JP3396990B2 - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JP3396990B2
JP3396990B2 JP06870695A JP6870695A JP3396990B2 JP 3396990 B2 JP3396990 B2 JP 3396990B2 JP 06870695 A JP06870695 A JP 06870695A JP 6870695 A JP6870695 A JP 6870695A JP 3396990 B2 JP3396990 B2 JP 3396990B2
Authority
JP
Japan
Prior art keywords
sulfone
battery
lithium
electrolyte secondary
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06870695A
Other languages
Japanese (ja)
Other versions
JPH08241732A (en
Inventor
吉田  浩明
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP06870695A priority Critical patent/JP3396990B2/en
Publication of JPH08241732A publication Critical patent/JPH08241732A/en
Application granted granted Critical
Publication of JP3396990B2 publication Critical patent/JP3396990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくはメモリ保持電源としての高エネルギー密度でか
つ高い信頼性を有するリチウム電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery having high energy density and high reliability as a power source for driving electronic equipment or a memory holding power source.

【0002】[0002]

【従来の技術とその課題】電子機器の急激なる小形軽量
化に伴い、その電源である電池に対して小形で軽量かつ
高エネルギー密度で、更に繰り返し充放電が可能な二次
電池の開発への要求が高まっている。これら要求を満た
す二次電池として、有機電解液二次電池が最も有望であ
る。
2. Description of the Related Art With the rapid miniaturization and weight reduction of electronic equipment, the development of a secondary battery that is smaller, lighter in weight and high in energy density, and that can be repeatedly charged and discharged with respect to the power source battery The demand is increasing. Organic electrolyte secondary batteries are the most promising as secondary batteries that meet these requirements.

【0003】有機電解液二次電池の正極活物質には、二
硫化チタンをはじめとして、リチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。なかでも、リチウムコバルト複合酸化物(L
iCoO)およびスピネル型リチウムマンガン酸化物
(LiMnO)は、4V(Li/Li)以上のきわ
めて貴な電位で充放電を行うため、これらを正極として
用いることで高い放電電圧を有する電池が実現できる。
Various positive electrode active materials for organic electrolyte secondary batteries such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been studied. Has been done. Among them, lithium cobalt composite oxide (L
iCoO 2 ) and spinel-type lithium manganese oxide (LiMnO 4 ) charge and discharge at an extremely noble potential of 4 V (Li / Li + ) or more, and therefore, by using these as a positive electrode, a battery having a high discharge voltage can be obtained. realizable.

【0004】有機電解液二次電池の負極活物質は、金属
リチウムをはじめとしてリチウムの吸蔵・放出が可能な
Li−Al合金や炭素材料など種々のものが検討されて
いるが、なかでも炭素材料は、安全性が高くかつサイク
ル寿命の長い電池が得られるという利点がある。
Various negative electrode active materials for organic electrolyte secondary batteries, such as metallic lithium, Li-Al alloys and carbon materials capable of absorbing and desorbing lithium, have been investigated. Among them, carbon materials are especially preferred. Has the advantage that a battery with high safety and long cycle life can be obtained.

【0005】しかし、この種電池において、卑な電位を
有するリチウムを負極活物質とする一方、正極では貴な
電位を有する金属酸化物を用いるため、負極、正極それ
ぞれにおいて電解液が分解されやすい状況にある。従っ
て、電解液の選択において、これらの点を考慮した構成
とすることが必要不可欠であり、種々の電解液を用いる
ことが提案されている。
However, in this type of battery, while lithium having a base potential is used as a negative electrode active material, a metal oxide having a noble potential is used in the positive electrode, so that the electrolytic solution is easily decomposed in each of the negative electrode and the positive electrode. It is in. Therefore, in selecting an electrolytic solution, it is indispensable to have a configuration in consideration of these points, and it has been proposed to use various electrolytic solutions.

【0006】例えば、S−O結合を含有する溶媒を含有
する電解液(特開平4−152879号公報参照)や環
状カーボネートと鎖状カーボネートとの混合電解液(特
開平4−171674号公報参照)などがあげられる。
For example, an electrolytic solution containing a solvent containing an S--O bond (see JP-A-4-152879) or a mixed electrolytic solution of a cyclic carbonate and a chain carbonate (see JP-A-4-171674). And so on.

【0007】一方、溶質としては、過塩素酸リチウム、
トリフルオロメタンスルホン酸リチウム、六フッ化燐酸
リチウムなどが一般に用いられている。なかでも六フッ
化燐酸リチウムは、安全性が高くかつ溶解させた電解液
のイオン導電率が高いという理由から、近年盛んに用い
られるようになってきている。
On the other hand, as the solute, lithium perchlorate,
Lithium trifluoromethanesulfonate, lithium hexafluorophosphate and the like are generally used. Among them, lithium hexafluorophosphate has been actively used in recent years because of its high safety and high ionic conductivity of the dissolved electrolytic solution.

【0008】しかしながら、S−O結合を含有する溶媒
であるジメチルサルファイト、ジメチルスルホン、ジメ
チルスルホキシドを、リチウムの吸蔵・放出が可能な炭
素材料を負極に用いた電池に使用したところ、全ての場
合において良好な充放電サイクル特性が得られなかっ
た。スルホランおよび3−メチルスルホランは、良好な
充放電サイクル特性を示すが、放電容量が小さくなっ
た。一方、環状カーボネートと非環状カーボネートとの
混合電解液は、室温下では良好なサイクル特性をしめす
ものの、高温下では劣化が大きくなるという問題が生じ
た。
However, when dimethylsulfite, dimethylsulfone, and dimethylsulfoxide, which are solvents containing S—O bond, were used in a battery using a carbon material capable of inserting and extracting lithium as a negative electrode, in all cases, No good charge / discharge cycle characteristics were obtained. Sulfolane and 3-methylsulfolane exhibited good charge / discharge cycle characteristics, but the discharge capacity was small. On the other hand, the mixed electrolytic solution of cyclic carbonate and non-cyclic carbonate shows good cycle characteristics at room temperature, but has a problem that the deterioration becomes large at high temperature.

【0009】[0009]

【課題を解決するための手段】本発明は、リチウムの吸
蔵・放出が可能な炭素材料からなる負極と、正極と、溶
媒と溶質からなる有機電解液とを備える電池であって、
前記溶媒に少なくともジオキシドチオフェンと非環状ス
ルホンとの混合物を用いることで上記問題を解決するも
のである。
The present invention relates to a battery comprising a negative electrode made of a carbon material capable of inserting and extracting lithium, a positive electrode, and an organic electrolytic solution containing a solvent and a solute.
The above problem is solved by using a mixture of at least dioxide thiophene and acyclic sulfone as the solvent.

【0010】なお、高率放電性能に優れる電池を得るに
は、ジオキシドチオフェン化合物としてスルホランおよ
び3−メチル−スルホランを、非環状スルホンとしてジ
メチルスルホン、エチルメチルスルホンおよびジエチル
スルホンを用いるのが好ましい。
In order to obtain a battery excellent in high rate discharge performance, it is preferable to use sulfolane and 3-methyl-sulfolane as the dioxidothiophene compound and dimethyl sulfone, ethylmethyl sulfone and diethyl sulfone as the acyclic sulfone.

【0011】[0011]

【作用】前述した如く、この種電池では電解液の分解反
応が生じやすく、これが電池性能を劣化させる主因とな
っている。しかしながら、電解液にジオキシドチオフェ
ンと非環状スルホンとの混合溶媒を用いると、保存特性
に優れ、サイクル特性も良好な電池が得られることを見
出し、本発明を完成するに至った。この理由は明らかで
はないが下記の如く推察している。
As described above, in this type of battery, decomposition reaction of the electrolytic solution is likely to occur, which is the main cause of deterioration of battery performance. However, it has been found that a battery having excellent storage characteristics and good cycle characteristics can be obtained by using a mixed solvent of a dioxidothiophene and an acyclic sulfone as an electrolytic solution, and has completed the present invention. The reason for this is not clear, but it is presumed as follows.

【0012】ジメチルサルファイト、ジメチルスルホ
ン、ジメチルスルホキシドの分子は、スルホラン、3−
メチルスルホランなどの環状化合物の分子に比べ小さい
ため、充電時にリチウムイオンとともに負極炭素の層間
に取り込まれやすい。それによって負極炭素の層間距離
が押し上げられる。したがって、充放電によるリチウム
イオンの吸蔵・放出を繰り返すにつれて負極炭素の層構
造の破壊が進み、電池容量が低下したと考えられる。故
に、これら溶媒は、炭素材料を負極として用いた電池に
適用できなかった。一方、スルホランおよび3−メチル
スルホランなどの高粘度溶媒は、電解液のイオン導電率
が低いため単独で用いることは困難であった。ところ
が、ジオキシドチオフェンとジメチルスルホンに代表さ
れる非環状スルホンとを混合すると、ジオキシドチオフ
ェンが負極炭素表面にリチウムイオン導電性の保護皮膜
を形成し、非環状スルホン分子の負極炭素層間への取り
込みを抑制するため、充放電サイクルを繰り返しても負
極炭素の層構造の破壊が生じにくくなった。さらに、ス
ルホラン、3−メチルスルホランなどの単独溶媒を用い
た電解液に比べて、電解液の粘度が低下し、イオン導電
率が向上するため電池の分極が小さくなり電池容量が飛
躍的に大きくなることがわかった。
The molecules of dimethyl sulfite, dimethyl sulfone and dimethyl sulfoxide are sulfolane, 3-
Since it is smaller than the molecule of a cyclic compound such as methylsulfolane, it is easily taken in between the layers of the negative electrode carbon along with lithium ions during charging. As a result, the interlayer distance of the negative carbon is increased. Therefore, it is considered that the destruction of the layer structure of the negative electrode carbon progressed as the occlusion and release of lithium ions due to charge and discharge were repeated, and the battery capacity decreased. Therefore, these solvents could not be applied to the battery using the carbon material as the negative electrode. On the other hand, high viscosity solvents such as sulfolane and 3-methylsulfolane are difficult to use alone because the ionic conductivity of the electrolyte is low. However, when dioxidethiophene and an acyclic sulfone represented by dimethyl sulfone are mixed, the dioxidethiophene forms a lithium ion conductive protective film on the surface of the negative electrode carbon, and the acyclic sulfone molecule is incorporated into the negative electrode carbon layer. Therefore, even if the charge / discharge cycle is repeated, the layer structure of the negative electrode carbon is less likely to be destroyed. Further, compared with an electrolyte solution using a single solvent such as sulfolane or 3-methylsulfolane, the viscosity of the electrolyte solution is lowered and the ionic conductivity is improved, so that the polarization of the battery is reduced and the battery capacity is dramatically increased. I understood it.

【0013】しかし、この保護皮膜による安定化効果
は、ジメチルスルホン、エチルメチルスルホン、ジエチ
ルスルホンなどの非環状スルホンにおいてのみ見られる
特異的なもので、同じS−O結合を有するジメチルサル
ファイト、ジメチルスルホキシドでは、効果は見られな
かった。この理由は、明らかではないが、ジメチルサル
ファイト、ジメチルスルホキシドは、ジメチルスルホン
よりも小さい分子であるため、保護皮膜を通過しやす
く、負極炭素材料と反応しやすいことなどが考えられ
る。さらに、本発明の電解液は、従来の電解液である環
状カーボネートと鎖状カーボネートとの混合電解液に比
べて、高温下での充放電サイクル特性が向上している。
これは、高温下での安定性に劣る鎖状カーボネートを含
有していないことに起因していると考えられる。
However, the stabilizing effect of this protective film is specific only to non-cyclic sulfones such as dimethyl sulfone, ethyl methyl sulfone and diethyl sulfone, and dimethyl sulfite and dimethyl having the same S--O bond. No effect was seen with sulfoxide. The reason for this is not clear, but it is considered that dimethylsulfite and dimethylsulfoxide are molecules smaller than dimethylsulfone, so that they easily pass through the protective film and easily react with the negative electrode carbon material. Further, the electrolytic solution of the present invention has improved charge / discharge cycle characteristics at high temperatures, as compared with a mixed electrolytic solution of a cyclic carbonate and a chain carbonate which is a conventional electrolytic solution.
It is considered that this is because it does not contain a chain carbonate which is inferior in stability at high temperature.

【0014】[0014]

【実施例】以下に、好適な実施例を用いて本発明を説明
するが、本発明の趣旨を越えない限り、以下の実施例に
限定されるものではない。
EXAMPLES The present invention will be described below with reference to preferred examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.

【0015】正極は、リチウムコバルト複合酸化物(L
iCoO)と導電剤としてのカーボン粉末および結着
剤としてのフッ素樹脂粉末とを90:3:7の重量比で
十分混合したのち、加圧成型したものである。負極は、
黒鉛粉末と結着剤としてのフッ素樹脂粉末とを91:9
の重量比で十分混合したのち、加圧成型したものであ
る。
The positive electrode is a lithium cobalt composite oxide (L
iCoO 2 ), carbon powder as a conductive agent and fluororesin powder as a binder were sufficiently mixed in a weight ratio of 90: 3: 7, and then pressure-molded. The negative electrode is
91: 9 graphite powder and fluororesin powder as a binder
After being sufficiently mixed at a weight ratio of 1, the mixture was pressure-molded.

【0016】図1は、本発明の実施例電池の縦断面図で
ある。この図において1は、耐電解液性のステンレス鋼
板を打ち抜き加工した正極端子を兼ねるケース、2は1
と同様のステンレス鋼板を打ち抜き加工した負極端子を
兼ねる封口板であり、その内壁には負極3が当接されて
いる。5は有機電解液を含浸したポリプロピレンからな
るセパレーター、6は正極である。電池は、正極端子を
兼ねるケース1の開口端部を内方へかしめ、ガスケット
4を介して負極端子を兼ねる封口板2の外周を締め付け
ることにより密閉封口している。
FIG. 1 is a vertical sectional view of a battery of an embodiment of the present invention. In this figure, 1 is a case that also functions as a positive electrode terminal made by punching out an electrolytic solution resistant stainless steel plate, and 2 is 1
It is a sealing plate that also functions as a negative electrode terminal made by punching out a stainless steel plate similar to the above, and the negative electrode 3 is in contact with its inner wall. Reference numeral 5 is a separator made of polypropylene impregnated with an organic electrolytic solution, and 6 is a positive electrode. The battery is hermetically sealed by crimping the open end of the case 1 which also functions as a positive electrode terminal inward and tightening the outer periphery of the sealing plate 2 which also functions as a negative electrode terminal via the gasket 4.

【0017】有機電解液には、スルホランとジメチルス
ルホンとを体積比1:1で混合した有機溶媒に、六フッ
化燐酸リチウムを1モル/リットルの濃度で溶解したも
のを用いた。電池には、上記電解液を約150μl注液
した。
The organic electrolytic solution used was one in which lithium hexafluorophosphate was dissolved at a concentration of 1 mol / liter in an organic solvent in which sulfolane and dimethyl sulfone were mixed at a volume ratio of 1: 1. About 150 μl of the above electrolytic solution was injected into the battery.

【0018】この電池寸法は直径20mm、高さ2mm
である。本発明電池を(A)とした。上記実施例におい
て、ジメチルスルホンの代わりにそれぞれエチルメチル
スルホンおよびジエチルスルホンを用いたことの他は本
実施例と同様の構成とした本発明の電池を(B)および
(C)とした。
This battery has a diameter of 20 mm and a height of 2 mm.
Is. The battery of the present invention was designated as (A). Batteries (B) and (C) of the present invention having the same structure as in this example except that ethylmethyl sulfone and diethyl sulfone were used instead of dimethyl sulfone in the above-mentioned examples.

【0019】さらに比較のために、エチレンカーボネー
トとジエチルカーボネートとの混合物(体積比1:1)
を用いたことの他は、本発明の電池と同様の構成とした
比較電池を(ア)とした。
For comparison, a mixture of ethylene carbonate and diethyl carbonate (volume ratio 1: 1)
A comparative battery having the same structure as that of the battery of the present invention was used as (A), except that

【0020】次に、温度60℃の恒温槽中にて、これら
の電池を2.0mAの定電流で、端子電圧が4.2Vに至
るまで充電して、つづいて、同じく2.0mAの定電流
で、端子電圧が2.7Vに達するまで放電する充放電サ
イクル寿命試験を300サイクルおこなった。各電池の
充放電サイクルの進行にともなう放電容量の変化を図2
に示す。
Next, these batteries were charged at a constant current of 2.0 mA in a constant temperature bath at a temperature of 60 ° C. until the terminal voltage reached 4.2 V, and then the same constant current of 2.0 mA was applied. A charge / discharge cycle life test was conducted for 300 cycles, in which the terminal voltage was 2.7 V to discharge with a current. Figure 2 shows the change in discharge capacity as the charge and discharge cycle of each battery progresses.
Shown in.

【0021】図2の結果から明らかなように、ジオキシ
ドチオフェンと非環状スルホンとの混合溶媒を用いた本
発明電池(A)、(B)および(C)は比較電池(ア)
に比べ充放電サイクルの進行にともなう放電容量の低下
が小さい。
As is clear from the results shown in FIG. 2, the batteries (A), (B) and (C) of the present invention using a mixed solvent of dioxidethiophene and acyclic sulfone are comparative batteries (A).
Compared with the above, the decrease in discharge capacity with the progress of charge / discharge cycles is small.

【0022】なお、上記実施例では、ジオキシドチオフ
ェンとしてスルホランを用いる場合を説明したが、3−
メチルスルホランやスルホランと3−メチルスルホラン
との混合溶媒を用いることができる。
In the above examples, the case where sulfolane is used as the dioxide thiophene has been described.
Methylsulfolane or a mixed solvent of sulfolane and 3-methylsulfolane can be used.

【0023】上記実施例では、ジオキシドチオフェンと
非環状スルホンとを体積比で1:1で混合した場合を説
明したが、特に限定されない。
In the above embodiment, the case where the dioxidothiophene and the acyclic sulfone were mixed at a volume ratio of 1: 1 was explained, but the mixture is not particularly limited.

【0024】これらの非環状スルホンのジオキシドチオ
フェンに対する添加量は、両者の合量に対して10〜6
0体積%が望ましい。なぜならば、非環状スルホンの含
有率が10体積%未満の場合は、凝固点の高いスルホラ
ンを用いる場合電解液が低温で凝固しやすくなり、一
方、誘電率の低いスルホン化合物の含有率が60体積%
を越えると電解液のイオン導電率が低下するためであ
る。
The addition amount of these acyclic sulfones to the dioxide thiophene is 10 to 6 with respect to the total amount of both.
0% by volume is desirable. This is because when the content of the acyclic sulfone is less than 10% by volume, the electrolyte solution is likely to coagulate at low temperature when sulfolane having a high freezing point is used, while the content of the sulfone compound having a low dielectric constant is 60% by volume.
This is because the ionic conductivity of the electrolytic solution decreases when the value exceeds the range.

【0025】また、本発明で使用されるスルホン化合物
としては、例えばジメチルスルホン、エチルメチルスル
ホン、ジエチルスルホンなどの少なくとも1種以上を用
いることができるが、なかでもジメチルスルホンがイオ
ン導電率の点で、エチルメチルスルホンが低温性能の点
で最も望ましい。
Further, as the sulfone compound used in the present invention, for example, at least one kind of dimethyl sulfone, ethylmethyl sulfone, diethyl sulfone and the like can be used. Among them, dimethyl sulfone is preferable in terms of ionic conductivity. Ethyl methyl sulfone is most desirable in terms of low temperature performance.

【0026】さらに上記実施例において、正極活物質と
してリチウムコバルト複合酸化物を用いる場合を説明し
たが、特に限定されない。二硫化チタン、リチウムニッ
ケル複合酸化物(LiCoO)をはじめとして二酸化
マンガン、スピネル型リチウムマンガン酸化物、(Li
MnO4)五酸化バナジウムおよび三酸化モリブデンな
どの種々のものを用いることができる。
Further, in the above-mentioned embodiment, the case where the lithium cobalt composite oxide is used as the positive electrode active material has been described, but it is not particularly limited. Titanium disulfide, lithium nickel composite oxide (LiCoO 2 ), and manganese dioxide, spinel type lithium manganese oxide, (Li
Various substances such as MnO4) vanadium pentoxide and molybdenum trioxide can be used.

【0027】本実施例では、有機溶媒にジオキシドチオ
フェンと非環状スルホン化合物との混合系を用いる場合
を説明したが、従来リチウム電池で用いられている有機
溶媒を第3成分として添加して用いることができる。例
えば、γ−ブチロラクトン、メチルフォルメートなどの
エステル溶媒、エチレンカーボネートなどの環状カーボ
ネート溶媒、1,2−ジメトキシエタン、テトラハイド
ロフランなどのエーテル溶媒、ジメチルカーボネート、
エチルメチルカーボネート、ジエチルカーボネートなど
の鎖状カーボネートなどがあげられる。
In this embodiment, the case where a mixed system of a dioxide thiophene and an acyclic sulfone compound is used as the organic solvent has been described. However, the organic solvent conventionally used in lithium batteries is added as the third component and used. be able to. For example, γ-butyrolactone, ester solvents such as methyl formate, cyclic carbonate solvents such as ethylene carbonate, 1,2-dimethoxyethane, ether solvents such as tetrahydrofuran, dimethyl carbonate,
Examples thereof include chain carbonates such as ethylmethyl carbonate and diethyl carbonate.

【0028】電解質としては、過塩素酸リチウム、六フ
ッ化砒酸リチウム、四フッ化ホウ酸リチウム、トリフル
オロメタンスルホン酸リチウム、フルオロ硫酸リチウム
などの1種以上を用いることができる。
As the electrolyte, one or more of lithium perchlorate, lithium hexafluoroarsenate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, lithium fluorosulfate and the like can be used.

【0029】なお、前記の実施例に係る電池はいずれも
コイン形電池であるが、円筒形、角形またはペーパー形
電池に本発明を適用しても同様の効果が得られる。
Although the batteries according to the above-mentioned embodiments are all coin type batteries, the same effect can be obtained by applying the present invention to cylindrical, prismatic or paper type batteries.

【0030】[0030]

【発明の効果】上述したごとく、リチウムの吸蔵・放出
が可能な炭素材料からなる負極と、正極と、溶媒と溶質
からなる有機電解液とを備える電池において、前記溶媒
にジオキシドチオフェンと非環状スルホンとの混合物を
用いることで、この種電池の問題である充放電サイクル
の進行にともなう放電容量の低下を有効に抑制できるも
のであり、その工業的価値は極めて大である。
As described above, in a battery including a negative electrode made of a carbon material capable of inserting and extracting lithium, a positive electrode, and an organic electrolytic solution containing a solvent and a solute, the solvent is a dioxidothiophene and an acyclic compound. By using a mixture with sulfone, it is possible to effectively suppress the decrease in discharge capacity that accompanies the progress of charge and discharge cycles, which is a problem of this type of battery, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】有機電解液二次電池の一例であるボタン電池の
内部構造を示した図である。
FIG. 1 is a diagram showing an internal structure of a button battery which is an example of an organic electrolyte secondary battery.

【図2】試験電池の充放電サイクルの進行にともなう放
電容量の変化を示した表である。
FIG. 2 is a table showing changes in discharge capacity with progress of charge / discharge cycles of test batteries.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極 1 battery case 2 Seal plate 3 Negative electrode 4 gasket 5 separator 6 Positive electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−214566(JP,A) 特開 平3−152879(JP,A) 特開 平8−78052(JP,A) 特開 平7−230824(JP,A) 特開 平7−230825(JP,A) 特開 平2−148663(JP,A) 特開 昭64−14879(JP,A) 特開 昭64−14877(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-3-214566 (JP, A) JP-A-3-152879 (JP, A) JP-A-8-78052 (JP, A) JP-A-7- 230824 (JP, A) JP 7-230825 (JP, A) JP 2-148663 (JP, A) JP 64-14879 (JP, A) JP 64-14877 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムの吸蔵・放出が可能な炭素材料か
らなる負極と、正極と、溶媒と溶質からなる有機電解液
とを備える電池であって、前記溶媒がジオキシドチオフ
ェンと非環状スルホンとを含有していることを特徴とす
る有機電解液二次電池。
1. A battery comprising a negative electrode made of a carbon material capable of inserting and extracting lithium, a positive electrode, and an organic electrolytic solution containing a solvent and a solute, wherein the solvent is dioxide thiophene and acyclic sulfone. An organic electrolyte secondary battery comprising:
【請求項2】ジオキシドチオフェンがスルホラン、3−
メチルスルホランから選ばれる一種以上である請求項1
記載の有機電解液二次電池。
2. The dioxide thiophene is sulfolane, 3-
2. One or more selected from methylsulfolane.
The organic electrolyte secondary battery described.
【請求項3】非環状スルホンが、ジメチルスルホン、エ
チルメチルスルホン、ジエチルスルホンから選ばれる1
種以上である請求項1または2記載の有機電解液二次電
3. A non-cyclic sulfone selected from dimethyl sulfone, ethylmethyl sulfone and diethyl sulfone.
The organic electrolyte secondary battery according to claim 1 or 2, which is more than one kind.
JP06870695A 1995-03-02 1995-03-02 Organic electrolyte secondary battery Expired - Fee Related JP3396990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06870695A JP3396990B2 (en) 1995-03-02 1995-03-02 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06870695A JP3396990B2 (en) 1995-03-02 1995-03-02 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08241732A JPH08241732A (en) 1996-09-17
JP3396990B2 true JP3396990B2 (en) 2003-04-14

Family

ID=13381495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06870695A Expired - Fee Related JP3396990B2 (en) 1995-03-02 1995-03-02 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3396990B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767969B1 (en) * 1997-08-29 1999-10-15 Alsthom Cge Alcatel LITHIUM RECHARGEABLE GENERATOR WITH ORGANIC ELECTROLYTE AND CARBON ANODE
KR100860441B1 (en) * 1999-12-22 2008-09-25 제일모직주식회사 Nonaqueous battery electrolyte
KR100428615B1 (en) * 2000-01-21 2004-04-30 삼성에스디아이 주식회사 A electrolyte for a lithium secondary battery
JP5466364B2 (en) * 2004-12-02 2014-04-09 オクシス・エナジー・リミテッド Lithium / sulfur battery electrolyte and lithium / sulfur battery using the same
KR100816592B1 (en) 2006-03-24 2008-03-24 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
JP2009123789A (en) * 2007-11-13 2009-06-04 Japan Carlit Co Ltd:The Electrolyte for electric double-layer capacitor and electric double-layer capacitor
JP5308314B2 (en) * 2009-06-18 2013-10-09 パナソニック株式会社 Non-aqueous solvent for power storage device, non-aqueous electrolyte for power storage device, and power storage device, lithium secondary battery and electric double layer capacitor using the same
KR101612351B1 (en) * 2010-02-12 2016-04-15 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
EP3133623B1 (en) * 2014-04-16 2018-11-21 Sumitomo Seika Chemicals Co. Ltd. Solvent for electrolytic solution for use in electrochemical devices

Also Published As

Publication number Publication date
JPH08241732A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
US7883797B2 (en) Non-aqueous electrolyte battery
JP3617447B2 (en) Lithium secondary battery
EP1022797B1 (en) Polymer electrolyte battery and polymer electrolyte
WO2005057713A1 (en) Secondary battery
JP2008084705A (en) Nonaqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
KR100379979B1 (en) Nonaqueous electrolyte secondary battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP3419119B2 (en) Non-aqueous electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP3291528B2 (en) Non-aqueous electrolyte battery
US6589689B2 (en) Non-aqueous electrolyte secondary battery and method for producing the same
JP2734978B2 (en) Non-aqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2003229112A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3451601B2 (en) Lithium battery
JP3431641B2 (en) Organic electrolyte and organic electrolyte battery using the same
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JPH08138741A (en) Organic electrolyte secondary battery
JP3418715B2 (en) Organic electrolyte secondary battery
JP3353455B2 (en) Organic electrolyte secondary battery
JP4134556B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees