JP4313982B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4313982B2
JP4313982B2 JP2002113608A JP2002113608A JP4313982B2 JP 4313982 B2 JP4313982 B2 JP 4313982B2 JP 2002113608 A JP2002113608 A JP 2002113608A JP 2002113608 A JP2002113608 A JP 2002113608A JP 4313982 B2 JP4313982 B2 JP 4313982B2
Authority
JP
Japan
Prior art keywords
battery
nonaqueous electrolyte
secondary battery
weight
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002113608A
Other languages
Japanese (ja)
Other versions
JP2003308876A (en
Inventor
幸洋 亘
哲也 村井
澄男 森
博樹 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2002113608A priority Critical patent/JP4313982B2/en
Publication of JP2003308876A publication Critical patent/JP2003308876A/en
Application granted granted Critical
Publication of JP4313982B2 publication Critical patent/JP4313982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池、特に、サイクル寿命性能が優れた非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、民生用の携帯電話、ポータブル機器や携帯情報端末などの急速な小型軽量化・多様化に伴い、その電源である電池に対して、小型で軽量かつ高エネルギー密度で、さらに長期間繰り返し充放電が実現できる二次電池の開発が強く要求されている。なかでも、水溶液系電解液を使用する鉛電池、ニッケルカドミウム電池、およびニッケル水素電池と比較して、これらの要求を満たす二次電池として、リチウムイオン二次電池などの非水電解質二次電池が最も有望であり、活発な研究がおこなわれている。
【0003】
非水電解質二次電池の正極活物質には、二硫化チタン、五酸化バナジウムおよび三酸化モリブデンをはじめとしてリチウムコバルト複合酸化物、リチウムニッケル複合酸化物およびスピネル型リチウムマンガン酸化物等の一般式LiMO(ただし、Mは一種以上の遷移金属)で表される種々の化合物が検討されている。なかでも、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物およびスピネル型リチウムマンガン酸化物などは、4V(vs Li/Li)以上の極めて貴な電位で充放電をおこなうため、正極として用いることで高い放電電圧を有する電池を実現できる。
【0004】
非水電解質二次電池の負極活物質には、金属リチウム、リチウム合金、リチウムの吸蔵・放出が可能な炭素材料などの種々のものが検討されているが、なかでも炭素材料を使用すると、サイクル寿命の長い電池が得られ、かつ安全性が高いという利点がある。
【0005】
非水電解質二次電池の電解質には、一般にエチレンカーボネート(EC)やプロピレンカーボネート(PC)などの高誘電率溶媒とジメチルカーボネート(DMC)やジエチルカーボネート(DEC)などの低粘度溶媒との混合系溶媒にLiPFやLiBF等の支持塩を溶解させた電解質が使用されている。
【0006】
【発明が解決しようとする課題】
しかしながら、非水電解質二次電池は、充放電サイクルが進むに従い、負極上で非水電解質中の支持塩や溶媒の分解が進行して、電解液の枯渇が生じる、あるいは、負極表面やセパレータの細孔部に溶媒の分解生成物が堆積してリチウムイオンの移動を阻害して、放電容量が減少するという問題がある。
【0007】
本発明は、上記問題を解決するためになされたものであり、その目的とするところは、初期の放電容量を低下させることなく、かつ充放電サイクル時の容量低下が小さく、長寿命である非水電解質二次電池を提供することにある。
【0008】
【課題を解決するための手段】
請求項1の発明は、正極と、負極と、セパレータと、非水溶媒と溶質とからなる非水電解質を備えた非水電解質二次電池において、前記非水電解質が化学式(1)または化学式(2)で表される鎖状ジオールスルホン酸を2重量%以下含むことを特徴とする。
【0009】
【化3】
【0010】
【化4】
【0011】
(但し、式(1)において、R1およびR2は、各々独立して水素、ハロゲン元素、または炭素数1〜4のアルキル基を表す)。
【0012】
請求項1の発明によれば、充放電サイクル時の容量低下が小さく、初期の放電容量を低下させることなく、良好なサイクル寿命性能を有する非水電解質二次電池が得られる。
【0015】
【発明の実施の形態】
以下に、本発明の実施の形態について説明する。
【0016】
本発明は、非水電解質二次電池において、非水電解質中に化学式(1)または化学式(2)で表される鎖状ジオールスルホン酸を2重量%以下含有することを特徴とする。
【0017】
【化5】
【0018】
【化6】
【0019】
なお、化学式(1)および化学式(2)において、R1およびR2は、各々独立して水素、ハロゲン元素、または炭素数1〜4のアルキル基を表すものとする。また、炭素数1〜4のアルキル基は不飽和結合を有するものでもよい。
【0020】
非水電解質二次電池において、非水電解質中に化学式(1)または化学式(2)で表される鎖状ジオールスルホン酸を含有させることにより、負極活物質の表面に良好なSEIが形成されるため、その後の負極活物質の表面での非水電解質の分解が抑制され、その結果、充放電サイクル時の容量低下が小さく、長寿命である非水電解質二次電池が得られる。
【0021】
ここで、SEI(Solid Electrolyte Interphase)とは、非水電解質中で金属リチウムや炭素材料の初充電をおこなった場合、電解質中の溶媒や、電解質中に含まれる成分が還元されて、金属リチウムや炭素材料の表面に形成される不働体膜をさす。そして、金属リチウムや炭素材料の表面に形成されたSEIが、リチウムイオン伝導性の保護膜として働き、その後の金属リチウムや炭素材料と溶媒との反応が抑制されるのである。
【0022】
また、本発明は、非水電解質中の化学式(1)または化学式(2)で表される鎖状ジオールスルホン酸の含有量を2重量%以下とすることを特徴とする。なお、非水電解質中の化学式(1)または化学式(2)で表される鎖状ジオールスルホン酸の含有量は、後述の実施例で述べる0.001重量%以下の微量の場合でも、本発明の効果は認められる。
【0023】
非水電解質中に鎖状ジオールスルホン酸が適度に含まれておれば、負極活物質の表面に良好なSEIが形成されるが、非水電解質中の鎖状ジオールスルホン酸の含有量が2重量%よりも多い場合には、初期充放電時の不可逆容量が大きくなるために、初期の放電容量が小さくなる。
【0024】
本発明の非水電解質二次電池を作製する場合には、上記の非水電解質を用い、通常の方法により電池を作製すれば良い。
【0025】
本発明の非水電解質二次電池に用いる正極活物質としては、リチウムを吸蔵放出可能な化合物である、組成式LiMO、またはLi(ただしMは遷移金属、0≦x≦1、0≦y≦2 )で表される複合酸化物、トンネル状の空孔を有する酸化物、層状構造の金属カルコゲン化物を用いることができる。その具体例としては、LiCoO、LiNiO、LiMn、LiMn、MnO、FeO、V、V13、TiO、TiS等がある。また、ポリアニリン等の導電性ポリマー等の有機化合物を用いることもでき、さらに、これらを混合して用いてもよい。また、粒状の活物質を用いる場合には、例えば、活物質粒子と導電助剤と結着剤とからなる合材をアルミニウム等の金属集電体上に形成することで作製できる。
【0026】
また、負極活物質としては、例えば、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe、WO、MoO等の遷移金属酸化物、グラファイト、カーボン等の炭素質材料、Li(LiN)等の窒化リチウム、もしくは金属リチウム箔、または、これらの混合物を用いてもよい。また、粒状の炭素質材料を用いる場合には、例えば、活物質粒子と結着剤とからなる合材を銅等の金属集電体上に形成することで作製できる。
【0027】
非水電解質の溶媒としては、エチレンカーボネート、ビニレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート等の非水溶媒を、単独、またはこれらを混合して使用することができる。また、適宜、ビフェニル、シクロヘキシルベンゼン等の重合剤、および1,3−プロパンスルトン、1,3−プロペンスルトン、グリコールサルフェート等の皮膜形成剤などの添加剤を、適量含有したものでも良い。
【0028】
非水電解質は、これらの非水溶媒に支持塩を溶解して使用する。支持塩としては、LiClO、LiPF、LiBF、LiAsF、LiCFCO、LiCFSO、LiCFCFSO、LiCFCFCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF、LiN(COCFCFおよびLiPF(CFCFなどの塩、もしくはこれらの混合物を使用することができる。
【0029】
また、液状の電解質のかわりに固体のイオン導電性ポリマー電解質を用いることもできる。ポリマー電解質膜が、ポリエチレンオキシド、ポリアクリロニトリル、ポリエチレングリコールおよびこれらの変性体などの場合には、軽量で柔軟性があり、巻回して使用する場合に有利である。さらに、イオン導電性ポリマー電解質膜と非水電解質を組み合わせて使用することができる。また、電解質としては、ポリマー電解質以外にも、有機ポリマー電解質と無機固体電解質の混合材料、もしくは有機バインダーによって結着された無機固体粉末など、いずれも公知のものの使用が可能である。
【0030】
本発明の非水電解質二次電池は、通常、その構成として正極、負極およびセパレータと非水電解質との組み合わせからなっているが、セパレータとしては、多孔性ポリオレフィン膜や多孔性ポリ塩化ビニル膜などの多孔性ポリマー膜、あるいは、リチウムイオンまたはイオン導電性ポリマー電解質膜を、単独、または組み合わせて使用することができる。
【0031】
また、電池の形状は、特に限定されるものではなく、本発明は、角形、円筒形、長円筒形、コイン形、ボタン形、シート形電池等の様々な形状の非水電解質二次電池に適用可能である。
【0032】
【実施例】
以下に好適な実施例を用いて本発明を説明するが、本発明は、本実施例により、何ら限定されるものではなく、その主旨を変更しない範囲において、適宜変更して実施することができる。
【0033】
[実施例1〜7および比較例1、2]
[実施例1]
正極活物質にLiCoO、負極活物質に炭素材料を使用した、角形非水電解質二次電池を作製した。図1は、作製した角形非水電解質二次電池の断面構造を示した図であり、図1において、1は角形非水電解質二次電池、2は扁平状電極群、3は正極、4は負極、5はセパレータ、6は電池ケース、7は電池蓋、8は安全弁、9は正極端子、10は正極リードである。扁平状電極群2は、正極3と負極4とをセパレータ5を介して巻回したものである。そして、扁平状電極群2は電池ケース6に収納してあり、電池ケース6には安全弁8を設け、電池蓋7と電池ケース6はレーザー溶接で密閉されている。正極端子9は正極リード10と接続され、負極4は電池ケース6の内壁と接触により接続されている。
【0034】
正極合材は、活物質としてLiCoO90重量%と、導電助剤のアセチレンブラック5重量%と、結着剤のポリフッ化ビニリデン(PVdF)5重量%とを混合して正極合材とし、N−メチル−2−ピロリドン(NMP)に分散させることによりペーストを調製した。このペーストを厚さ20μmのアルミニウム集電体に均一に塗布して、乾燥させた後、ロールプレスで圧縮成形することにより正極を作製した。
【0035】
負極合材は、リチウムイオンを吸蔵放出する炭素材料90重量%と、結着剤のPVdF10重量%とを混合し、NMPを適宜加えて分散させ、スラリーを調製した。このスラリーを厚さ15μmの銅集電体に均一に塗布、乾燥させた後、100℃で5時間乾燥させた後、ロールプレスで圧縮成形することにより負極を作製した。
【0036】
セパレータとしては、厚さ20μm程度の微多孔性ポリエチレンフィルムを用いた。これらの正・負極及びセパレータを巻回して扁平状電極群を作製した。電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比3:7混合溶媒にLiPFを1.1M溶解させた非水電解質を用いて、角形非水電解質二次電池を作製した。
【0037】
そして、この非水電解質中にエタン−1,2−ジオールスルホン酸を0.001重量%含有させた実施例1の電池Aを作製した。
[実施例2]
この非水電解質中にエタン−1,2−ジオールスルホン酸を0.01重量%含有させた実施例2の電池Bを作製した。
[実施例3]
この非水電解質中にエタン−1,2−ジオールスルホン酸を0.1重量%含有させた実施例3の電池Cを作製した。
[実施例4]
この非水電解質中にエタン−1,2−ジオールスルホン酸を0.5重量%含有させた実施例4の電池Dを作製した。
[実施例5]
この非水電解質中にエタン−1,2−ジオールスルホン酸を1重量%含有させた実施例5の電池Eを作製した。
[実施例6]
この非水電解質中にエタン−1,2−ジオールスルホン酸を2重量%含有させた実施例6の電池Fを作製した。
[比較例1]
さらに、この非水電解質中にエタン−1,2−ジオールスルホン酸を2.5重量%含有させた比較例1の電池Gを作製した。
【0038】
[実施例7]
また、この非水電解質中にプロパン−1,2−ジオールスルホン酸を0.5重量%含有させた実施例7の電池Hを作製した。
[比較例2]
さらに、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比3:7混合溶媒にLiPFを1.1M溶解させた電解質を用いた比較例2の電池Zを作製した。
【0039】
電池の試験条件は、つぎの通りとした。同じ条件の電池を各10セルずつ作製し、これらの電池を、充電は600mAの電流で4.2Vまで3時間定電流定電圧充電し、その後600mAの電流で3Vまで放電をおこない、初期の放電容量を確認した。その後、同様の充放電サイクルを500サイクル繰り返し、500サイクル後の容量保持率(%)を測定した。ここで「容量保持率」とは、初期の放電容量に対する500サイクル後の放電容量の比率(%)を示すものとする。なお、前記容量保持率が80%以上の電池を良好とし、80%未満の電池を不良とした。
【0040】
測定結果を、表1に示す。なお、表1のデータはすべて10セルの平均値で表示した。
【0041】
【表1】
【0042】
表1より、エタン−1,2−ジオールスルホン酸およびプロパン−1,2−ジオールスルホン酸を含有する非水電解質を用いた場合、すなわち電池A〜Gおよび電池Hでは、500サイクル後の容量保持率が電池Zに比べて著しく向上することがわかった。
【0043】
また、初期の放電容量については、エタン−1,2−ジオールスルホン酸の含有量が2重量%以下である電池A〜Fでは、電池Zよりも大きいことがわかった。
【0044】
エタン−1,2−ジオールスルホン酸の含有量を2.5重量%とした電池Gの場合は、充放電サイクル後の容量保持率は83%と高いものの、初期の放電容量は電池Zと同等であった。この理由は、鎖状ジオールスルホン酸の非水電解質に対する含有量が多い場合、SEI形成に必要な電気量が大きくなったことと、形成されたSEIが負極へのLi挿入反応を阻害することにより充電電気量が減少したことがあげられる。
【0045】
また、上記実施例では、鎖状ジオールスルホン酸として、エタン−1,2−ジオールスルホン酸およびプロパン−1,2−ジオールスルホン酸を用いた場合を例に説明したが、ブタン−2,3−ジオールスルホン酸等の他の鎖状ジオールスルホン酸を用いた場合、および式中のR1、R2をフッ素等のハロゲン元素で置換したものを用いた場合においても、同様に優れたサイクル寿命性能を有する非水電解質二次電池が得られた。
【0046】
[実施例8〜14および比較例3]
実施例8
実施例1で作製したのと同様の、正極活物質にLiCoO、負極活物質に炭素材料を使用した、角形非水電解質二次電池を作製した。電池の構造、正極合材、負極合材、セパレータも実施例1と同様のものを用いた。
【0047】
電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比3:7混合溶媒にLiPFを1.1M溶解させた非水電解質を用いて、角形非水電解質二次電池を作製した。
【0048】
そして、この非水電解質中にエテン−1,2−ジオールスルホン酸を0.001重量%含有させた実施例8の電池Iを作製した。
[実施例9]
この非水電解質中にエテン−1,2−ジオールスルホン酸を0.01重量%含有させた実施例9の電池Jを作製した。
[実施例10]
この非水電解質中にエテン−1,2−ジオールスルホン酸を0.1重量%含有させた実施例10の電池Kを作製した。
[実施例11]
この非水電解質中にエテン−1,2−ジオールスルホン酸を0.5重量%含有させた実施例11の電池Lを作製した。
[実施例12]
この非水電解質中にエテン−1,2−ジオールスルホン酸を1重量%含有させた実施例12の電池Mを作製した。
[実施例13]
この非水電解質中にエテン−1,2−ジオールスルホン酸を2重量%含有させた実施例13の電池Nを作製した。
[比較例3]
さらに、この非水電解質中にエテン−1,2−ジオールスルホン酸を2.5重量%含有させた比較例3の電池Oを作製した。
【0049】
[実施例14]
また、この非水電解質中にプロペン−1,2−ジオールスルホン酸を0.5重量%含有させた実施例14の電池Pを作製した。比較のために、比較例2で作製した電池Zを用いた。
【0050】
同じ条件の電池を各10セルずつ作製し、実施例1と同じ条件での試験を行った。測定結果を、表2に示す。なお、表2のデータはすべて10セルの平均値で表示した。
【0051】
【表2】
【0052】
表2より、エテン−1,2−ジオールスルホン酸およびプロペン−1,2−ジオールスルホン酸を含有する非水電解質を用いた場合、すなわち電池I〜Oおよび電池Pでは、500サイクル後の容量保持率が電池Zに比べて著しく向上することがわかった。
【0053】
また、初期の放電容量については、エテン−1,2−ジオールスルホン酸の含有量が2重量%以下である電池I〜Nでは、電池Zよりも大きいことがわかった。
【0054】
エテン−1,2−ジオールスルホン酸の含有量を2.5重量%とした電池Oの場合は、充放電サイクル後の容量保持率は80%と高いものの、初期の放電容量は電池Zと同等であった。この理由は、鎖状ジオールスルホン酸の非水電解質に対する含有量が多い場合、SEI形成に必要な電気量が大きくなったことと、形成されたSEIが負極へのLi挿入反応を阻害することにより充電電気量が減少したことがあげられる。
【0055】
また、上記実施例では、不飽和結合を有する鎖状ジオールスルホン酸として、エテン−1,2−ジオールスルホン酸およびプロペン−1,2−ジオールスルホン酸を用いた場合を例に説明したが、他の不飽和結合を有する鎖状ジオールスルホン酸を用いた場合、および式中のR1,R2をフッ素等のハロゲン元素で置換したものを用いた場合においても、同様に優れたサイクル寿命性能を有する非水電解質二次電池が得られる。
【0056】
このように、化学式(1)または化学式(2)で表される鎖状ジオールスルホン酸を非水電解質に含有させることにより、電池のサイクル寿命性能が向上することがわかった。この原因については明らかになっていないが、電解質中に化学式(1)または化学式(2)で表される鎖状ジオールスルホン酸を含有させることにより、負極活物質の表面に良好なSEI皮膜が形成され、その後の負極上での非水電解質の分解が抑制されたものと考えられる。
【0057】
また、初期の放電容量の低下を防ぐために、非水電解質中の化学式(1)または化学式(2)で表される鎖状ジオールスルホン酸の含有量は、2重量%以下であることが好ましく、1重量%以下とすることがより好ましい。
【0058】
なお、上記実施例では、電解質溶媒がECとEMCの混合溶媒について記述したが、環状カーボネートと鎖状カーボネートの比率を変化させた場合や、鎖状カーボネートとして、DMCまたはDECを用いた場合にも同様の傾向が見られ、さらに、鎖状カーボネートの代わりにγ―ブチロラクトンを使用した場合にも同様の傾向が見られた。支持塩の濃度を変化させた場合においても同様の傾向が見られた。また、各種の添加剤(例えば、ビフェニル、シクロヘキシルベンゼン等の重合剤、および1,3−プロパンスルトン、1,3−プロペンスルトン、グリコールサルフェート等の皮膜形成剤等)と併用して用いても同様の効果が得られた。
【0059】
【発明の効果】
本発明によれば、非水電解質中に化学式(1)または化学式(2)で表される鎖状ジオールスルホン酸を2重量%以下含有させることにより、初期の放電容量が大きく、負極活物質の表面に良好なSEIが形成されるため、その後の負極活物質の表面での非水電解質の分解が抑制され、その結果、充放電サイクル時の容量低下が小さく、長寿命である非水電解質二次電池を得ることが可能となった。
【図面の簡単な説明】
【図1】本発明の実施例、および比較例の角形電池の断面構造を示す図。
【符号の説明】
1 角形非水電解質二次電池
2 扁平形電極群
3 正極
4 負極
5 セパレータ
6 電池ケース
7 電池蓋
8 安全弁
9 正極端子
10 正極リード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having excellent cycle life performance.
[0002]
[Prior art]
In recent years, with the rapid miniaturization and diversification of consumer mobile phones, portable devices and personal digital assistants, etc., the batteries used as the power source are compact, lightweight, high energy density, and repeatedly charged for a long time. There is a strong demand for the development of secondary batteries capable of discharging. Among them, compared to lead batteries, nickel cadmium batteries, and nickel metal hydride batteries that use aqueous electrolytes, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are secondary batteries that satisfy these requirements. The most promising and active research is being conducted.
[0003]
The positive electrode active material of the nonaqueous electrolyte secondary battery includes general formula Li such as titanium disulfide, vanadium pentoxide and molybdenum trioxide, lithium cobalt composite oxide, lithium nickel composite oxide and spinel type lithium manganese oxide. x MO 2 (however, M is one or more transition metals) various compounds represented by have been studied. Among them, lithium cobalt composite oxide, lithium nickel composite oxide, spinel-type lithium manganese oxide, etc. are charged and discharged at an extremely noble potential of 4 V (vs Li / Li + ) or higher. A battery having a high discharge voltage can be realized.
[0004]
Various negative electrode active materials for non-aqueous electrolyte secondary batteries, such as metallic lithium, lithium alloys, and carbon materials capable of occluding / releasing lithium, have been studied. There is an advantage that a battery having a long life can be obtained and safety is high.
[0005]
The electrolyte of a nonaqueous electrolyte secondary battery is generally a mixed system of a high dielectric constant solvent such as ethylene carbonate (EC) or propylene carbonate (PC) and a low viscosity solvent such as dimethyl carbonate (DMC) or diethyl carbonate (DEC). An electrolyte in which a supporting salt such as LiPF 6 or LiBF 4 is dissolved in a solvent is used.
[0006]
[Problems to be solved by the invention]
However, in the non-aqueous electrolyte secondary battery, as the charging / discharging cycle proceeds, decomposition of the supporting salt and solvent in the non-aqueous electrolyte proceeds on the negative electrode, resulting in depletion of the electrolyte, or the surface of the negative electrode and the separator. There is a problem that the decomposition product of the solvent accumulates in the pores to inhibit the movement of lithium ions and the discharge capacity decreases.
[0007]
The present invention has been made in order to solve the above-described problems, and the object of the present invention is to reduce the initial discharge capacity and reduce the capacity drop during the charge / discharge cycle, and has a long life. The object is to provide a water electrolyte secondary battery.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is a nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte comprising a positive electrode, a negative electrode, a separator, a nonaqueous solvent and a solute, wherein the nonaqueous electrolyte is represented by chemical formula (1) or chemical formula ( 2 % or less of the chain diol sulfonic acid represented by 2) is included.
[0009]
[Chemical 3]
[0010]
[Formula 4]
[0011]
(In the formula (1), R1 and R2 each independently represent hydrogen, a halogen element, or an alkyl group having 1 to 4 carbon atoms).
[0012]
According to the first aspect of the present invention, a non-aqueous electrolyte secondary battery having a good cycle life performance can be obtained without reducing the capacity during the charge / discharge cycle and reducing the initial discharge capacity .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0016]
The present invention is characterized in that in a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte contains 2% by weight or less of a chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2).
[0017]
[Chemical formula 5]
[0018]
[Chemical 6]
[0019]
In chemical formula (1) and chemical formula (2), R1 and R2 each independently represent hydrogen, a halogen element, or an alkyl group having 1 to 4 carbon atoms. In addition, the alkyl group having 1 to 4 carbon atoms may have an unsaturated bond.
[0020]
In a non-aqueous electrolyte secondary battery, a favorable SEI is formed on the surface of the negative electrode active material by containing the chain diol sulfonic acid represented by the chemical formula (1) or (2) in the non-aqueous electrolyte. Therefore, subsequent decomposition of the non-aqueous electrolyte on the surface of the negative electrode active material is suppressed, and as a result, a non-aqueous electrolyte secondary battery having a long life and a small capacity reduction during the charge / discharge cycle is obtained.
[0021]
Here, SEI (Solid Electrolyte Interface) means that when initial charging of metallic lithium or a carbon material is performed in a non-aqueous electrolyte, a solvent in the electrolyte or a component contained in the electrolyte is reduced, so that metallic lithium or A passive film formed on the surface of a carbon material. The SEI formed on the surface of the metallic lithium or carbon material functions as a lithium ion conductive protective film, and the subsequent reaction between the metallic lithium or carbon material and the solvent is suppressed.
[0022]
In addition, the present invention is characterized in that the content of the chain diol sulfonic acid represented by the chemical formula (1) or (2) in the non-aqueous electrolyte is 2% by weight or less. The content of the chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2) in the non-aqueous electrolyte is not limited to 0.001% by weight or less described in the examples described later. The effect of is recognized.
[0023]
If the chain diol sulfonic acid is appropriately contained in the nonaqueous electrolyte, good SEI is formed on the surface of the negative electrode active material, but the content of the chain diol sulfonic acid in the nonaqueous electrolyte is 2% by weight. If it is more than%, the irreversible capacity at the time of initial charge / discharge increases, so the initial discharge capacity decreases.
[0024]
When producing the non-aqueous electrolyte secondary battery of the present invention, the above-described non-aqueous electrolyte may be used to produce a battery by an ordinary method.
[0025]
As a positive electrode active material used for the nonaqueous electrolyte secondary battery of the present invention, a composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦ A composite oxide represented by x ≦ 1, 0 ≦ y ≦ 2), an oxide having a tunnel-like hole, or a metal chalcogenide having a layered structure can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , and TiS 2 . Moreover, organic compounds, such as electroconductive polymers, such as polyaniline, can also be used, and also these may be mixed and used. Moreover, when using a granular active material, it can produce, for example by forming the compound material which consists of an active material particle, a conductive support agent, and a binder on metal collectors, such as aluminum.
[0026]
Moreover, examples of the negative electrode active material include alloys of lithium, such as Al, Si, Pb, Sn, Zn, and Cd, transition metal oxides such as LiFe 2 O 3 , WO 2 , and MoO 2 , graphite, and carbon. A carbonaceous material, lithium nitride such as Li 5 (Li 3 N), a metal lithium foil, or a mixture thereof may be used. Moreover, when using a granular carbonaceous material, it can produce, for example by forming the compound material which consists of an active material particle and a binder on metal current collectors, such as copper.
[0027]
Non-aqueous electrolyte solvents include ethylene carbonate, vinylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2- Nonaqueous solvents such as methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl propyl carbonate, etc. These can be used alone or in combination. In addition, a suitable amount of an additive such as a polymerizing agent such as biphenyl or cyclohexylbenzene and a film forming agent such as 1,3-propane sultone, 1,3-propene sultone, or glycol sulfate may be appropriately contained.
[0028]
The nonaqueous electrolyte is used by dissolving the supporting salt in these nonaqueous solvents. Examples of the supporting salt include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN (SO 2 CF 3 ). 2 , using salts such as LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 and LiPF 3 (CF 2 CF 3 ) 3 , or mixtures thereof Can do.
[0029]
Further, a solid ion conductive polymer electrolyte can be used instead of the liquid electrolyte. When the polymer electrolyte membrane is polyethylene oxide, polyacrylonitrile, polyethylene glycol, or a modified product thereof, the polymer electrolyte membrane is lightweight and flexible, which is advantageous when used by being wound. Furthermore, an ion conductive polymer electrolyte membrane and a non-aqueous electrolyte can be used in combination. As the electrolyte, in addition to the polymer electrolyte, any known material such as a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, or an inorganic solid powder bound by an organic binder can be used.
[0030]
The non-aqueous electrolyte secondary battery of the present invention is usually composed of a combination of a positive electrode, a negative electrode, and a separator and a non-aqueous electrolyte as its configuration. Examples of the separator include a porous polyolefin film and a porous polyvinyl chloride film. These porous polymer membranes or lithium ion or ion conductive polymer electrolyte membranes can be used alone or in combination.
[0031]
In addition, the shape of the battery is not particularly limited, and the present invention is applicable to non-aqueous electrolyte secondary batteries having various shapes such as a square, cylindrical, long cylindrical, coin, button, and sheet batteries. Applicable.
[0032]
【Example】
The present invention will be described below with reference to preferred examples. However, the present invention is not limited to the examples, and can be appropriately modified and implemented without departing from the scope of the present invention. .
[0033]
[Examples 1 to 7 and Comparative Examples 1 and 2]
[Example 1]
A square nonaqueous electrolyte secondary battery using LiCoO 2 as the positive electrode active material and a carbon material as the negative electrode active material was produced. FIG. 1 is a diagram showing a cross-sectional structure of a manufactured square nonaqueous electrolyte secondary battery. In FIG. 1, 1 is a square nonaqueous electrolyte secondary battery, 2 is a flat electrode group, 3 is a positive electrode, 4 is Negative electrode, 5 is a separator, 6 is a battery case, 7 is a battery lid, 8 is a safety valve, 9 is a positive terminal, and 10 is a positive lead. The flat electrode group 2 is obtained by winding a positive electrode 3 and a negative electrode 4 with a separator 5 interposed therebetween. And the flat electrode group 2 is accommodated in the battery case 6, the battery case 6 is provided with the safety valve 8, and the battery lid 7 and the battery case 6 are sealed by laser welding. The positive electrode terminal 9 is connected to the positive electrode lead 10, and the negative electrode 4 is connected to the inner wall of the battery case 6 by contact.
[0034]
The positive electrode mixture was prepared by mixing 90% by weight of LiCoO 2 as an active material, 5% by weight of acetylene black as a conductive additive, and 5% by weight of polyvinylidene fluoride (PVdF) as a binder. -A paste was prepared by dispersing in methyl-2-pyrrolidone (NMP). This paste was uniformly applied to an aluminum current collector with a thickness of 20 μm, dried, and then compression molded with a roll press to produce a positive electrode.
[0035]
As the negative electrode mixture, 90% by weight of a carbon material that occludes and releases lithium ions and 10% by weight of PVdF as a binder were mixed, and NMP was appropriately added and dispersed to prepare a slurry. This slurry was uniformly applied to a 15 μm thick copper current collector, dried, then dried at 100 ° C. for 5 hours, and then subjected to compression molding with a roll press to produce a negative electrode.
[0036]
As the separator, a microporous polyethylene film having a thickness of about 20 μm was used. These positive / negative electrodes and separators were wound to produce a flat electrode group. As the electrolyte, a nonaqueous electrolyte in which 1.1 M LiPF 6 was dissolved in a 3: 7 mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was used to produce a rectangular nonaqueous electrolyte secondary battery. did.
[0037]
Then, a battery A of Example 1 in which 0.001% by weight of ethane-1,2-diolsulfonic acid was contained in the nonaqueous electrolyte was produced.
[Example 2]
A battery B of Example 2 was produced in which 0.01% by weight of ethane-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte.
[Example 3]
A battery C of Example 3 was produced in which 0.1% by weight of ethane-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte.
[Example 4]
A battery D of Example 4 was produced in which 0.5% by weight of ethane-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte.
[Example 5]
A battery E of Example 5 was produced in which 1% by weight of ethane-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte.
[Example 6]
A battery F of Example 6 was produced in which 2% by weight of ethane-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte.
[Comparative Example 1]
Further, a battery G of Comparative Example 1 was produced in which 2.5% by weight of ethane-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte.
[0038]
[Example 7]
Further, a battery H of Example 7 was produced in which 0.5% by weight of propane-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte .
[Comparative Example 2]
Further, a battery Z of Comparative Example 2 using an electrolyte in which 1.1 M LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7 was produced.
[0039]
The battery test conditions were as follows. 10 cells each under the same conditions were prepared, and these batteries were charged at a constant current and a constant voltage for 3 hours up to 4.2 V at a current of 600 mA, and then discharged to 3 V at a current of 600 mA. Confirmed the capacity. Thereafter, the same charge / discharge cycle was repeated 500 times, and the capacity retention rate (%) after 500 cycles was measured. Here, the “capacity holding ratio” indicates the ratio (%) of the discharge capacity after 500 cycles to the initial discharge capacity. A battery having a capacity retention of 80% or more was regarded as good, and a battery having a capacity retention of less than 80% was regarded as defective.
[0040]
The measurement results are shown in Table 1. In addition, all the data of Table 1 were displayed by the average value of 10 cells.
[0041]
[Table 1]
[0042]
From Table 1, in the case of using a nonaqueous electrolyte containing ethane-1,2-diol sulfonic acid and propane-1,2-diol sulfonic acid, that is, in the batteries A to G and the battery H, the capacity retention after 500 cycles It has been found that the rate is remarkably improved as compared with the battery Z.
[0043]
Further, it was found that the initial discharge capacity was larger than that of the battery Z in the batteries A to F in which the content of ethane-1,2-diolsulfonic acid was 2% by weight or less.
[0044]
In the case of the battery G in which the content of ethane-1,2-diolsulfonic acid is 2.5% by weight, the capacity retention after the charge / discharge cycle is as high as 83%, but the initial discharge capacity is equivalent to the battery Z. Met. This is because, when the content of the chain diol sulfonic acid with respect to the non-aqueous electrolyte is large, the amount of electricity required for SEI formation is increased, and the formed SEI inhibits the Li insertion reaction into the negative electrode. This is because the amount of electricity charged has decreased.
[0045]
In the above-described examples, the case where ethane-1,2-diol sulfonic acid and propane-1,2-diol sulfonic acid are used as the chain diol sulfonic acid has been described as an example. However, butane-2,3- Even when another chain diol sulfonic acid such as diol sulfonic acid is used, and when R1 and R2 in the formula are substituted with a halogen element such as fluorine, the cycle life performance is also excellent. A nonaqueous electrolyte secondary battery was obtained.
[0046]
[Examples 8 to 14 and Comparative Example 3]
[ Example 8 ]
A rectangular non-aqueous electrolyte secondary battery using LiCoO 2 as the positive electrode active material and a carbon material as the negative electrode active material was prepared in the same manner as in Example 1. The same battery structure, positive electrode mixture, negative electrode mixture and separator as those in Example 1 were used.
[0047]
As the electrolyte, a nonaqueous electrolyte in which 1.1 M LiPF 6 was dissolved in a 3: 7 mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was used to produce a rectangular nonaqueous electrolyte secondary battery. did.
[0048]
Then, a battery I of Example 8 was produced in which 0.001% by weight of ethene-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte .
[Example 9]
A battery J of Example 9 was produced in which 0.01% by weight of ethene-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte.
[Example 10]
A battery K of Example 10 was produced, in which 0.1% by weight of ethene-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte.
[Example 11]
A battery L of Example 11 was produced in which 0.5% by weight of ethene-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte.
[Example 12]
A battery M of Example 12 was produced in which 1% by weight of ethene-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte.
[Example 13]
A battery N of Example 13 was produced in which 2% by weight of ethene-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte.
[Comparative Example 3]
Further, a battery O of Comparative Example 3 was produced in which 2.5% by weight of ethene-1,2-diolsulfonic acid was contained in this non-aqueous electrolyte.
[0049]
[Example 14]
Further, a battery P of Example 14 was produced in which 0.5% by weight of propene-1,2-diolsulfonic acid was contained in this nonaqueous electrolyte . For comparison, the battery Z produced in Comparative Example 2 was used.
[0050]
Batteries with the same conditions were produced 10 cells each and tested under the same conditions as in Example 1. The measurement results are shown in Table 2. In addition, all the data of Table 2 were displayed by the average value of 10 cells.
[0051]
[Table 2]
[0052]
From Table 2, when the non-aqueous electrolyte containing ethene-1,2-diol sulfonic acid and propene-1,2-diol sulfonic acid was used, that is, in the batteries I to O and the battery P, the capacity was maintained after 500 cycles. It has been found that the rate is remarkably improved as compared with the battery Z.
[0053]
In addition, the initial discharge capacity was found to be larger than that of the battery Z in the batteries I to N in which the content of ethene-1,2-diolsulfonic acid was 2% by weight or less.
[0054]
In the case of the battery O in which the content of ethene-1,2-diolsulfonic acid is 2.5% by weight, the capacity retention after the charge / discharge cycle is as high as 80%, but the initial discharge capacity is the same as that of the battery Z. Met. This is because, when the content of the chain diol sulfonic acid with respect to the non-aqueous electrolyte is large, the amount of electricity required for SEI formation is increased, and the formed SEI inhibits the Li insertion reaction into the negative electrode. This is because the amount of electricity charged has decreased.
[0055]
Further, in the above examples, the case where ethene-1,2-diol sulfonic acid and propene-1,2-diol sulfonic acid are used as the chain diol sulfonic acid having an unsaturated bond has been described as an example. In the case of using a chain diol sulfonic acid having an unsaturated bond, and in the case where R1 and R2 in the formula are substituted with a halogen element such as fluorine, the A water electrolyte secondary battery is obtained.
[0056]
As described above, it was found that the cycle life performance of the battery is improved by containing the chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2) in the nonaqueous electrolyte. Although the cause of this is not clarified, a good SEI film is formed on the surface of the negative electrode active material by containing the chain diol sulfonic acid represented by the chemical formula (1) or (2) in the electrolyte. It is considered that the subsequent decomposition of the nonaqueous electrolyte on the negative electrode was suppressed.
[0057]
In order to prevent a reduction in initial discharge capacity, the content of the chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2) in the nonaqueous electrolyte is preferably 2% by weight or less, More preferably, the content is 1% by weight or less.
[0058]
In the above examples, the electrolyte solvent is described as a mixed solvent of EC and EMC, but also when the ratio of cyclic carbonate and chain carbonate is changed, or when DMC or DEC is used as the chain carbonate. A similar tendency was observed, and the same tendency was observed when γ-butyrolactone was used instead of the chain carbonate. A similar tendency was observed when the concentration of the supporting salt was changed. The same may be used in combination with various additives (for example, polymerizing agents such as biphenyl and cyclohexylbenzene, and film forming agents such as 1,3-propane sultone, 1,3-propene sultone, and glycol sulfate). The effect of was obtained.
[0059]
【The invention's effect】
According to the present invention, by containing 2% by weight or less of the chain diol sulfonic acid represented by the chemical formula (1) or the chemical formula (2) in the nonaqueous electrolyte, the initial discharge capacity is large, and the negative electrode active material Since good SEI is formed on the surface, the subsequent decomposition of the non-aqueous electrolyte on the surface of the negative electrode active material is suppressed, and as a result, the capacity decrease during the charge / discharge cycle is small and the non-aqueous electrolyte 2 has a long life. It became possible to obtain a secondary battery.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional structure of a prismatic battery of an example of the present invention and a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Square nonaqueous electrolyte secondary battery 2 Flat electrode group 3 Positive electrode 4 Negative electrode 5 Separator 6 Battery case 7 Battery cover 8 Safety valve 9 Positive electrode terminal 10 Positive electrode lead

Claims (1)

正極と、負極と、セパレータと、非水溶媒と溶質とからなる非水電解質を備えた非水電解質二次電池において、前記非水電解質が化学式(1)または化学式(2)で表される鎖状ジオールスルホン酸を2重量%以下含むことを特徴とする非水電解質二次電池。
(但し、式(1)において、R1およびR2は、各々独立して水素、ハロゲン元素、または炭素数1〜4のアルキル基を表す)。
In a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte composed of a non-aqueous solvent and a solute, the non-aqueous electrolyte is a chain represented by chemical formula (1) or chemical formula (2) A nonaqueous electrolyte secondary battery comprising 2% by weight or less of diol sulfonic acid.
(In the formula (1), R1 and R2 each independently represent hydrogen, a halogen element, or an alkyl group having 1 to 4 carbon atoms).
JP2002113608A 2002-04-16 2002-04-16 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4313982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113608A JP4313982B2 (en) 2002-04-16 2002-04-16 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113608A JP4313982B2 (en) 2002-04-16 2002-04-16 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003308876A JP2003308876A (en) 2003-10-31
JP4313982B2 true JP4313982B2 (en) 2009-08-12

Family

ID=29395744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113608A Expired - Fee Related JP4313982B2 (en) 2002-04-16 2002-04-16 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4313982B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317389A (en) * 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP4544408B2 (en) * 2004-06-18 2010-09-15 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
JP2007173014A (en) * 2005-12-21 2007-07-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2003308876A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP4151060B2 (en) Non-aqueous secondary battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP4167012B2 (en) Nonaqueous electrolyte secondary battery
JP7062171B2 (en) Electrolyte and lithium secondary battery containing it
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2006318839A (en) Nonaqueous secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP2002175836A (en) Nonaqueous electrolyte battery
US8372541B2 (en) Non-aqueous electrolyte secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JP2006080008A (en) Nonaqueous electrolyte secondary battery
JP2003162997A (en) Negative electrode for secondary battery and secondary battery using the same
JP4710230B2 (en) Secondary battery electrolyte and secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP4759932B2 (en) Nonaqueous electrolyte secondary battery
JP5029005B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP2002203551A (en) Non-aqueous electrolyte battery
JP4134556B2 (en) Nonaqueous electrolyte secondary battery
JP4147448B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2013069791A1 (en) Non-aqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4313982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees