔膜からなるセパレータ3を挟み込んだ。次に、試験セルの電池缶4の上蓋4bに、正極の集電体2aを接触させると共に、上記負極1を電池缶4の底部に接触させた。これらを電池缶4内に収容し、上記上蓋4bと底部4aとを絶縁パッキン5にて電気的に絶縁させ、本発明に係る非水電解質電池を作製した。
(Battery assembly)
As shown in FIG. 1, a separator 3 made of a polyethylene microporous film was sandwiched between a positive electrode (working electrode) 2 and a negative electrode (counter electrode) 1 produced as described above. Next, the positive electrode current collector 2 a was brought into contact with the upper lid 4 b of the battery can 4 of the test cell, and the negative electrode 1 was brought into contact with the bottom of the battery can 4. These were accommodated in the battery can 4, and the said upper cover 4b and the bottom part 4a were electrically insulated with the insulating packing 5, and the nonaqueous electrolyte battery which concerns on this invention was produced.

〔本実施例〕
(実施例1)
実施例1としては、前記発明を実施するための最良の形態で示した非水電解質電池を用いた。
このようにして作製した電池を、以下、本発明電池A1と称する。
[Example]
Example 1
As Example 1, the nonaqueous electrolyte battery shown in the best mode for carrying out the invention was used.
The battery thus produced is hereinafter referred to as the present invention battery A1.

(実施例2)
層状岩塩型構造を有するコバルト酸リチウムに対する低温相のコバルト酸リチウム(LT)の割合が4質量%となるように正極活物質を作製すること以外は、実施例1と同様にして非水電解質電池を作製した。
具体的には、Li2CO3とCo34とを、Li:Coのモル比が1.04:1となるようにしてコバルト酸リチウム(Li1.04CoO2)を作製すると共に、このコバルト酸リチウムとCoCO3を、Li1.04CoO2とCoCO3とのモル比が1:0.04となるようにした以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A2と称する。
(Example 2)
A non-aqueous electrolyte battery is produced in the same manner as in Example 1 except that the positive electrode active material is prepared so that the ratio of the low-temperature phase lithium cobaltate (LT) to the lithium cobaltate having a layered rock salt structure is 4% by mass. Was made.
Specifically, lithium cobaltate (Li 1.04 CoO 2 ) is prepared by using Li 2 CO 3 and Co 3 O 4 so that the molar ratio of Li: Co is 1.04: 1. A battery was fabricated in the same manner as in Example 1 except that lithium acid and CoCO 3 were used so that the molar ratio of Li 1.04 CoO 2 and CoCO 3 was 1: 0.04.
The battery thus produced is hereinafter referred to as the present invention battery A2.

(比較例)
正極活物質として、低温相のコバルト酸リチウムを含有していない層状岩塩型構造を有するLiCoO2を使用すること以外は、実施例1と同様にして非水電解質電池を作製した。
具体的には、Li2CO3とCo34とを、Li:Coのモル比が1:1となるようにして石川式らいかい乳鉢にて混合し、空気雰囲気中にて850℃で20時間熱処理後した後、粉砕することにより、層状岩塩型構造を有するコバルト酸リチウム (LiCoO2)を作製し、これを正極活物質として用いる(即ち、この後、このコバルト酸リチウムとCoCO3とを混合して400℃で熱処理するという工程を行なわない)以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Xと称する。
(Comparative example)
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that LiCoO 2 having a layered rock salt structure not containing low-temperature phase lithium cobaltate was used as the positive electrode active material.
Specifically, Li 2 CO 3 and Co 3 O 4 are mixed in an Ishikawa type mortar so that the molar ratio of Li: Co is 1: 1, and at 850 ° C. in an air atmosphere. After heat treatment for 20 hours, pulverization produces lithium cobaltate (LiCoO 2 ) having a layered rock salt type structure, and this is used as a positive electrode active material (that is, after this lithium cobaltate and CoCO 3 A battery was fabricated in the same manner as in Example 1 except that the step of mixing and heat treating at 400 ° C. was not performed.
The battery thus produced is hereinafter referred to as comparative battery X.

(実験)
本発明電池A1、A2及び比較電池Xについて、以下の条件で充放電と保存とを行い、保存前放電容量(但し、表1においては、比較電池Xに対する保存前放電容量比で表示している)と、初期充放電効率と、容量復帰率とを測定したので、その結果を表1に示す。
(Experiment)
About this invention battery A1, A2 and the comparison battery X, charging / discharging and a preservation | save are performed on the following conditions, and it is displaying by the discharge capacity before a storage (however, in Table 1, it is shown by the discharge capacity ratio before the preservation | save with respect to the comparison battery X). ), Initial charge / discharge efficiency, and capacity recovery rate were measured, and the results are shown in Table 1.

試験条件
[初期充放電効率測定における充放電条件]
・充電条件
充電電流9.3mAで充電終止電圧4.3Vまで充電した後、充電電流3.1mAで充電終止電圧4.3Vまで充電。充電時の温度は25℃。
・放電条件
放電電流3.1mAで放電終止電圧2.75Vまで放電。放電時の温度は25℃。
そして、上記充放電時に充電容量と放電容量とを測定した。そして、当該放電容量を初期放電容量とした。
[初期充放電効率の算出]
上記初期の充電容量と放電容量とから、下記(1)式にしたがって、初期充放電効率を算出した。
初期充放電効率(%)={(初期放電容量)÷(初期充電容量)}×100…(1)
Test conditions [Charge / discharge conditions in initial charge / discharge efficiency measurement]
-Charging conditions After charging to a charge end voltage of 4.3 V at a charge current of 9.3 mA, the battery is charged to a charge end voltage of 4.3 V at a charge current of 3.1 mA. The temperature during charging is 25 ° C.
-Discharge condition Discharge to discharge end voltage 2.75V with discharge current 3.1mA. The temperature during discharge is 25 ° C.
And the charge capacity and the discharge capacity were measured at the time of the said charge / discharge. And the said discharge capacity was made into the initial stage discharge capacity.
[Calculation of initial charge / discharge efficiency]
From the initial charge capacity and discharge capacity, the initial charge / discharge efficiency was calculated according to the following equation (1).
Initial charge / discharge efficiency (%) = {(initial discharge capacity) ÷ (initial charge capacity)} × 100 (1)

[保存前の放電容量測定における充放電条件]
上記初期の充放電が終了後、上記充放電条件と同様の条件で充放電を2回行い、2回目の放電容量を保存前の放電容量とした。
[充電保存時の充電条件と保存条件]
・充電条件
上記保存前の充放電が終了した後、上記充電条件と同様の条件で充電。
・保存条件
上記充電を行った後、温度60℃で、10日間保存。
[Charging / discharging conditions in discharge capacity measurement before storage]
After the initial charge / discharge was completed, charge / discharge was performed twice under the same conditions as the charge / discharge conditions, and the second discharge capacity was defined as the discharge capacity before storage.
[Charging and storage conditions for charging and storage]
-Charging conditions After the charge / discharge before the storage is completed, charging is performed under the same conditions as the above charging conditions.
-Storage conditions After carrying out the above charging, stored for 10 days at a temperature of 60 ° C.

[保存後の放電容量測定における充放電条件]
上記保存を終了した後、上記保存前の放電容量測定における充放電条件と同様の条件で、放電と充電と再度の放電とを行なう。
そして、再度の放電時に放電容量を測定し、これを保存後の放電容量とした。
[Charging / discharging conditions for discharge capacity measurement after storage]
After the storage is completed, discharging, charging, and re-discharging are performed under the same conditions as the charging / discharging conditions in the discharge capacity measurement before the storage.
And the discharge capacity was measured at the time of another discharge, and this was made into the discharge capacity after a preservation | save.

[容量復帰率の算出]
上記保存前の放電容量と保存後の再度の放電時における放電容量とから、下記(2)式にしたがって、容量復帰率を算出した。
容量復帰率(%)={(保存後の再度の放電時における放電容量)÷(保存前の放電容量)}×100…(2)
尚、この容量復帰率が大きいほど、充電保存特性が優れることを示す。
[Calculation of capacity recovery rate]
From the discharge capacity before storage and the discharge capacity at the time of re-discharge after storage, the capacity recovery rate was calculated according to the following equation (2).
Capacity recovery rate (%) = {(discharge capacity at the time of re-discharge after storage) / (discharge capacity before storage)} × 100 (2)
In addition, it shows that a charge storage characteristic is excellent, so that this capacity | capacitance return rate is large.

表1から明らかなように、LT含有LiCoO2を正極活物質として用いた本発明電池A1、A2は、LTを含有しないLiCoO2を正極活物質として用いた比較電池Xに比べ、容量復帰率が大きくなっていることが認められる。 As is clear from Table 1, the batteries A1 and A2 of the present invention using LT-containing LiCoO 2 as the positive electrode active material had a capacity recovery rate as compared with the comparative battery X using LiCoO 2 containing no LT as the positive electrode active material. It is recognized that it is growing.

したがって、γ−BLを含む電解液を用いた電池では、正極活物質として低温相のコバルト酸リチウムを含有した層状岩塩型構造を有するコバルト酸リチウムを使用することにより、高温での充電保存特性が向上することがわかる。
これは、正極活物質に低温相のコバルト酸リチウムを含有させることで、先にγ−BLと低温相のコバルト酸リチウムとが副反応を起こすため、層状岩塩型構造を有するコバルト酸リチウムの劣化を抑制し、充電保存特性の低下を抑制したものと考えられる。
但し、層状岩塩型構造を有するコバルト酸リチウムに対して低温相のコバルト酸リチウム(LT)の割合が4質量%の本発明電池A2は、その割合が3質量%の本発明電池A1に比べて、初期放電容量と初期充放電効率とが低下していることが認められる。
Therefore, in a battery using an electrolytic solution containing γ-BL, the use of lithium cobaltate having a layered rock-salt structure containing lithium cobaltate in a low temperature phase as a positive electrode active material provides high-temperature charge storage characteristics. It turns out that it improves.
This is because deterioration of lithium cobaltate having a layered rock-salt structure occurs because γ-BL and lithium cobaltate in the low temperature phase first cause a side reaction when the positive electrode active material contains lithium cobaltate in the low temperature phase. It is considered that the decrease in charge storage characteristics was suppressed.
However, the present invention battery A2 in which the proportion of the low-temperature phase lithium cobaltate (LT) is 4% by mass with respect to the lithium cobaltate having a layered rock salt structure is compared with the present invention battery A1 in which the ratio is 3% by mass. It can be seen that the initial discharge capacity and the initial charge / discharge efficiency are reduced.

〔参考例〕
本参考例では、本発明の効果はγ−BLを含む溶媒を用いた非水電解質電池に特有の効果であることを確認するために行なった。以下、その内容について述べる。
(参考例1)
電解液の溶媒として、ECとγ−BLとの混合溶媒の代わりに、ECとエチルメチルカーボネート(EMC)との混合溶媒(体積比は30:70)を用い、且つ、界面活性剤としてのリン酸トリオクチルを添加しない以外は、本実施例の実施例1と同様にして非水電解質電池を作製した。
このようにして作製した電池を、以下、参考電池Y1と称する。
[Reference example]
In this reference example, the effect of the present invention was performed in order to confirm that the effect was specific to a nonaqueous electrolyte battery using a solvent containing γ-BL. The contents will be described below.
(Reference Example 1)
As a solvent for the electrolytic solution, a mixed solvent of EC and ethyl methyl carbonate (EMC) (volume ratio is 30:70) is used instead of a mixed solvent of EC and γ-BL, and phosphorus as a surfactant is used. A nonaqueous electrolyte battery was produced in the same manner as in Example 1 of this example except that trioctyl acid was not added.
The battery thus produced is hereinafter referred to as reference battery Y1.

(参考例2)
電解液の溶媒として、ECとγ−BLとの混合溶媒の代わりに、ECとエチルメチルカーボネート(EMC)との混合溶媒(体積比は30:70)を用い、且つ、界面活性剤としてのリン酸トリオクチルを添加しない以外は、本実施例の比較例と同様にして非水電解質電池を作製した。
このようにして作製した電池を、以下、参考電池Y2と称する。
(Reference Example 2)
As a solvent for the electrolytic solution, a mixed solvent of EC and ethyl methyl carbonate (EMC) (volume ratio is 30:70) is used instead of a mixed solvent of EC and γ-BL, and phosphorus as a surfactant is used. A nonaqueous electrolyte battery was produced in the same manner as in the comparative example of this example, except that trioctyl acid was not added.
The battery thus produced is hereinafter referred to as reference battery Y2.

(実験)
参考電池Y1、Y2について充放電と保存とを行い、保存前の放電容量(但し、表2においては、参考電池Y2に対する保存前放電容量比で表示している)と、初期充放電効率と、容量復帰率とを測定したので、その結果を表2に示す。尚、実験条件は、前記本実施例の実験と同様の条件である。
(Experiment)
The reference batteries Y1 and Y2 are charged and discharged and stored, and the discharge capacity before storage (in Table 2, indicated by the ratio of discharge capacity before storage to the reference battery Y2), initial charge and discharge efficiency, The capacity recovery rate was measured, and the results are shown in Table 2. The experimental conditions are the same as those in the experiment of the present embodiment.

表2から明らかなように、参考電池Y1、Y2では、容量復帰率に差異が認められない。即ち、γ−BLを含まない電解液を用いた電池では、正極における低温相のコバルト酸リチウム含有の有無が高温での充電保存特性に影響しない。
このことから、低温相のコバルト酸リチウムを含有することによる充電保存特性の優位性は、γ−BLを含む電解液を用いた場合にのみ発現するということがわかる。
As is clear from Table 2, no difference is observed in the capacity recovery rate between the reference batteries Y1 and Y2. That is, in a battery using an electrolyte solution that does not contain γ-BL, the presence or absence of lithium cobaltate in the low-temperature phase in the positive electrode does not affect the charge storage characteristics at high temperatures.
From this, it can be seen that the superiority of the charge storage characteristics due to the inclusion of the low-temperature phase lithium cobaltate is manifested only when an electrolytic solution containing γ-BL is used.

〔その他の事項〕
(1)負極活物質としては、上記金属リチウムに限定するものではなく、非水電解液電池に従来から用いられてきた種々の負極材料、例えば、リチウム−アルミニウム合金、リチウム−鉛合金、リチウム−シリコン合金、リチウム−スズ合金などのリチウム合金、黒鉛、コークス、有機物焼成体などの炭素材料、並びにSnO2、SnO、TiO2などの電位が正極活物質に比べて卑な金属酸化物を用いることができる。
[Other matters]
(1) The negative electrode active material is not limited to the above metal lithium, and various negative electrode materials conventionally used in non-aqueous electrolyte batteries, such as lithium-aluminum alloys, lithium-lead alloys, lithium- Use lithium alloys such as silicon alloys, lithium-tin alloys, carbon materials such as graphite, coke, and organic fired bodies, and metal oxides with a lower potential than Sn active materials such as SnO 2 , SnO, and TiO 2. Can do.

(2)ガンマブチロラクトンに混合できる溶媒としては、上記エチレンカーボネートに限定するものではなく、従来から非水電解液電池に用いられてきた溶媒、例えば、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネートなどの環状炭酸エステル、プロパンスルトンなどの環状エステル、エチルメチルカーボネート、ジエチルカーボネート、ジメチルカーボネートなどの鎖状炭酸エステル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチルメチルエーテルなどの鎖状エーテル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、アセトニトリルなどが挙げられる。中でも、電池の諸特性向上のためには、実施例で用いたエチレンカーボネートが望ましい。 (2) The solvent that can be mixed with gamma-butyrolactone is not limited to the above-mentioned ethylene carbonate, but solvents conventionally used in non-aqueous electrolyte batteries, such as propylene carbonate, 1,2-butylene carbonate, 2, Cyclic carbonates such as 3-butylene carbonate, cyclic esters such as propane sultone, chain carbonates such as ethyl methyl carbonate, diethyl carbonate, and dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether And chain ethers such as ethyl methyl ether, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, acetonitrile and the like. It is. Among them, ethylene carbonate used in the examples is desirable for improving various characteristics of the battery.

(3)本発明で用いられる電解質塩は、上記LiBF4に限定するものではなく、LiPF6、LiAsF6、LiCF3SO3、LiN(Cl2l+1SO2)(Cm2m+1SO2)(l、mは0以上の整数)、LiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(p、q、rは0以上の整数)、Li[(C242B]、LiBF2(C24)、LiPF4(C24)、LiPF2(C242等であっても良く、また、これらを複数組み合わせて使用しても良い。これらの中でも、特にガンマブチロラクトンを溶媒とする場合には、安定な被膜を形成するLiBF4を少なくとも含んでいることが望ましい。尚、これらの電解質塩は、前記の非水電解液に0.1〜1.5M、好ましくは0.5〜1.5Mの濃度で溶解して使用される。 (3) The electrolyte salt used in the present invention is not limited to the above LiBF 4 , but LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (C l F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (l, m is an integer of 0 or more), LiC (C p F 2p + 1 SO 2 ) (C q F 2q + 1 SO 2 ) (C r F 2r + 1 SO 2 ) (p, q , R is an integer of 0 or more), Li [(C 2 O 4 ) 2 B], LiBF 2 (C 2 O 4 ), LiPF 4 (C 2 O 4 ), LiPF 2 (C 2 O 4 ) 2, etc. It may be present, or a combination of these may be used. Among these, particularly when gamma-butyrolactone is used as a solvent, it is desirable to contain at least LiBF 4 that forms a stable film. These electrolyte salts are used by dissolving in the non-aqueous electrolyte solution at a concentration of 0.1 to 1.5M, preferably 0.5 to 1.5M.

(4)上記電解液には、C=C不飽和結合を有する環状炭酸エステル化合物が1種以上含有されているのが望ましい。これは、C=C不飽和結合を有する環状炭酸エステル化合物が含まれていれば、負極上にリチウムイオン透過性に優れた安定な被膜が形成されるので、γ−ブチロラクトンの分解を抑制することができるからである。
尚、C=C不飽和結合を有する環状炭酸エステル化合物の中でも、特に、C=C不飽和結合を有する環状炭酸エステルであることが好ましく、このC=C不飽和結合を有する環状炭酸エステルとしては、ビニレンカーボネート、4,5−ジメチルビニレンカーボネート、4,5−ジエチルビニレンカーボネート、4,5−ジプロピルビニレンカーボネート、4−エチル−5−メチルビニレンカーボネート、4−エチル−5−プロピルビニレンカーボネート、4−エチル−5−プロピルビニレンカーボネート、4−メチル−5−メチルビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートなどが例示される。
(4) It is desirable that the electrolytic solution contains one or more cyclic carbonate compounds having a C═C unsaturated bond. This is because if a cyclic carbonate compound having a C═C unsaturated bond is contained, a stable film excellent in lithium ion permeability is formed on the negative electrode, so that the decomposition of γ-butyrolactone is suppressed. Because you can.
Among the cyclic carbonate compounds having a C═C unsaturated bond, a cyclic carbonate having a C═C unsaturated bond is particularly preferred. As the cyclic carbonate having a C═C unsaturated bond, Vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, 4,5-dipropyl vinylene carbonate, 4-ethyl-5-methyl vinylene carbonate, 4-ethyl-5-propyl vinylene carbonate, 4 -Ethyl-5-propyl vinylene carbonate, 4-methyl-5-methyl vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate and the like are exemplified.

また、これら環状炭酸エステルなかでも、ビニレンカーボネート及びビニルエチレンカーボネートは、上記効果が一層発揮されるので、より好ましい。
尚、非水電解液中におけるC=C不飽和化合物を有する環状炭酸エステル化合物の割合は、非水電解質の総量に対して1〜15質量部、より好ましくは2〜10質量部である。これは、C=C不飽和化合物を有する環状炭酸エステル化合物の含有量が少なすぎると充放電特性の改善効果が十分に得られない場合がある一方、含有量が多すぎると負極表面上に形成される被膜が厚くなり過ぎて、負極の反応抵抗が増大する結果、充放電特性が低下するおそれがあるからである。
Among these cyclic carbonates, vinylene carbonate and vinyl ethylene carbonate are more preferable because the above effects are further exhibited.
In addition, the ratio of the cyclic carbonate compound having a C═C unsaturated compound in the non-aqueous electrolyte is 1 to 15 parts by mass, more preferably 2 to 10 parts by mass with respect to the total amount of the non-aqueous electrolyte. This is because, if the content of the cyclic carbonate compound having a C═C unsaturated compound is too small, the effect of improving the charge / discharge characteristics may not be sufficiently obtained, while if the content is too large, it is formed on the negative electrode surface. This is because the applied film becomes too thick and the reaction resistance of the negative electrode increases, and as a result, the charge / discharge characteristics may deteriorate.

(5)電解液には界面活性剤が添加されていることが望ましい。このように界面活性剤が添加されていれば、セパレータヘの濡れ性が向上するため、より電池の諸特性を向上させることができるからである。尚、界面活性剤としては、リン酸トリオクチルやエステル等が例示され、また、界面活性剤の添加量としては、非水電解液100質量部に対して0.5〜5質量部程度であるのが好ましい。 (5) It is desirable that a surfactant be added to the electrolytic solution. This is because if the surfactant is added in this way, the wettability to the separator is improved, so that various characteristics of the battery can be further improved. Examples of the surfactant include trioctyl phosphate and ester, and the addition amount of the surfactant is about 0.5 to 5 parts by mass with respect to 100 parts by mass of the non-aqueous electrolyte. Is preferred.

(6)電池の形状などについては上記扁平型に限定するものではなく、上記本発明は広く円筒型、角型など、特に制限はなく、種々の形状の非水電解質電池に適用し得ることは勿論である。また、セパレータ、電池ケース、および活物質を保持すると共に集電を担う集電体などの電池構成部材についても特段の制限はなく、公知の種々の部材を選択的に使用すればよい。 (6) The shape of the battery is not limited to the above flat type, and the present invention is not particularly limited to a cylindrical shape, a square shape, etc., and can be applied to non-aqueous electrolyte batteries having various shapes. Of course. Further, there are no particular limitations on battery constituent members such as a current collector that holds a separator, a battery case, and an active material while also collecting current, and various known members may be selectively used.

(7)本発明は液系の電池に限定するものではなく、ゲル系のポリマー電池にも適用することができる。この場合のポリマー材料としては、ポリエーテル系固体高分子、ポリカーボネート系固体高分子、ポリアクリロニトリル系固体高分子、オキセタン系ポリマー、エポキシ系ポリマー及びこれらの2種以上からなる共重合体もしくは架橋した高分子若しくはPVDFが例示され、このポリマー材料とリチウム塩と電解質を組合せてゲル状にした固体電解質を用いることができる。 (7) The present invention is not limited to a liquid battery, but can be applied to a gel polymer battery. Examples of the polymer material in this case include polyether solid polymer, polycarbonate solid polymer, polyacrylonitrile solid polymer, oxetane polymer, epoxy polymer, a copolymer composed of two or more of these, or a crosslinked polymer. A molecule or PVDF is exemplified, and a solid electrolyte in which this polymer material, a lithium salt, and an electrolyte are combined into a gel can be used.

本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源のみならず、電気自動車やハイブリッド自動車の車載用電源等の大型電池に適用することもできる。   The present invention can be applied not only to a driving power source of a mobile information terminal such as a mobile phone, a notebook computer, and a PDA, but also to a large battery such as an in-vehicle power source of an electric vehicle or a hybrid vehicle.

本発明電池の一例を示す断面図である。It is sectional drawing which shows an example of this invention battery.

符号の説明Explanation of symbols

1 負極
2 正極
3 セパレータ

1 Negative electrode 2 Positive electrode 3 Separator

Claims (3)

リチウムの吸蔵,放出が可能な負極と、層状岩塩型構造を有するコバルト酸リチウムからなる正極活物質を含有する正極と、溶媒及び溶質を含有する非水電解質とを備え、且つ、上記溶媒にはガンマブチロラクトンが含まれる非水電解質電池において、
前記正極活物質には、低温相のコバルト酸リチウムが含有され
前記層状岩塩型構造を有するコバルト酸リチウムに対する、前記低温相のコバルト酸リチウムの割合が、0.01〜3質量%に規制されていることを特徴とする非水電解質電池。
A negative electrode capable of occluding and releasing lithium; a positive electrode containing a positive electrode active material made of lithium cobaltate having a layered rock salt structure; and a non-aqueous electrolyte containing a solvent and a solute; In a non-aqueous electrolyte battery containing gamma butyrolactone,
The positive electrode active material contains a low-temperature phase lithium cobalt oxide ,
The nonaqueous electrolyte battery , wherein a ratio of the lithium cobaltate in the low-temperature phase to the lithium cobaltate having a layered rock salt structure is regulated to 0.01 to 3% by mass .
上記溶媒の総量に対する上記ガンマブチロラクトンの量が50体積%以上に規制される、請求項1記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the amount of the gamma butyrolactone relative to the total amount of the solvent is regulated to 50% by volume or more. 前記低温相のコバルト酸リチウムが、スピネル型構造又はこれに類似する構造を有する、請求項1又は2記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the low-temperature phase lithium cobalt oxide has a spinel structure or a structure similar thereto.
JP2005068855A 2005-03-11 2005-03-11 Non-aqueous electrolyte battery Expired - Fee Related JP4739780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068855A JP4739780B2 (en) 2005-03-11 2005-03-11 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068855A JP4739780B2 (en) 2005-03-11 2005-03-11 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2006252997A JP2006252997A (en) 2006-09-21
JP4739780B2 true JP4739780B2 (en) 2011-08-03

Family

ID=37093247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068855A Expired - Fee Related JP4739780B2 (en) 2005-03-11 2005-03-11 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4739780B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243507B2 (en) * 2019-07-24 2023-03-22 株式会社豊田自動織機 Electrolyte and lithium ion secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222221A (en) * 1995-02-10 1996-08-30 Ricoh Co Ltd Solid polymer secondary battery
JP4479874B2 (en) * 2000-11-29 2010-06-09 戸田工業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20030083476A (en) * 2002-04-23 2003-10-30 주식회사 엘지화학 Lithium metal oxides with enhanced cycle life and safety and a process for preparation thereof
JP4737952B2 (en) * 2003-07-24 2011-08-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11043660B2 (en) 2016-07-05 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery

Also Published As

Publication number Publication date
JP2006252997A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
EP1671393B1 (en) Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved
JP4679112B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4807072B2 (en) Nonaqueous electrolyte secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP4012174B2 (en) Lithium battery with efficient performance
EP2907183B1 (en) Electrochemical cells
JP6054517B2 (en) Nonaqueous electrolyte secondary battery
JP5141582B2 (en) Nonaqueous electrolyte secondary battery
KR20080110404A (en) Additive for non-aqueous electrolyte and secondary battery using the same
JP4739778B2 (en) Nonaqueous electrolyte secondary battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4739780B2 (en) Non-aqueous electrolyte battery
US8563179B2 (en) Nonaqueous secondary battery
US8999589B2 (en) Nonaqueous secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
WO2005027254A1 (en) Nonaqueous electrolyte containing capacity enhancing additive of lithium ion cell and lithium ion cell employing it
JP5011742B2 (en) Nonaqueous electrolyte secondary battery
JP5405353B2 (en) Non-aqueous electrolyte secondary battery
JP4737952B2 (en) Non-aqueous electrolyte secondary battery
JP5036204B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2006252829A (en) Non-aqueous electrolyte secondary battery
JP2003100343A (en) Lithium cell
JP4759932B2 (en) Nonaqueous electrolyte secondary battery
JPH11204143A (en) Nonaqueous electrolyte secondary battery
JP2003288940A (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees