JP3451781B2 - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JP3451781B2
JP3451781B2 JP06870595A JP6870595A JP3451781B2 JP 3451781 B2 JP3451781 B2 JP 3451781B2 JP 06870595 A JP06870595 A JP 06870595A JP 6870595 A JP6870595 A JP 6870595A JP 3451781 B2 JP3451781 B2 JP 3451781B2
Authority
JP
Japan
Prior art keywords
battery
lithium
negative electrode
carbonate
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06870595A
Other languages
Japanese (ja)
Other versions
JPH08241731A (en
Inventor
吉田  浩明
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP06870595A priority Critical patent/JP3451781B2/en
Publication of JPH08241731A publication Critical patent/JPH08241731A/en
Application granted granted Critical
Publication of JP3451781B2 publication Critical patent/JP3451781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくはメモリ保持電源としての高エネルギー密度でか
つ高い信頼性を有するリチウム電池に関するものであ
る。 【0002】 【従来の技術とその課題】電子機器の急激なる小形軽量
化に伴い、その電源である電池に対して、小形で軽量か
つ高エネルギー密度で、更に繰り返し充放電が可能な二
次電池の開発への要求が高まっている。これら要求を満
たす二次電池として、有機電解液二次電池が最も有望で
ある。 【0003】有機電解液二次電池の正極活物質には、二
硫化チタンをはじめとして、リチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。なかでも、リチウムコバルト複合酸化物(L
iCoO)およびスピネル型リチウムマンガン酸化物
(LiMn)は、4V(Li/Li)以上のき
わめて貴な電位で充放電を行うため、正極として用いる
ことで、高い放電電圧を有する電池が実現できる。 【0004】有機電解液二次電池の負極活物質は、金属
リチウムをはじめとして、リチウムの吸蔵・放出が可能
なLi−Al合金や炭素材料など種々のものが検討され
ているが、なかでも炭素材料は、安全性が高くかつサイ
クル寿命の長い電池が得られるという利点がある。 【0005】しかし、この種電池において、卑な電位を
有するリチウムを負極活物質とする一方、正極では貴な
電位を有する金属酸化物を用いるため、負極、正極それ
ぞれにおいて電解液が分解されやすい状況にある。従っ
て、電解液の選択において、これらの点を考慮した構成
とすることが必要不可欠であり、種々の電解液を用いる
ことが提案されている。例えば、ジメチルスルホンを含
有する電解液(特開平3−152879号公報参照)お
よび環状カーボネートと鎖状カーボネートとの混合電解
液(特開平4−171674号公報参照)などがあげら
れる。 【0006】一方、溶質としては、過塩素酸リチウム、
トリフルオロメタンスルホン酸リチウム、六フッ化燐酸
リチウムなどが一般に用いられている。なかでも六フッ
化燐酸リチウムは、安全性が高くかつ溶解させた電解液
のイオン導電率が高いという理由から、近年盛んに用い
られるようになってきている。 【0007】しかしながら、ジメチルスルホンはそれ自
身優れた熱安定性、耐酸化性能を有するものの、リチウ
ムの吸蔵・放出が可能な炭素材料を負極に用いた電池で
は、良好な充放電サイクル特性が得られなかった。一
方、環状カーボネートと鎖状カーボネートとの混合電解
液は、室温下では良好なサイクル特性を示したが、高温
下では劣化が大きくなった。 【0008】 【発明を解決するための手段】本発明は、リチウムの吸
蔵・放出が可能な炭素材料からなる負極と、正極と、溶
媒と溶質からなる有機電解液とを備える電池であって、
前記溶媒が環状カーボネートとエチルメチルスルホンと
を含有していることで上記問題を解決するものである。 【0009】なお、黒鉛化度の高い炭素材料を負極に用
いる場合は環状カーボネートとしてエチレンカーボネー
トを用いるのが好ましい。また、エチルメチルスルホン
を用いることにより、高率放電性能に優れる電池を得る
ことができる。 【0010】 【作用】前述した如く、この種電池では電解液の分解反
応が生じやすく、これが電池性能を劣化させる主因とな
っている。しかしながら、電解液に環状カーボネートと
エチルメチルスルホンとの混合物を用いると、保存特性
に優れ、サイクル特性も良好な電池が得られることを見
出し本発明を完成するに至った。この理由は明らかでは
ないが、下記の如く推察している。 【0011】ジメチルスルホンに代表される非環状スル
ホンの分子は、エチレンカーボネート、プロピレンカー
ボネートなどの環状カーボネートの分子に比べ小さいた
め、充電時にリチウムイオンとともに負極炭素の層間に
取り込まれやすい。それによって負極炭素の層間距離が
押し上げられる。したがって、充放電によるリチウムイ
オンの吸蔵・放出を繰り返すにつれて負極炭素の層構造
の破壊が進み、電池容量の低下が生じていたと考えられ
る。 【0012】しかし、本発明の如く環状カーボネートと
エチルメチルスルホンとを混合すると、環状カーボネー
トが負極炭素表面にリチウムイオン導電性の保護皮膜を
形成し、エチルメチルスルホン分子の負極炭素層間への
取り込みを抑制するため、負極炭素の層構造の破壊も抑
制されるようになる。さらに、本発明の電解液は、高温
下での安定性に劣る鎖状カーボネートを含有しないため
高温下においても優れたサイクル性能を示すものと思わ
れる。 【0013】 【実施例】以下に、好適な実施例を用いて本発明を説明
するが、本発明の趣旨を越えない限り、以下の実施例に
限定されるものではない。 【0014】正極は、リチウムコバルト複合酸化物(L
ICoO)と導電剤としてのカーボン粉末および結着
剤としてのフッ素樹脂粉末とを90:3:7の重量比で
十分混合したのち、加圧成型したものである。負極は、
黒鉛粉末と結着剤としてのフッ素樹脂粉末とを91:9
の重量比で十分混合したのち、加圧成型したものであ
る。 【0015】図1は、本発明の1実施例電池である。こ
の図において、1は耐電解液性のステンレス鋼板を打ち
抜き加工した正極端子を兼ねるケース、2は1と同様の
ステンレス鋼板を打ち抜き加工した負極端子を兼ねる封
口板であり、その内壁には負極3が当接されている。5
は有機電解液を含浸したポリプロピレンからなるセパレ
ーター、6は正極である。電池は、正極端子を兼ねるケ
ース1の開口端部を内方へかしめ、ガスケット4を介し
て負極端子を兼ねる封口板2の外周を締め付けることに
より密閉封口している。 【0016】有機電解液には、エチレンカーボネートと
エチルメチルスルホンとを体積比1:1で混合した有機
溶媒に、六フッ化燐酸リチウムを1モル/リットルの濃
度で溶解したものを用いた。電池には、上記電解液を約
150μl注液した。この電池寸法は直径20mm、高
さ2mmである。本発明電池を(A)とした。 【0017】 【0018】さらに比較のために、エチレンカーボネト
とジエチルカーボネートとの混合物(体積比1:1)を
用いたことの他は、本発明の電池と同様の構成とした比
較電池を(ア)とした。 【0019】次に温度60℃の恒温槽中にて、これらの
電池を2.0mAの定電流で、端子電圧が4.2Vに至る
まで充電して、つづいて、同じく2.0mAの定電流で、
端子電圧が2.7Vに達するまで放電する充放電サイク
ル寿命試験を300サイクルおこなった。各電池の充放
電サイクルの進行にともなう放電容量の変化を図2に示
す。 【0020】図2の結果から明らかなように、エチレン
カーボネートとエチルメチルスルホンとの混合溶媒を用
いた本発明電池(A)は、比較電池(ア)に比べ、充放
電サイクルの進行にともなう放電容量の低下が小さい。 【0021】なお、上記実施例では、環状カーボネート
としてエチレンカーボネートを用いる場合を説明した
が、負極に黒鉛化度の高い炭素材料を用いないのであれ
ば、エチレンカーボネートの代わりにプロピレンカーボ
ネートやエチレンカーボネートとプロピレンカーボネー
トとの混合溶媒を用いることができる。 【0022】上記実施例では、環状カーボネートとエチ
ルメチルスルホンとを体積比で1:1で混合した場合を
説明したが特に限定されない。エチルメチルスルホン
環状カーボネートに対する添加量は、両者の合量に対し
て20〜80体積%が望ましい。なぜならば、エチルメ
チルスルホンの含有率が20体積%未満の場合は、凝固
点の高いエチレンカーボネートを用いると電解液が低温
で凝固しやすくなり、一方誘電率の低いエチルメチルス
ルホンの含有率が80%を越えると電解液のイオン導電
率が低下するためである。 【0023】また、本発明で使用されるエチルメチルス
ルホンは低温性能の点で望ましい。 【0024】さらに上記実施例において、正極活物質と
してリチウムコバルト複合酸化物を用いる場合を説明し
たが、特にこれに限定されない。二硫化チタン、リチウ
ムニッケル複合酸化物(LiNiO)をはじめとし
て、二酸化マンガン、スピネル型リチウムマンガン酸化
物(LiMn)、五酸化バナジウムおよび三酸化
モリブデンなどの種々のものを用いることができる。 【0025】本実施例では、有機溶媒に環状カーボネー
トと非環状スルホンとの混合系を用いる場合を説明した
が、従来リチウム電池で用いられている有機溶媒を第3
成分として添加して用いることができる。例えば、γ−
ブチロラクトン、メチルフォルメートなどのエステル溶
媒、スルホランなどの環状硫黄化合物、1,2−ジメト
キシエタン、テトラハイドロフランなどのエーテル溶
媒、ジメチルカーボネート、エチルメチルカーボネー
ト、ジエチルカーボネートなどの鎖状カーボネートなど
があげられる。電解質としては、過塩素酸リチウム、六
フッ化砒酸リチウム、四フッ化ホウ酸リチウム、トリフ
ルオロメタンスルホン酸リチウム、フルオロ硫酸リチウ
ムなどの1種以上を用いることができる。 【0026】なお、前記の実施例に係る電池はいずれも
コイン形電池であるが、円筒形、角形またはペーパー形
電池に本発明を適用しても同様の効果が得られる。 【0027】 【発明の効果】上述したごとく、リチウムの吸蔵・放出
が可能な炭素材料からなる負極と、正極と、溶媒と溶質
からなる有機電解液とを備える電池において、前記溶媒
に環状カーボネートとエチルメチルスルホンとの混合物
を用いることで、この種電池の問題である充放電サイク
ルの進行にともなう放電容量の低下を有効に抑制できる
ものであり、その工業的価値は極めて大である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-energy-density and high-reliability lithium battery used as a power supply for driving electronic equipment or a power supply for holding a memory. 2. Description of the Related Art Along with rapid downsizing and weight reduction of electronic devices, secondary batteries capable of being repeatedly charged and discharged with a small size, light weight, high energy density, and a rechargeable battery. The demand for the development of is increasing. As a secondary battery satisfying these requirements, an organic electrolyte secondary battery is most promising. As the positive electrode active material of the organic electrolyte secondary battery, various materials such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been studied. Have been. Among them, lithium cobalt composite oxide (L
Since iCoO 2 ) and spinel-type lithium manganese oxide (LiMn 2 O 4 ) charge and discharge at a very noble potential of 4 V (Li / Li + ) or more, a battery having a high discharge voltage by using as a positive electrode Can be realized. As the negative electrode active material of the organic electrolyte secondary battery, various materials such as lithium metal, a Li-Al alloy capable of occluding and releasing lithium, and a carbon material have been studied. The material has an advantage that a battery having high safety and a long cycle life can be obtained. However, in this type of battery, while lithium having a low potential is used as a negative electrode active material, while a metal oxide having a noble potential is used for a positive electrode, the electrolyte is easily decomposed in each of the negative electrode and the positive electrode. It is in. Therefore, in selecting an electrolytic solution, it is indispensable to adopt a configuration in consideration of these points, and use of various electrolytic solutions has been proposed. Examples thereof include an electrolytic solution containing dimethyl sulfone (see JP-A-3-152879) and a mixed electrolytic solution of a cyclic carbonate and a chain carbonate (see JP-A-4-171774). On the other hand, as the solute, lithium perchlorate,
Lithium trifluoromethanesulfonate, lithium hexafluorophosphate and the like are generally used. Among them, lithium hexafluorophosphate has been widely used in recent years because of its high safety and high ionic conductivity of a dissolved electrolyte. [0007] However, although dimethyl sulfone itself has excellent thermal stability and oxidation resistance performance, good charge / discharge cycle characteristics can be obtained in a battery using a carbon material capable of occluding and releasing lithium as a negative electrode. Did not. On the other hand, the mixed electrolyte of the cyclic carbonate and the chain carbonate exhibited good cycle characteristics at room temperature, but deteriorated significantly at high temperatures. [0008] The present invention relates to a battery comprising a negative electrode made of a carbon material capable of inserting and extracting lithium, a positive electrode, and an organic electrolytic solution comprising a solvent and a solute.
The solvent is a cyclic carbonate and ethyl methyl sulfone
The above-mentioned problem is solved by containing . When a carbon material having a high degree of graphitization is used for the negative electrode, it is preferable to use ethylene carbonate as the cyclic carbonate . Also, ethyl methyl sulfone
To obtain a battery with excellent high-rate discharge performance
be able to. As described above, in this type of battery, a decomposition reaction of the electrolytic solution easily occurs, and this is a main cause of deterioration of battery performance. However, when the electrolyte contains a cyclic carbonate,
Using a mixture with ethyl methyl sulfone , it was found that a battery having excellent storage characteristics and good cycle characteristics was obtained, and the present invention was completed. The reason for this is not clear, but is speculated as follows. Since a non-cyclic sulfone molecule represented by dimethyl sulfone is smaller than a cyclic carbonate molecule such as ethylene carbonate or propylene carbonate, it is easily taken in between the layers of the negative electrode carbon together with lithium ions during charging. Thereby, the interlayer distance of the negative electrode carbon is increased. Therefore, it is considered that as the occlusion and release of lithium ions due to charge and discharge were repeated, the layer structure of the negative electrode carbon was destroyed and the battery capacity was reduced. However, as in the present invention, the cyclic carbonate and
When mixed with ethyl methyl sulfone , the cyclic carbonate forms a lithium ion conductive protective film on the surface of the negative electrode carbon, and suppresses the incorporation of ethyl methyl sulfone molecules between the negative electrode carbon layers, thus destroying the layer structure of the negative electrode carbon. It will be suppressed. Furthermore, since the electrolyte of the present invention does not contain a chain carbonate which is inferior in stability at high temperatures, it seems that the electrolyte exhibits excellent cycle performance even at high temperatures. Hereinafter, the present invention will be described with reference to preferred embodiments, but the present invention is not limited to the following embodiments without departing from the spirit of the present invention. The positive electrode is made of a lithium cobalt composite oxide (L
ICOO 2 ), a carbon powder as a conductive agent, and a fluororesin powder as a binder are sufficiently mixed at a weight ratio of 90: 3: 7, and then molded under pressure. The negative electrode is
91: 9 graphite powder and fluororesin powder as a binder
And then press-molded. FIG. 1 shows a battery according to one embodiment of the present invention. In this figure, reference numeral 1 denotes a case also serving as a positive electrode terminal punched out of an electrolytic solution-resistant stainless steel plate, and 2 denotes a sealing plate serving also as a negative electrode terminal punched out of the same stainless steel plate as in 1, and a negative electrode 3 is provided on the inner wall thereof. Is abutted. 5
Is a separator made of polypropylene impregnated with an organic electrolyte, and 6 is a positive electrode. The battery is hermetically sealed by caulking an opening end of the case 1 also serving as a positive electrode terminal inward and tightening an outer periphery of a sealing plate 2 also serving as a negative electrode terminal via a gasket 4. The organic electrolyte includes ethylene carbonate and
A solution prepared by dissolving lithium hexafluorophosphate at a concentration of 1 mol / liter in an organic solvent mixed with ethyl methyl sulfone at a volume ratio of 1: 1 was used. About 150 μl of the above electrolyte was injected into the battery. The dimensions of this battery are 20 mm in diameter and 2 mm in height. The battery of the present invention was designated as (A). For comparison, a comparative battery having the same structure as the battery of the present invention except that a mixture of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) was used ( A) Next, these batteries were charged at a constant current of 2.0 mA in a thermostat at a temperature of 60 ° C. until the terminal voltage reached 4.2 V, followed by a constant current of 2.0 mA. so,
A charge / discharge cycle life test for discharging until the terminal voltage reached 2.7 V was performed 300 times. FIG. 2 shows a change in the discharge capacity as the charge / discharge cycle of each battery progresses. [0020] As apparent from the results of FIG. 2, ethylene
The battery of the present invention (A) using the mixed solvent of carbonate and ethyl methyl sulfone has a smaller decrease in the discharge capacity with the progress of the charge / discharge cycle than the comparative battery (A). In the above embodiment, the case where ethylene carbonate is used as the cyclic carbonate is described. However, if a carbon material having a high degree of graphitization is not used for the negative electrode, propylene carbonate or ethylene carbonate is used instead of ethylene carbonate. A mixed solvent with propylene carbonate can be used. In the above embodiment, cyclic carbonate and ethyl
Although the case where 1: 1 by volume ratio with dimethyl sulfone was mixed was described, it is not particularly limited. The amount of ethyl methyl sulfone added to the cyclic carbonate is preferably 20 to 80% by volume based on the total amount of both. Because, ethyl
When the content of tyl sulfone is less than 20% by volume, the use of ethylene carbonate having a high freezing point makes it easier for the electrolyte to coagulate at a low temperature, while ethyl methyl sulfonate having a low dielectric constant is used.
This is because if the content of rufone exceeds 80%, the ionic conductivity of the electrolytic solution decreases. The ethyl methyls used in the present invention
Lefon is desirable in terms of low temperature performance. Further, in the above embodiment, the case where the lithium-cobalt composite oxide is used as the positive electrode active material has been described, but the present invention is not particularly limited to this. Various materials such as titanium disulfide, lithium nickel composite oxide (LiNiO 2 ), manganese dioxide, spinel lithium manganese oxide (LiMn 2 O 4 ), vanadium pentoxide, and molybdenum trioxide can be used. . In this embodiment, the case where a mixed system of cyclic carbonate and acyclic sulfone is used as the organic solvent has been described.
It can be used by being added as a component. For example, γ-
Ester solvents such as butyrolactone and methyl formate; cyclic sulfur compounds such as sulfolane; ether solvents such as 1,2-dimethoxyethane and tetrahydrofuran; and linear carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. . As the electrolyte, one or more of lithium perchlorate, lithium hexafluoroarsenate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, lithium fluorosulfate and the like can be used. Although the batteries according to the above embodiments are all coin-shaped batteries, the same effects can be obtained by applying the present invention to cylindrical, square or paper batteries. As described above, in a battery including a negative electrode made of a carbon material capable of inserting and extracting lithium, a positive electrode, and an organic electrolytic solution comprising a solvent and a solute, a cyclic carbonate is used as the solvent. By using a mixture with ethyl methyl sulfone , it is possible to effectively suppress a decrease in discharge capacity due to progress of a charge / discharge cycle, which is a problem of this type of battery, and its industrial value is extremely large.

【図面の簡単な説明】 【図1】有機電解液二次電池の一例であるボタン電池の
内部構造を示した図である。 【図2】試験電池の充放電サイクルの進行にともなう放
電容量の変化を示したである。 【符号の説明】 1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an internal structure of a button battery as an example of an organic electrolyte secondary battery. FIG. 2 is a diagram showing a change in discharge capacity as a charge / discharge cycle of a test battery progresses. [Description of Signs] 1 Battery case 2 Sealing plate 3 Negative electrode 4 Gasket 5 Separator 6 Positive electrode

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/40

Claims (1)

(57)【特許請求の範囲】 【請求項1】 リチウムの吸蔵・放出が可能な炭素材料
からなる負極と、正極と、溶媒と溶質からなる有機電解
液とを備える電池であって、前記溶媒が環状カーボネー
トとエチルメチルスルホンとを含有していることを特徴
とする有機電解液二次電池。
(57) [Claim 1] A battery comprising a negative electrode made of a carbon material capable of inserting and extracting lithium, a positive electrode, and an organic electrolytic solution comprising a solvent and a solute, wherein the battery comprises: Contains a cyclic carbonate and ethyl methyl sulfone .
JP06870595A 1995-03-02 1995-03-02 Organic electrolyte secondary battery Expired - Lifetime JP3451781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06870595A JP3451781B2 (en) 1995-03-02 1995-03-02 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06870595A JP3451781B2 (en) 1995-03-02 1995-03-02 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08241731A JPH08241731A (en) 1996-09-17
JP3451781B2 true JP3451781B2 (en) 2003-09-29

Family

ID=13381464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06870595A Expired - Lifetime JP3451781B2 (en) 1995-03-02 1995-03-02 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3451781B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10243234B2 (en) 2014-10-24 2019-03-26 Nec Corporation Secondary battery
US10587008B2 (en) 2013-11-28 2020-03-10 Nec Corporation Electrolyte solution for secondary battery and secondary battery using same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428615B1 (en) * 2000-01-21 2004-04-30 삼성에스디아이 주식회사 A electrolyte for a lithium secondary battery
JP3737729B2 (en) 2001-09-26 2006-01-25 株式会社東芝 Non-aqueous electrolyte battery and non-aqueous electrolyte
KR101073221B1 (en) 2007-06-12 2011-10-12 주식회사 엘지화학 Non-aqueous electrolyte and secondary battery using the same
KR101073233B1 (en) * 2007-06-15 2011-10-12 주식회사 엘지화학 Non-aqueous electrolyte and electrochemical device comprising the same
EP2238643B1 (en) 2008-01-02 2014-03-26 LG Chem, Ltd. Pouch-type lithium secondary battery
WO2011099585A1 (en) * 2010-02-12 2011-08-18 三菱化学株式会社 Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
WO2020203872A1 (en) * 2019-03-29 2020-10-08 日本ゼオン株式会社 Separator material and non-aqueous electrochemical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10587008B2 (en) 2013-11-28 2020-03-10 Nec Corporation Electrolyte solution for secondary battery and secondary battery using same
US10243234B2 (en) 2014-10-24 2019-03-26 Nec Corporation Secondary battery

Also Published As

Publication number Publication date
JPH08241731A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
JP4310646B2 (en) Negative electrode and battery using the same
JPH09147913A (en) Nonaqueous electrolyte battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JPH11283667A (en) Lithium ion battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP3419119B2 (en) Non-aqueous electrolyte secondary battery
JP2007035391A (en) Positive electrode material, positive electrode and battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JP5011742B2 (en) Nonaqueous electrolyte secondary battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP3094397B2 (en) Organic electrolyte secondary battery
JPH1027627A (en) Lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2002203551A (en) Non-aqueous electrolyte battery
JPH1154122A (en) Lithium ion secondary battery
JP2730641B2 (en) Lithium secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP3418715B2 (en) Organic electrolyte secondary battery
JP4134556B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

EXPY Cancellation because of completion of term