JP3418715B2 - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JP3418715B2
JP3418715B2 JP18069394A JP18069394A JP3418715B2 JP 3418715 B2 JP3418715 B2 JP 3418715B2 JP 18069394 A JP18069394 A JP 18069394A JP 18069394 A JP18069394 A JP 18069394A JP 3418715 B2 JP3418715 B2 JP 3418715B2
Authority
JP
Japan
Prior art keywords
battery
lithium
secondary battery
organic electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18069394A
Other languages
Japanese (ja)
Other versions
JPH0822840A (en
Inventor
吉田  浩明
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP18069394A priority Critical patent/JP3418715B2/en
Publication of JPH0822840A publication Critical patent/JPH0822840A/en
Application granted granted Critical
Publication of JP3418715B2 publication Critical patent/JP3418715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくはメモリ保持電源としての高エネルギー密度でか
つ高い信頼性を有する有機電解液二次電池に関するもの
である。 【0002】 【従来の技術とその課題】電子機器の急激なる小形軽量
化に伴い、その電源である電池に対して小形で軽量かつ
高エネルギー密度で、更に繰り返し充放電が可能な二次
電池の開発への要求が高まっている。これら要求を満た
す二次電池として、有機電解液二次電池が最も有望であ
る。 【0003】有機電解液二次電池の正極活物質には、二
硫化チタンをはじめとしてリチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。なかでも、リチウムコバルト複合酸化物( L
iCoO2 )およびスピネル型リチウムマンガン酸化物( Li
Mn2 O 4 ) は、4V(Li/Li+ ) 以上のきわめて貴な電位
で充放電を行うため、正極として用いることで高い放電
電圧を有する電池が実現できる。 【0004】有機電解液二次電池の負極活物質は、金属
リチウムをはじめとしてリチウムの吸蔵・放出が可能な
Li−Al合金や炭素材料など種々のものが検討されて
いるが、なかでも炭素材料は、安全性が高くかつサイク
ル寿命の長い電池が得られるという利点がある。 【0005】しかし、この種の電池において、卑な電位
を有するリチウムを負極活物質とする一方、正極では貴
な電位を有する金属酸化物を用いるため、負極、正極そ
れぞれにおいて電解液が分解されやすい状況にある。従
って、電解液の選択においてこれらの点を考慮した構成
とすることが必要不可欠であり、種々の電解液を用いる
ことが提案されてきた。 【0006】それらの大部分は、溶媒としてプロピレン
カーボネート、エチレンカーボネート、γ−ブチロラク
トン、スルホランなどの高誘電率溶媒に1,2−ジメト
キシエタン、ジメチルカーボネート、エチルメチルカー
ボネート、ジエチルカーボネートなどの低粘度溶媒を混
合したものである。 【0007】一方、溶質としては、過塩素酸リチウム、
トリフルオロメタンスルホン酸リチウム、六フッ化燐酸
リチウムなどが一般に用いられている。なかでも六フッ
化燐酸リチウムは、安全性が高くかつ溶解させた電解液
のイオン導電率が高いという理由から近年盛んに用いら
れるようになってきている。 【0008】しかしながら上述したような電解液を用い
ても、充放電サイクルの進行にともない、電池性能が低
下するという問題があった。 【0009】 【課題を解決するための手段】本発明は、負極と、正極
と、溶媒と溶質からなる有機電解液とを備える有機電解
液二次電池であって、前記溶媒に化1で表わされる環状
ジ炭酸エステル化合物を添加するものである。ただし、
化1中RおよびR’は、メチレン、エチレン、プロピレ
ン、ブチレンから選ばれるアルキレン基である。 【0010】 【作用】前述した如く、この種電池では電解液の分解反
応が生じやすく、これが電池性能を劣化させる主因とな
っていることが考えられる。しかしながら電解液に環状
ジ炭酸エステル化合物を添加した電池は、保存特性に優
れ、サイクル特性も良好な電池が得られることを見出
し、本発明を完成するに至った。すなわち環状ジ炭酸エ
ステル化合物は、電解液の分解反応を抑制すると考えら
れる。 【0011】 【実施例】以下に、好適な実施例を用いて本発明を説明
するが、本発明の趣旨を越えない限り、以下の実施例に
限定されるものではない。 【0012】正極は、リチウムコバルト複合酸化物( L
iCoO2 )と導電剤としてのカーボン粉末および結着剤と
してのフッ素樹脂粉末とを90:3:7の重量比で十分
混合したのち、加圧成型したものである。負極は、黒鉛
と結着剤としてのフッ素樹脂粉末とを91:9の重量比
で十分混合したのち、加圧成型したものである。 【0013】図1は、ボタン形電池の縦断面図である。
この図において1は、ステンレス(SUS316)鋼板を打ち抜
き加工した正極端子を兼ねるケース、2はステンレス(S
USU316) 鋼板を打ち抜き加工した負極端子を兼ねる封口
板であり、その内壁には負極3が当接されている。5は
有機電解液を含浸したポリプロピレンからなるセパレー
ター、6は正極であり正極端子を兼ねるケース1の開口
端部を内方へかしめ、ガスケット4を介して負極端子を
兼ねる封口板2の内周を締め付けることにより密閉封口
している。 【0014】有機電解液には、エチレンカーボネートと
ジメチルカーボネートとを体積比1:1で混合した後ジ
メチレンジカーボネートを5vol%添加した有機溶媒
に、六フッ化燐酸リチウムを1モル/リットルの濃度で
溶解させたものを用いた。電池には、上記電解液を約1
50μl注液した。 【0015】この電池寸法は直径20mm、高さ2mm
である。そして、このように作成した電池を本発明電池
を(A)とした。 【0016】上記実施例においてジメチレンジカーボネ
ートの代わりに、エチレンメチレンジカーボネートを用
いたことの他は本実施例と同様の構成とした本発明の電
池を(B)とし、ジメチルカーボネートの代わりにエチ
ルメチルカーボネートを用いたことの他は本実施例と同
様の構成とした本発明の電池を(C)とした。 【0017】さらに比較のために、環状ジ炭酸エステル
化合物を添加せずに有機溶媒としてエチレンカーボネー
トとジメチルカーボネートとの混合物(体積比1:
1)、エチレンカーボネートとエチルメチルカーボネー
トとの混合物(体積比1:1)を用いたことの他は、本
発明の電池と同様の構成とした比較電池をそれぞれ
(ア)、および(イ)と呼ぶ。 【0018】次に温度60℃の恒温槽中にて、これらの
電池を2.0mAの定電流で、端子電圧が4.2Vに至る
まで充電して、つづいて、同じく2.0mAの定電流で、
端子電圧が3Vに達するまで放電する充放電サイクル寿
命試験を300サイクルおこなった。各電池の充放電サ
イクルの進行にともなう放電容量の変化を図2に示す。 【0019】図2の結果から明かなように、環状ジ炭酸
エステル化合物を添加した本発明電池(A)、(B)お
よび(C)は比較電池(ア)および(イ)に比べ充放電
サイクルの進行にともなう放電容量の低下が小さい。 【0020】なお、上記実施例では、環状ジ炭酸エステ
ル化合物としてジメチレンジカーボネートおよびエチレ
ンメチレンジカーボネートを用いる場合を説明したが、
化1中RおよびR’がメチレン、エチレン、プロピレ
ン、ブチレンから選ばれるアルキル基である環状ジ炭酸
エステル化合物でれば同様の効果が得られる。一例とし
て、ジエチレンジカーボネート、エチレンプロピレンジ
カーボネート、ジプロピレンジカーボネート、ジブチレ
ンジカーボネートなどがあげられる。さらに上記実施例
では、有機溶媒への環状ジ炭酸エステル化合物の添加量
を5vol%する場合を説明したが、添加量は特に限定
されない。0.1〜50vol%の範囲が好ましく、さ
らに好ましくは1〜10vol%の範囲となる。添加量
が1vol%未満の場合、添加量減少とともに徐々に効
果が低下し、添加量が10vol%以上の場合、添加量
の増大とともに電解液のイオン導電率が低下する傾向が
みられる。 【0021】上記実施例において、正極活物質としてリ
チウムコバルト複合酸化物を用いる場合を説明したが、
リチウムニッケル複合酸化物(LiNiO2 ) 、二硫化チタン
をはじめとして二酸化マンガン、スピネル型リチウムマ
ンガン酸化物( LiMn2 O4 )、五酸化バナジウムおよび
三酸化モリブデンなどの種々のものを用いることができ
る。 【0022】また、上記実施例として負極に黒鉛を用い
る場合を説明したが、負極も特に限定されない。低結晶
性の炭素材料や、金属リチウム、リチウム合金などに適
用した場合においても同様な効果が得られる。 【0023】有機溶媒および溶質も基本的に限定される
ものではない。従来リチウム電池に用いられているもの
であれば本発明と同様の効果が得られる。例えば溶媒と
しては、プロピレンカーボネート、エチレンカーボネー
ト、γ−ブチロラクトン、スルホランなどの高誘電率溶
媒に1,2−ジメトキシエタン、ジメチルカーボネー
ト、エチルメチルカーボネート、ジエチルカーボネー
ト、メチルフォルメートなどの低粘度溶媒を混合したも
のが用いることができる。電解質としては、過塩素酸リ
チウム、六フッ化砒酸リチウム、四フッ化ホウ酸リチウ
ム、トリフルオロメタンスルフォン酸リチウムなどの1
種以上を用いることができる。 【0024】なお、前記の実施例に係る電池はいずれも
ボタン形電池であるが、円筒形、角形またはペーパー形
の電池に本発明を適用しても同様の効果が得られる。 【0025】 【発明の効果】上述したごとく、負極と、正極と、溶媒
と溶質からなる有機電解液とを備える電池において、前
記溶媒に環状ジ炭酸エステル化合物を添加することで、
この種電池の問題である充放電サイクルの進行にともな
う放電容量の低下を有効に抑制できるものであり、その
工業的価値は極めて大である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-energy-density and high-reliability organic electrolyte secondary battery as a power supply for driving electronic equipment or a power supply for holding a memory. Things. 2. Description of the Related Art Along with rapid miniaturization of electronic equipment, a secondary battery which is small, lightweight, has a high energy density and can be repeatedly charged and discharged with respect to a battery as a power source thereof. The demand for development is increasing. As a secondary battery satisfying these requirements, an organic electrolyte secondary battery is most promising. As the positive electrode active material of the organic electrolyte secondary battery, various substances such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been studied. ing. Among them, lithium cobalt composite oxide (L
iCoO 2 ) and spinel lithium manganese oxide (Li
Mn 2 O 4 ) charges and discharges at a very noble potential of 4 V (Li / Li + ) or more, so that a battery having a high discharge voltage can be realized by using it as a positive electrode. [0004] As the negative electrode active material of the organic electrolyte secondary battery, various materials such as lithium metal and a Li-Al alloy capable of occluding and releasing lithium and carbon materials have been studied. Has an advantage that a battery having high safety and a long cycle life can be obtained. However, in this type of battery, while lithium having a low potential is used as a negative electrode active material, while a metal oxide having a noble potential is used for a positive electrode, the electrolyte is easily decomposed in each of the negative electrode and the positive electrode. In the situation. Therefore, it is indispensable to adopt a configuration in consideration of these points in selecting an electrolytic solution, and it has been proposed to use various electrolytic solutions. [0006] Most of them are composed of high dielectric constant solvents such as propylene carbonate, ethylene carbonate, γ-butyrolactone and sulfolane as solvents and low viscosity solvents such as 1,2-dimethoxyethane, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate. Are mixed. On the other hand, as the solute, lithium perchlorate,
Lithium trifluoromethanesulfonate, lithium hexafluorophosphate and the like are generally used. In particular, lithium hexafluorophosphate has been widely used in recent years because of its high safety and high ionic conductivity of a dissolved electrolyte. [0008] However, even when the above-described electrolytic solution is used, there is a problem that the battery performance is reduced as the charge / discharge cycle progresses. The present invention is directed to an organic electrolyte secondary battery comprising a negative electrode, a positive electrode, and an organic electrolyte comprising a solvent and a solute. The cyclic dicarbonate compound is added. However,
In Chemical Formula 1, R and R 'are alkylene groups selected from methylene, ethylene, propylene, and butylene. As described above, in this type of battery, the decomposition reaction of the electrolytic solution is apt to occur, and it is considered that this is the main cause of deteriorating the battery performance. However, it has been found that a battery in which a cyclic dicarbonate compound is added to an electrolytic solution can provide a battery having excellent storage characteristics and good cycle characteristics, and has completed the present invention. That is, the cyclic dicarbonate compound is considered to suppress the decomposition reaction of the electrolytic solution. The present invention will be described below with reference to preferred embodiments. However, the present invention is not limited to the following embodiments without departing from the gist of the present invention. The positive electrode is a lithium-cobalt composite oxide (L
iCoO 2 ), a carbon powder as a conductive agent, and a fluororesin powder as a binder are sufficiently mixed in a weight ratio of 90: 3: 7, and then molded under pressure. The negative electrode is obtained by sufficiently mixing graphite and a fluororesin powder as a binder at a weight ratio of 91: 9 and then press-molding. FIG. 1 is a longitudinal sectional view of a button type battery.
In this figure, 1 is a case also serving as a positive electrode terminal formed by stamping a stainless steel (SUS316) steel plate, and 2 is a stainless steel (S
USU316) A sealing plate also serving as a negative electrode terminal formed by stamping a steel plate, and the negative electrode 3 is in contact with the inner wall thereof. Reference numeral 5 denotes a separator made of polypropylene impregnated with an organic electrolyte, 6 denotes a positive electrode, and the inside of the sealing plate 2 also serving as a negative electrode terminal is caulked by inwardly caulking an open end of the case 1 also serving as a positive electrode terminal. It is hermetically sealed by tightening. The organic electrolyte is prepared by mixing ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1 and then adding 5 vol% of dimethylene carbonate to an organic solvent containing lithium hexafluorophosphate at a concentration of 1 mol / liter. The dissolved one was used. The battery contains about 1 solution of the above electrolyte.
50 μl was injected. The dimensions of this battery are 20 mm in diameter and 2 mm in height.
It is. The battery thus prepared was designated as the battery of the present invention (A). The battery of the present invention having the same structure as that of this embodiment except that ethylene methylene dicarbonate was used in place of dimethyl methylene dicarbonate in the above embodiment is referred to as (B). Ethyl is used instead of dimethyl carbonate. A battery of the present invention having the same configuration as that of this example except that methyl carbonate was used was designated as (C). For further comparison, a mixture of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1) was used as an organic solvent without adding a cyclic dicarbonate compound.
1) Comparative batteries having the same configuration as the battery of the present invention except that a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio of 1: 1) were used were (A) and (B), respectively. Call. Next, these batteries were charged at a constant current of 2.0 mA in a thermostat at a temperature of 60 ° C. until the terminal voltage reached 4.2 V, followed by a constant current of 2.0 mA. so,
A charge / discharge cycle life test for discharging until the terminal voltage reached 3 V was performed 300 times. FIG. 2 shows a change in the discharge capacity as the charge / discharge cycle of each battery progresses. As is clear from the results shown in FIG. 2, the batteries (A), (B) and (C) of the present invention to which the cyclic dicarbonate compound was added were compared with the comparative batteries (A) and (A). Of the discharge capacity with the progress of the discharge is small. In the above embodiment, the case where dimethylene dicarbonate and ethylene methylene dicarbonate are used as the cyclic dicarbonate compound has been described.
The same effect can be obtained if R and R ′ in Chemical Formula 1 are cyclic dicarbonate compounds in which the alkyl group is selected from methylene, ethylene, propylene, and butylene. Examples include diethylene dicarbonate, ethylene propylene dicarbonate, dipropylene dicarbonate, dibutylene dicarbonate, and the like. Further, in the above-described embodiment, the case where the addition amount of the cyclic dicarbonate compound to the organic solvent is 5 vol% is described, but the addition amount is not particularly limited. The range is preferably 0.1 to 50% by volume, more preferably 1 to 10% by volume. When the addition amount is less than 1 vol%, the effect gradually decreases as the addition amount decreases, and when the addition amount is 10 vol% or more, the ionic conductivity of the electrolytic solution tends to decrease as the addition amount increases. In the above embodiment, the case where a lithium-cobalt composite oxide is used as the positive electrode active material has been described.
Various materials such as lithium nickel composite oxide (LiNiO 2 ), titanium disulfide, manganese dioxide, spinel type lithium manganese oxide (LiMn 2 O 4 ), vanadium pentoxide, and molybdenum trioxide can be used. In the above embodiments, the case where graphite is used for the negative electrode has been described, but the negative electrode is not particularly limited. A similar effect can be obtained when applied to a low-crystalline carbon material, metallic lithium, a lithium alloy, or the like. The organic solvent and solute are not basically limited either. The same effects as those of the present invention can be obtained as long as they are conventionally used for lithium batteries. For example, as a solvent, a low-viscosity solvent such as 1,2-dimethoxyethane, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and methyl formate is mixed with a high dielectric constant solvent such as propylene carbonate, ethylene carbonate, γ-butyrolactone, and sulfolane. What was done can be used. Examples of the electrolyte include lithium perchlorate, lithium hexafluoroarsenate, lithium tetrafluoroborate and lithium trifluoromethanesulfonate.
More than one species can be used. Although the batteries according to the above embodiments are all button batteries, the same effects can be obtained by applying the present invention to cylindrical, square or paper batteries. As described above, in a battery including a negative electrode, a positive electrode, and an organic electrolytic solution comprising a solvent and a solute, by adding a cyclic dicarbonate compound to the solvent,
It can effectively suppress a decrease in the discharge capacity due to the progress of the charge / discharge cycle, which is a problem of this type of battery, and its industrial value is extremely large.

【図面の簡単な説明】 【図1】有機電解液二次電池の一例であるボタン形電池
の内部構造を示した図。 【図2】試験電池の充放電サイクルの進行にともなう放
電容量の変化を示した図。 【符号の説明】 1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an internal structure of a button-type battery as an example of an organic electrolyte secondary battery. FIG. 2 is a diagram showing a change in discharge capacity as a charge / discharge cycle of a test battery progresses. [Description of Signs] 1 Battery case 2 Sealing plate 3 Negative electrode 4 Gasket 5 Separator 6 Positive electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−282849(JP,A) 特開 平5−82168(JP,A) 特開 平1−132059(JP,A) 特開 平1−320767(JP,A) 特開 平1−134873(JP,A) 特開 平1−134872(JP,A) 特開 平5−335033(JP,A) 特開 平7−37612(JP,A) 特開 平7−165751(JP,A) 特表 平4−500439(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 6/16 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-282849 (JP, A) JP-A-5-82168 (JP, A) JP-A 1-132059 (JP, A) JP-A-1- 320767 (JP, A) JP-A-1-134873 (JP, A) JP-A-1-134872 (JP, A) JP-A-5-335033 (JP, A) JP-A-7-37612 (JP, A) JP-A-7-165751 (JP, A) JP-A-4-500439 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 6/16

Claims (1)

(57)【特許請求の範囲】 【請求項1】負極と、正極と、溶媒と溶質からなる有機
電解液とを備え、前記溶媒が化1で表わされる環状ジ炭
酸エステル化合物を含有していることを特徴とする有機
電解液二次電池。 【化1】ただし、化1中RおよびR’は、メチレン、エチレン、
プロレン、ブチレンから選ばれるアルキレン基であ
る。
(57) Claims 1. A negative electrode, a positive electrode, an organic electrolytic solution comprising a solvent and a solute, and the solvent contains a cyclic dicarbonate compound represented by the following chemical formula (1). An organic electrolyte secondary battery, characterized in that: Embedded image Wherein R and R ′ in Chemical Formula 1 are methylene, ethylene,
Pro Pi Ren, an alkylene group selected from butylene.
JP18069394A 1994-07-08 1994-07-08 Organic electrolyte secondary battery Expired - Lifetime JP3418715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18069394A JP3418715B2 (en) 1994-07-08 1994-07-08 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18069394A JP3418715B2 (en) 1994-07-08 1994-07-08 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0822840A JPH0822840A (en) 1996-01-23
JP3418715B2 true JP3418715B2 (en) 2003-06-23

Family

ID=16087660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18069394A Expired - Lifetime JP3418715B2 (en) 1994-07-08 1994-07-08 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3418715B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471970B1 (en) * 2002-11-20 2005-03-11 삼성에스디아이 주식회사 An electrolyte for a lithium ion battery and a lithium ion battery comprising the same
KR100683666B1 (en) * 2004-02-04 2007-02-20 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same
DE102014226785B4 (en) * 2013-12-27 2019-08-14 Asahi Kasei Chemicals Corporation Polycarbonate diol composition, coating composition and use of the polycarbonate diol composition

Also Published As

Publication number Publication date
JPH0822840A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
JPH0487156A (en) Nonaqueous electrolyte battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP3393620B2 (en) Non-aqueous electrolyte battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JP3419119B2 (en) Non-aqueous electrolyte secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JPH08195200A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with this active material
JP3016447B2 (en) Non-aqueous electrolyte battery
JP3418715B2 (en) Organic electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP3094397B2 (en) Organic electrolyte secondary battery
JP3123749B2 (en) Non-aqueous electrolyte secondary battery
JP4127890B2 (en) Non-aqueous electrolyte battery
JP3348175B2 (en) Organic electrolyte secondary battery
JP3451601B2 (en) Lithium battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
JP3014714B2 (en) Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries
JP4147448B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2766018B2 (en) Non-aqueous electrolyte battery
JP2001283904A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

EXPY Cancellation because of completion of term