JP3353455B2 - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JP3353455B2
JP3353455B2 JP11420994A JP11420994A JP3353455B2 JP 3353455 B2 JP3353455 B2 JP 3353455B2 JP 11420994 A JP11420994 A JP 11420994A JP 11420994 A JP11420994 A JP 11420994A JP 3353455 B2 JP3353455 B2 JP 3353455B2
Authority
JP
Japan
Prior art keywords
battery
lithium
organic electrolyte
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11420994A
Other languages
Japanese (ja)
Other versions
JPH07296852A (en
Inventor
吉田  浩明
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP11420994A priority Critical patent/JP3353455B2/en
Publication of JPH07296852A publication Critical patent/JPH07296852A/en
Application granted granted Critical
Publication of JP3353455B2 publication Critical patent/JP3353455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくはメモリ保持電源としての高エネルギー密度でか
つ過充電に対しても高い安全性を有する有機電解液二次
電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery having a high energy density and a high safety against overcharging as a power supply for driving electronic equipment or a memory holding power supply.

【0002】[0002]

【従来の技術とその課題】電子機器の急激なる小形軽量
化に伴い、その電源である電池に対して小形で軽量かつ
高エネルギー密度で、更に繰り返し充放電が可能な二次
電池の開発への要求が高まっている。これら要求を満た
す二次電池として、有機電解液二次電池が最も有望であ
る。
2. Description of the Related Art With the rapid reduction in size and weight of electronic equipment, the development of secondary batteries that are small, lightweight, have a high energy density, and can be repeatedly charged and discharged with respect to the battery that is the power source of the electronic equipment has been developed. Demands are growing. As a secondary battery satisfying these requirements, an organic electrolyte secondary battery is most promising.

【0003】有機電解液二次電池の正極活物質には、二
硫化チタンをはじめとしてリチウムコバルト複合酸化
物、リチウムニッケル複合酸化物、スピネル型リチウム
マンガン酸化物、五酸化バナジウムおよび三酸化モリブ
デンなどの種々のものが検討されている。なかでも、リ
チウムコバルト複合酸化物( LiCoO2 )、リチウムニッ
ケル複合酸化物、およびスピネル型リチウムマンガン酸
化物( LiMn2 O4 ) は、4V(vs. Li/Li+ ) 以上の貴な
電位で充放電を行うため、正極として用いることで高い
放電電圧を有する電池が実現できる。
The positive electrode active material of an organic electrolyte secondary battery includes titanium disulfide, lithium cobalt composite oxide, lithium nickel composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide. Various things are being considered. In particular, lithium cobalt composite oxide (LiCoO 2 ), lithium nickel composite oxide, and spinel-type lithium manganese oxide (LiMn 2 O 4 ) are charged at a noble potential of 4 V (vs. Li / Li + ) or more. Since discharge is performed, a battery having a high discharge voltage can be realized by using the positive electrode.

【0004】有機電解液二次電池の負極活物質は、金属
リチウムをはじめとしてリチウムの吸蔵・放出が可能な
Li−Al合金や炭素材料など種々のものが検討されて
いるが、なかでも黒鉛に代表される炭素材料は、安全性
が高くかつサイクル寿命の長い電池が得られるという利
点がある。
As the negative electrode active material of the organic electrolyte secondary battery, various materials such as lithium metal and a lithium-alkaline alloy or a carbon material capable of occluding and releasing lithium have been studied. The representative carbon material has an advantage that a battery having high safety and a long cycle life can be obtained.

【0005】電解液には、エチレンカーボネート、プロ
ピレンカーボネート、γ−ブチロラクトンなどの環状エ
ステル溶媒と、ジメチルカーボネート、エチルメチルカ
ーボネート、ジエチルカーボネートなどの鎖状エステル
溶媒との混合溶媒に、過塩素酸リチウム、トリフルオロ
メタンスルホン酸リチウム、四フッ化ほう酸リチウム、
六フッ化燐酸リチウムなどのリチウム塩を溶解させたも
のが一般に用いられている。なかでもエチレンカーボネ
ートと鎖状エステル溶媒との混合溶媒に六フッ化燐酸リ
チウムを溶解させた電解液は、安全性およびイオン導電
率が高くかつ黒鉛負極に対して優れた安定性を有すると
いう理由から近年盛んに用いられるようになってきてい
る。
[0005] The electrolyte solution is a mixture of a cyclic ester solvent such as ethylene carbonate, propylene carbonate and γ-butyrolactone and a chain ester solvent such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate. Lithium trifluoromethanesulfonate, lithium tetrafluoroborate,
A solution in which a lithium salt such as lithium hexafluorophosphate is dissolved is generally used. Among them, an electrolyte solution obtained by dissolving lithium hexafluorophosphate in a mixed solvent of ethylene carbonate and a chain ester solvent has high safety and high ionic conductivity and has excellent stability to a graphite negative electrode. In recent years, it has been actively used.

【0006】正極にリチウムコバルト複合酸化物、リチ
ウムニッケル複合酸化物などを用い、負極に炭素材料を
用いた電池は、正極の充電容量が負極のリチウム吸蔵量
を越えないように充電を電池電圧で制限しているため、
負極上に発火の原因となる金属リチウムの電析は起こら
ない。しかし、充電器の故障や電池の誤使用などにより
通常4.1〜4.2Vである設定電圧を大きく越えて電
池が過充電される場合がある。その際、正極の充電容量
が負極の吸蔵可能な容量を越えるため金属リチウムが負
極上に電析し、電池が発火に至る危険性が大きくなる。
電池が発火に至らなくても、電池電圧5V付近において
電解液の分解が進行し電池内圧が著しく上昇し、電池が
破裂する危険性が大きくなる。電池が安全弁を有する場
合は、電池の破裂は防止できるが電解液の液漏れ等によ
る機器の損失を免れることはできない。
In a battery using a lithium-cobalt composite oxide, a lithium-nickel composite oxide, or the like for the positive electrode and a carbon material for the negative electrode, charging is performed at a battery voltage so that the charging capacity of the positive electrode does not exceed the lithium storage capacity of the negative electrode. Because of the restrictions,
No electrodeposition of metallic lithium, which causes ignition, occurs on the negative electrode. However, there is a case where the battery is overcharged by greatly exceeding a set voltage which is usually 4.1 to 4.2 V due to a failure of the charger or an erroneous use of the battery. At that time, since the charge capacity of the positive electrode exceeds the capacity of the negative electrode that can be stored, metal lithium is deposited on the negative electrode, and the risk of ignition of the battery increases.
Even if the battery does not ignite, the decomposition of the electrolyte proceeds near the battery voltage of 5 V, the internal pressure of the battery rises significantly, and the risk of the battery exploding increases. When the battery has a safety valve, it is possible to prevent the battery from being ruptured, but it is not possible to avoid loss of equipment due to leakage of electrolyte.

【0007】その対策として、特開平3−49155号
公報記載のように活物質中に電解液の分解触媒を添加
し、電池電圧が4.5Vを越えるような過充電時に電解
液を分解させ、その発生ガスにより備え付けた安全弁が
充電電流を遮断するというものがある。しかし、その安
全弁の機構は複雑で製造コストが高くなることに加え、
添加した触媒による電解液の分解反応が通常の充電電圧
でも進行するため、電池の長期信頼性に問題があること
がわかった。
As a countermeasure, as described in JP-A-3-49155, a catalyst for decomposing an electrolytic solution is added to the active material to decompose the electrolytic solution at the time of overcharging such that the battery voltage exceeds 4.5V. In some cases, a safety valve provided by the generated gas shuts off a charging current. However, in addition to the complicated and expensive manufacturing mechanism of the safety valve,
Since the decomposition reaction of the electrolytic solution by the added catalyst proceeds even at a normal charging voltage, it was found that there was a problem in long-term reliability of the battery.

【0008】そこで、長期信頼性に優れかつ簡単な過充
電保護を有する有機電解液二次電池が望まれていた。
[0008] Therefore, an organic electrolyte secondary battery having excellent long-term reliability and having simple overcharge protection has been desired.

【0009】[0009]

【課題を解決するための手段】 本発明は、負極と、4
V(vs.Li/Li)以上の電位で作動する正極
と、有機電解液とを備える電池において、該正極にオー
ステナイト系ステンレス鋼粉末を添加することで上記問
題点を解決しようとするものである。
Means for Solving the Problems The present invention provides a negative electrode,
In a battery provided with a positive electrode operating at a potential of V (vs. Li / Li + ) or higher and an organic electrolyte, the above problem is solved by adding austenitic stainless steel powder to the positive electrode. is there.

【0010】[0010]

【作用】電解液中における各種ステンレス鋼の溶解電位
を測定した。溶質にLiPF6 、LiAsF6 、LiB
4 などを用いた場合、溶質および溶媒の種類に関わり
なくSUS430、SUS434、SUS447J1な
どのフェライト系ステンレス鋼は、約4〜4.1V(v
s.Li/Li+ )で溶解が始まり、SUS304、SUS3
10S、SUS316、SUS317などのオーステナ
イト系ステンレス鋼は、約4.4〜4.6(vs.Li/L
i+ )で溶解がはじまった。
The dissolution potential of various stainless steels in the electrolyte was measured. LiPF 6 , LiAsF 6 , LiB
When using, for example, F 4, SUS430 irrespective of the type of solute and solvent, SUS434, ferritic stainless steel such as SUS447J1 is about 4~4.1V (v
s.Li/Li + ) starts dissolution, SUS304, SUS3
Austenitic stainless steels such as 10S, SUS316, and SUS317 are about 4.4 to 4.6 (vs. Li / L).
Dissolution started with i + ).

【0011】4V(vs.Li/Li)以上の電位で
作動する正極にオーステナイト系ステンレス鋼粉末を添
加した電池では、通常の充電電圧である4.1〜4.2
Vを越えて過充電された場合、電池電圧が4.4〜4.
6Vとなった時点で充電電流はステンレス鋼の溶解反応
に消費される。過充電が進行すると、溶解した金属イオ
ンの負極上への電析が進行し、セパレータを介して負極
と正極とが電気的に接続される。充電電流はこの電気パ
スを通って流れるため、電池の充電反応は進行しなくな
る。すなわち、本発明により過充電による電池の破裂、
発火、液漏れなどの危険を回避することができる。しか
し、A4V(vs.Li/Li)以上の電位で作動す
る正極にフェライト系ステンレス鋼粉末を添加した電池
は、通常の充電電圧である4.1〜4.2Vにおいて充
電電流はステンレス鋼の溶解反応に消費される。そし
て、溶解した金属イオンの負極上への電析が進行し、セ
パレータを介して負極と正極とが電気的に接続され、電
池としての機能が失われるため実用にならない。
In a battery in which an austenitic stainless steel powder is added to a positive electrode operating at a potential of 4 V (vs. Li / Li + ) or higher, a normal charging voltage of 4.1 to 4.2 is used.
If the battery voltage is overcharged by exceeding V, the battery voltage becomes 4.4 to 4.
When the voltage reaches 6 V, the charging current is consumed for the dissolution reaction of the stainless steel. As overcharging proceeds, electrodeposition of the dissolved metal ions on the negative electrode proceeds, and the negative electrode and the positive electrode are electrically connected via the separator. Since the charging current flows through this electric path, the charging reaction of the battery does not proceed. That is, according to the present invention, battery rupture due to overcharging,
Dangers such as ignition and liquid leakage can be avoided. However, a battery in which a ferrite-based stainless steel powder is added to a positive electrode that operates at a potential of A4V (vs. Li / Li + ) or higher has a charge current of stainless steel at a normal charge voltage of 4.1 to 4.2 V. Consumed in the dissolution reaction. Then, electrodeposition of the dissolved metal ions on the negative electrode proceeds, the negative electrode and the positive electrode are electrically connected via the separator, and the function as a battery is lost.

【0012】[0012]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
The present invention will be described below with reference to preferred embodiments.

【0013】正極は次の方法で試作した。リチウムコバ
ルト複合酸化物(LiCoO2 )と、導電剤としてのカーボ
ン粉末と結着剤としてのポリフッ化ビニリデンとを9
0:2:8の重量比で混合した。さらにLiCoO2
対して1重量%に相当するSUS316粉末(粒径15
μm)を添加した。溶剤であるN−メチル−2−ピロリ
ドンでペーストにしたのちチタン箔に塗布、ロールプレ
ス後、φ15mmの円板に打ち抜いた。電池に組み立て
る前に、温度250℃で真空乾燥処理をおこなった。
[0013] The positive electrode was experimentally produced by the following method. Lithium-cobalt composite oxide (LiCoO 2 ), carbon powder as conductive agent and polyvinylidene fluoride as binder
They were mixed at a weight ratio of 0: 2: 8. Further, SUS316 powder (particle size: 15%) corresponding to 1% by weight based on LiCoO 2
μm) was added. After forming a paste with N-methyl-2-pyrrolidone, which is a solvent, the paste was applied to a titanium foil, roll-pressed, and then punched into a disc having a diameter of 15 mm. Before assembling into a battery, a vacuum drying process was performed at a temperature of 250 ° C.

【0014】負極は次の方法で試作した。黒鉛と結着剤
としてのポリフッ化ビニリデンとを84:16の重量比
で混合した。N−メチル−2−ピロリドンでペーストに
したのち銅箔に塗布、ロールプレス後、φ16mmの円
板に打ち抜いた。電池に組み立てる前に、温度250℃
で真空乾燥処理をおこなった。
[0014] The negative electrode was experimentally produced by the following method. Graphite and polyvinylidene fluoride as a binder were mixed at a weight ratio of 84:16. After forming a paste with N-methyl-2-pyrrolidone, it was applied to a copper foil, roll-pressed, and punched out into a φ16 mm disc. Before assembling into batteries, temperature 250 ℃
Was subjected to vacuum drying.

【0015】図1は、電池の縦断面図である。この図に
おいて1は、チタン板を打ち抜き加工した正極端子を兼
ねるケース、2はステンレス(SUS316)鋼板を打ち抜き加
工した負極端子を兼ねる封口板であり、その内壁には負
極3が当接されている。5は有機電解液を含浸したポリ
プロピレンからなるセパレーター、6は正極であり正極
端子を兼ねるケース1の開口端部を内方へかしめ、ガス
ケット4を介して負極端子を兼ねる封口板2の外周を締
め付けることにより密閉封口している。有機電解液には
エチレンカーボネート(EC)とジメチルカーボネート
(DMC )とを体積比1:1で混合した溶媒に、6フッ化
燐酸リチウムを1モル/リットルの濃度で溶解させたも
のを用いた。
FIG. 1 is a longitudinal sectional view of a battery. In this figure, reference numeral 1 denotes a case also serving as a positive electrode terminal formed by punching a titanium plate, and 2 denotes a sealing plate serving also as a negative electrode terminal formed by punching a stainless steel (SUS316) steel plate. . Reference numeral 5 denotes a separator made of polypropylene impregnated with an organic electrolyte, 6 denotes a positive electrode, and crimps an opening end of the case 1 also serving as a positive electrode terminal, and tightens an outer periphery of a sealing plate 2 also serving as a negative electrode terminal via a gasket 4. It is hermetically sealed. As the organic electrolyte, a solution prepared by dissolving lithium hexafluorophosphate at a concentration of 1 mol / liter in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1 was used.

【0016】本発明の有機電解液二次電池を(A)と呼
ぶ。本実施例において、SUS316ステンレス鋼粉末
の添加量をそれぞれ0.3および0.1重量%としたこ
との他は、同様の構成とした本発明の電池をそれぞれ
(B)および(C)と呼ぶ。また、本実施例においてS
US316ステンレス鋼粉末の粒径をそれぞれ10およ
び5μmとしたことの他は、同様の構成とした本発明の
電池をそれぞれ(D)および(E)と呼ぶ。さらに、本
実施例においてSUS316ステンレス鋼粉末の代わり
にSUS317ステンレス鋼粉末をもちいたことの他
は、同様の構成とした本発明の電池を(F)呼び、本実
施例においてSUS316ステンレス鋼粉末の代わりに
SUS304ステンレス鋼粉末を、LiPF6 の代わり
にLiClO4 を用いたことの他は、同様の構成とした
本発明の電池を(G)と呼ぶ。
The organic electrolyte secondary battery of the present invention is referred to as (A). In this example, the batteries of the present invention having the same configuration except that the amounts of SUS316 stainless steel powder added were 0.3 and 0.1% by weight, respectively, are referred to as (B) and (C), respectively. . In this embodiment, S
The batteries of the present invention having the same configuration except that the particle size of the US316 stainless steel powder was 10 and 5 μm, respectively, are referred to as (D) and (E), respectively. Further, the battery of the present invention having the same configuration except that SUS317 stainless steel powder was used in place of SUS316 stainless steel powder in this embodiment is referred to as (F). The battery of the present invention having the same configuration except that SUS304 stainless steel powder was used and LiClO 4 was used instead of LiPF 6 was referred to as (G).

【0017】比較のためにステンレス鋼粉末を添加しな
いことの他は、本発明の電池と同様の構成とした比較電
池を(ア)と呼び、本実施例においてSUS316ステ
ンレス鋼粉末の代わりにSUS430ステンレス鋼粉末
を添加したことの他は、同様の構成とした比較電池を
(イ)と呼ぶ 次に、これらの電池を2.0mAの定電流で、端子電圧が
4.2Vに至るまで充電して、つづいて、同じく2.0
mAの定電流で、端子電圧が3Vに達するまで放電する充
放電サイクル寿命試験を室温下で10サイクルおこなっ
た。
For comparison, a comparative battery having the same structure as the battery of the present invention except that no stainless steel powder was added was referred to as (a). In this embodiment, SUS430 stainless steel powder was used instead of SUS316 stainless steel powder. A comparative battery having the same configuration except that steel powder was added is called (a). Next, these batteries were charged at a constant current of 2.0 mA until the terminal voltage reached 4.2 V. , Followed by 2.0
10 charge / discharge cycle life tests were performed at room temperature at a constant current of mA until the terminal voltage reached 3 V.

【0018】電池の10サイクル目の放電容量を表1に
示す。結果は電池3Nの平均値とした。
Table 1 shows the discharge capacity of the battery at the tenth cycle. The result was the average value of the battery 3N.

【0019】[0019]

【表1】 表1の結果から明かなように、比較電池(ア)と本発明
(A)〜(G)とでは大きな違いは見られないが、比較
電池(イ)では、著しく容量が小さかった。解体の結
果、比較電池(イ)では添加したステンレス鋼の溶解に
起因する内部短絡が生じていることがわかった。
[Table 1] As is clear from the results in Table 1, there is no significant difference between the comparative battery (A) and the present inventions (A) to (G), but the comparative battery (A) has a remarkably small capacity. As a result of disassembly, it was found that the internal short circuit caused by the dissolution of the added stainless steel occurred in the comparative battery (a).

【0020】つづいて、比較電池(ア)および本発明
(A)〜(G)について2.0mAの定電流で、連続過充
電をおこなった。比較電池(ア)は、放電容量に対して
約3倍の電気容量の通電をおこなったときに電池が破裂
したが、本発明電池(A)〜(G)は破裂しなかった。
放電容量に対して約20倍の電気容量の通電をおこなっ
た時点で充電を停止し、電池の開路電圧を測定した結果
を表2にまとめた。
Subsequently, the comparative battery (A) and the present inventions (A) to (G) were continuously overcharged at a constant current of 2.0 mA. In the comparative battery (A), the battery ruptured when the electric capacity of about three times the discharge capacity was applied, but the batteries (A) to (G) of the present invention did not rupture.
The charging was stopped at the time when the electric capacity of about 20 times the discharge capacity was applied, and the result of measuring the open circuit voltage of the battery was summarized in Table 2.

【0021】[0021]

【表2】 電池(A)、(D)、(E)、(F)、(G)は短絡に
より電圧0Vを示し、電池(B)および(C)ではソフ
ト短絡による電圧の低下が見られた。
[Table 2] The batteries (A), (D), (E), (F), and (G) exhibited a voltage of 0 V due to the short circuit, and the batteries (B) and (C) exhibited a decrease in voltage due to the soft short circuit.

【0022】上記実施例では正極活物質としてLiCo
を用いる場合を説明したが、4V(vs.Li/L
)以上の電位で作動するリチウムニッケル複合酸化
物やスピネル型リチウムマンガン酸化物(LiMn
)などにも用いることができる。
In the above embodiment, LiCo was used as the positive electrode active material.
Although the case where O 2 is used has been described, 4 V (vs. Li / L
i + ) or higher, and a lithium nickel composite oxide or spinel lithium manganese oxide (LiMn 2 O)
4 ) etc.

【0023】また、負極として黒鉛を用いたが、本発明
の電解液を使用するにあたり、負極活物質は基本的に限
定されず従来のリチウム電池に用いられている負極活物
質、たとえば金属リチウム、リチウム合金などを用いる
ことができる。
Although graphite was used as the negative electrode, in using the electrolyte of the present invention, the negative electrode active material is not basically limited, and the negative electrode active material used in conventional lithium batteries, for example, metallic lithium, A lithium alloy or the like can be used.

【0024】さらに、電解液も基本的に限定されず、従
来の有機電解液二次電池に用いられているものを用いる
ことが出来る。たとえば、有機溶媒としては非プロトン
溶媒であるエチレンカーボネートなどの環状エステル類
およびテトラハイドロフラン,ジオキソランなどのエー
テル類があげられ、これら単独もしくは2種以上を混合
した溶媒を用いることができる。
Further, the electrolyte is not fundamentally limited, and those used in conventional organic electrolyte secondary batteries can be used. For example, examples of the organic solvent include cyclic esters such as ethylene carbonate, which are aprotic solvents, and ethers such as tetrahydrofuran and dioxolan, and a single or a mixture of two or more thereof can be used.

【0025】また、溶質も基本的に限定されるものでは
ない。たとえば、過塩素酸リチウム、六フッ化砒酸リチ
ウム、四フッ化ホウ酸リチウム、トリフルオロメタンス
ルホン酸リチウムなどの1種以上を用いることができ
る。
The solute is not fundamentally limited. For example, one or more of lithium perchlorate, lithium hexafluoroarsenate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate and the like can be used.

【0026】なお、前記の実施例に係る電池はいずれも
コイン形電池であるが、円筒形、角形またはペーパー形
電池に本発明を適用しても同様の効果が得られる。
Although the batteries according to the above embodiments are all coin-shaped batteries, the same effects can be obtained by applying the present invention to cylindrical, square or paper batteries.

【0027】上述したごとく、負極と、4V(vs.L
i/Li)以上の電位で作動する正極と、有機電解液
とを備える電池において、該正極にオーステナイト系ス
テンレス鋼粉末を添加することで、過充電状態における
電池の安全性が確保できる。したがって、高エネルギー
密度でサイクル特性に優れ、かつ安全性の高い有機電解
液二次電池が安価に供給でき、その工業的価値は大であ
る。
As described above, the negative electrode and 4 V (vs. L
i / Li + ) In a battery including a positive electrode operating at a potential equal to or higher than an electric potential and an organic electrolyte, the safety of the battery in an overcharged state can be ensured by adding austenitic stainless steel powder to the positive electrode. Therefore, an organic electrolyte secondary battery having high energy density, excellent cycle characteristics, and high safety can be supplied at low cost, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】非水電解液二次電池の一例であるボタン電池の
内部構造を示した図。
FIG. 1 is a diagram showing an internal structure of a button battery which is an example of a non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極 DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Negative electrode 4 Gasket 5 Separator 6 Positive electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極と、4V(vs.Li/Li+)以上
の電位で作動する正極と、有機電解液とを備え、該正極
はオーステナイト系ステンレス鋼粉末が添加されたもの
であることを特徴とする有機電解液二次電池。
1. An anode comprising a negative electrode, a positive electrode operating at a potential of 4 V (vs. Li / Li +) or more, and an organic electrolyte, wherein the positive electrode is a powder to which austenitic stainless steel powder is added. Organic electrolyte secondary battery.
JP11420994A 1994-04-28 1994-04-28 Organic electrolyte secondary battery Expired - Lifetime JP3353455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11420994A JP3353455B2 (en) 1994-04-28 1994-04-28 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11420994A JP3353455B2 (en) 1994-04-28 1994-04-28 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH07296852A JPH07296852A (en) 1995-11-10
JP3353455B2 true JP3353455B2 (en) 2002-12-03

Family

ID=14631947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11420994A Expired - Lifetime JP3353455B2 (en) 1994-04-28 1994-04-28 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3353455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425385B2 (en) 2005-01-14 2008-09-16 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317407B2 (en) * 2006-10-17 2013-10-16 三星エスディアイ株式会社 Non-aqueous secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425385B2 (en) 2005-01-14 2008-09-16 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH07296852A (en) 1995-11-10

Similar Documents

Publication Publication Date Title
JP2000077061A (en) Lithium ion battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JPH1027626A (en) Lithium secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP2003338277A (en) Nonaqueous electrolyte secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JPH11283667A (en) Lithium ion battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JP2847885B2 (en) Lithium secondary battery
JPS62272473A (en) Nonaqueous solvent secondary battery
JP2001357874A (en) Nonaqueous electrolyte secondary battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JP3219928B2 (en) Non-aqueous electrolyte secondary battery
JP3353455B2 (en) Organic electrolyte secondary battery
JPH1140199A (en) Lithium secondary battery
JPH1027627A (en) Lithium secondary battery
JP2730641B2 (en) Lithium secondary battery
JP2000306610A (en) Nonaqueous electrolyte secondary battery
JPH11354125A (en) Lithium secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11

EXPY Cancellation because of completion of term