JP2005317389A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005317389A
JP2005317389A JP2004134620A JP2004134620A JP2005317389A JP 2005317389 A JP2005317389 A JP 2005317389A JP 2004134620 A JP2004134620 A JP 2004134620A JP 2004134620 A JP2004134620 A JP 2004134620A JP 2005317389 A JP2005317389 A JP 2005317389A
Authority
JP
Japan
Prior art keywords
mass
battery
formula
compound
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004134620A
Other languages
Japanese (ja)
Inventor
Tetsuya Murai
村井  哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo GS Soft Energy Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004134620A priority Critical patent/JP2005317389A/en
Publication of JP2005317389A publication Critical patent/JP2005317389A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery in which swelling of a battery at the time of initial charging, deterioration of the battery capacity, and swelling of the battery at the time of repeated charge and discharge cycle are suppressed. <P>SOLUTION: In the non-aqueous electrolyte secondary battery 1 having a positive electrode 4, a negative electrode 3, and an electrolyte, the electrolyte contains ethane-1, 2-diol sulfonic acid or propane-1, 2-diol sulfonic acid, and the negative electrode 3 contains graphite of which a part or whole part of the surface is covered by a low crystalline carbon having 0.5 mass% or more and 20 mass% or less. And the electrolyte contains either ethylene glicol sulfate ester or one or both of propanediol sulfate ester and vinylene carbonate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、正極、負極、及び電解質を備える非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and an electrolyte.

近年、携帯可能な電子機器の高性能化及び小型軽量化が進んでおり、これら電子機器に使用する高エネルギー密度の電池として、リチウムイオン電池などの非水電解質二次電池の使用が拡大している。リチウムイオン電池等の非水電解質二次電池は、充放電を繰返すに従い、放電容量が減少する傾向がある。そのため、充放電を繰返した場合の放電容量の減少を防止すべく、電解質に鎖状ジオールスルホン酸を添加することが行われている(例えば、特許文献1参照)。
特開2003−308876号公報
In recent years, portable electronic devices have been improved in performance and size and weight, and the use of non-aqueous electrolyte secondary batteries such as lithium ion batteries has increased as high-energy density batteries used in these electronic devices. Yes. A nonaqueous electrolyte secondary battery such as a lithium ion battery tends to have a reduced discharge capacity as charging and discharging are repeated. Therefore, in order to prevent a reduction in discharge capacity when charging and discharging are repeated, a chain diol sulfonic acid is added to the electrolyte (for example, see Patent Document 1).
JP 2003-308876 A

しかし、鎖状ジオールスルホン酸を電解質に添加した非水電解質二次電池では、初期充電時にガスが発生するため、電池内圧が上昇して電池が膨れるという問題、及び、発生したガスが極板間に溜まって電池容量が低下するという問題を有する。また、ガスが溜まった部分以外に電流が集中することにより負極上に金属リチウムデンドライトが析出して、正極及び負極間のショートが発生したり、充放電効率が低下するという問題がある。さらに、充放電を繰返した場合の放電容量の低下は抑制できるが、充放電を繰返した際に負極板の厚みが厚くなり、電池の膨れが大きくなるという問題がある。   However, in a non-aqueous electrolyte secondary battery in which a chain diol sulfonic acid is added to the electrolyte, gas is generated during initial charging, so that the battery internal pressure increases and the battery swells, and the generated gas is between the electrode plates. The battery capacity is reduced. In addition, when current concentrates at a portion other than the portion where the gas is accumulated, metallic lithium dendrite is deposited on the negative electrode, causing a short circuit between the positive electrode and the negative electrode, and reducing charge / discharge efficiency. Furthermore, although the reduction of the discharge capacity when charging / discharging is repeated can be suppressed, there is a problem that when the charging / discharging is repeated, the thickness of the negative electrode plate is increased and the swelling of the battery is increased.

本発明は斯かる事情に鑑みてなされたものであり、低結晶性炭素で表面が被覆された黒鉛を負極活物質に用い、電解質に後述する式1で表される化合物を添加することにより、初期充電時の電池の膨れ、充放電サイクルを繰り返した際の電池容量の低下及び電池の膨れを抑制できる非水電解質二次電池を提供することを目的とする。   The present invention has been made in view of such circumstances, by using graphite having a surface coated with low crystalline carbon as a negative electrode active material, and adding a compound represented by Formula 1 described later to an electrolyte. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery capable of suppressing battery swelling during initial charging, battery capacity decrease when the charge / discharge cycle is repeated, and battery swelling.

また、本発明は、黒鉛の表面の一部又は全部を0.5質量%以上、20質量%以下の低結晶性炭素で被覆することにより、初期充電時の電池の膨れ、充放電サイクルを繰り返した際の電池容量の低下及び電池の膨れをさらに良好に抑制できる非水電解質二次電池を提供することを他の目的とする。   In addition, the present invention covers a part or all of the surface of graphite with 0.5% by mass or more and 20% by mass or less of low crystalline carbon, thereby repeating battery swelling and charge / discharge cycles during initial charging. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery that can more effectively suppress a decrease in battery capacity and battery swelling.

また、本発明は、電解質に後述する式2で表される化合物又はビニレンカーボネートを添加することにより、初期充電時の電池の膨れ、及び、充放電サイクルを繰り返した際の電池の膨れをさらに抑制できる非水電解質二次電池を提供することを他の目的とする。   In addition, the present invention further suppresses the swelling of the battery during initial charging and the swelling of the battery when the charge / discharge cycle is repeated by adding a compound represented by Formula 2 or vinylene carbonate described later to the electrolyte. Another object is to provide a non-aqueous electrolyte secondary battery that can be used.

また、本発明は、式1で示される化合物として、エタン−1,2−ジオールスルホン酸、又は、プロパン−1,2−ジオールスルホン酸を用いることにより、初期充電時の電池の膨れ、充放電を繰り返した際の電池容量の低下及び電池の膨れをさらに良好に抑制できる非水電解質二次電池を提供することを他の目的とする。   In addition, the present invention uses ethane-1,2-diol sulfonic acid or propane-1,2-diol sulfonic acid as the compound represented by Formula 1, so that the battery swells and charges and discharges during initial charging. Another object of the present invention is to provide a nonaqueous electrolyte secondary battery that can more effectively suppress a decrease in battery capacity and battery swelling when the above is repeated.

また、本発明は、式2で示される化合物として、エチレングリコール硫酸エステル、又は、プロパンジオール硫酸エステルを用いることにより、初期充電時の電池の膨れ、充放電を繰り返した際の電池容量の低下及び電池の膨れをさらに良好に抑制できる非水電解質二次電池を提供することを他の目的とする。   In addition, the present invention uses ethylene glycol sulfate or propanediol sulfate as the compound represented by Formula 2, thereby reducing the battery capacity when the battery is repeatedly swollen and charged / discharged during initial charging. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery that can more effectively suppress battery swelling.

また、本発明は、電解質に0.2質量%以上、2質量%以下のビニレンカーボネートを添加することにより、初期充電時の電池の膨れ、及び、充放電を繰り返した際の電池の膨れをさらに良好に抑制できる非水電解質二次電池を提供することを他の目的とする。   In addition, the present invention further increases the swelling of the battery during initial charging and the swelling of the battery when repeated charging and discharging by adding 0.2% by mass or more and 2% by mass or less of vinylene carbonate to the electrolyte. Another object is to provide a non-aqueous electrolyte secondary battery that can be satisfactorily suppressed.

第1発明に係る非水電解質二次電池は、正極、負極、及び電解質を備える非水電解質二次電池において、前記電解質は、下記式1で表される化合物を含み、前記負極は、低結晶性炭素で表面の一部又は全部が被覆された黒鉛を含むことを特徴とする。
A−R1−OH(1)
(式中、R1は不飽和結合を含んでいてもよい炭化水素基、又は、不飽和結合を含んでいてもよくその一部もしくは全部がハロゲン元素で置換されている炭化水素基であり、Aは下記式A1、A2又はA3で表される構造を有する。)
A nonaqueous electrolyte secondary battery according to a first aspect of the present invention is a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and an electrolyte. The electrolyte includes a compound represented by the following formula 1, wherein the negative electrode is a low crystal It is characterized by containing graphite in which part or all of the surface is coated with crystalline carbon.
A-R1-OH (1)
(In the formula, R1 is a hydrocarbon group which may contain an unsaturated bond, or a hydrocarbon group which may contain an unsaturated bond, part or all of which is substituted with a halogen element; Has a structure represented by the following formula A1, A2 or A3.)

Figure 2005317389
Figure 2005317389

Figure 2005317389
Figure 2005317389

Figure 2005317389
Figure 2005317389

第2発明に係る非水電解質二次電池は、第1発明において、前記被覆された黒鉛は、表面の一部又は全部が0.5質量%以上、20質量%以下の低結晶性炭素で被覆されていることを特徴とする。   A nonaqueous electrolyte secondary battery according to a second invention is the non-aqueous electrolyte secondary battery according to the first invention, wherein the coated graphite is coated with a low crystalline carbon having a part or all of the surface of 0.5% by mass or more and 20% by mass or less. It is characterized by being.

第3発明に係る非水電解質二次電池は、第1又は第2発明において、電解質は、下記式2で表される化合物を含むことを特徴とする。
R2−B−R3(2)
(式中、R2及びR3は夫々独立して、不飽和結合を含んでいてもよい炭化水素基、又は不飽和結合を含んでいてもよくその一部もしくは全部がハロゲン元素で置換されている炭化水素基を表す、又は、R2及びR3は互いに結合してBと共に環状構造を形成しており、Bは下記式B1、B2、B3又はB4で表される構造を有する。)
A nonaqueous electrolyte secondary battery according to a third invention is characterized in that, in the first or second invention, the electrolyte contains a compound represented by the following formula 2.
R2-B-R3 (2)
(In the formula, R 2 and R 3 are each independently a hydrocarbon group which may contain an unsaturated bond, or a carbon atom which may contain an unsaturated bond, part or all of which is substituted with a halogen element. Represents a hydrogen group, or R2 and R3 are bonded to each other to form a cyclic structure with B, and B has a structure represented by the following formula B1, B2, B3, or B4.

Figure 2005317389
Figure 2005317389

Figure 2005317389
Figure 2005317389

Figure 2005317389
Figure 2005317389

Figure 2005317389
Figure 2005317389

第4発明に係る非水電解質二次電池は、第1〜第3発明の何れかにおいて、前記式1で表される化合物は、エタン−1,2−ジオールスルホン酸、又は、プロパン−1,2−ジオールスルホン酸であることを特徴とする。   The nonaqueous electrolyte secondary battery according to a fourth aspect of the present invention is the non-aqueous electrolyte secondary battery according to any one of the first to third aspects, wherein the compound represented by the formula 1 is ethane-1,2-diol sulfonic acid or propane-1, It is 2-diol sulfonic acid.

第5発明に係る非水電解質二次電池は、第3発明において、前記式2で表される化合物は、エチレングリコール硫酸エステル、又は、プロパンジオール硫酸エステルであることを特徴とする。   A nonaqueous electrolyte secondary battery according to a fifth invention is characterized in that, in the third invention, the compound represented by Formula 2 is ethylene glycol sulfate or propanediol sulfate.

第6発明に係る非水電解質二次電池は、第1〜第5発明の何れかにおいて、電解質は、ビニレンカーボネートを含むことを特徴とする。   The nonaqueous electrolyte secondary battery according to a sixth aspect of the present invention is characterized in that, in any one of the first to fifth aspects, the electrolyte contains vinylene carbonate.

第7発明に係る非水電解質二次電池は、第6発明において、電解質は、0.2質量%以上、2質量%以下のビニレンカーボネートを含むことを特徴とする。   A nonaqueous electrolyte secondary battery according to a seventh invention is characterized in that, in the sixth invention, the electrolyte contains 0.2% by mass or more and 2% by mass or less of vinylene carbonate.

第1発明においては、電解質に前記式1で表される化合物を用いることにより、充放電を繰返した場合の放電容量の低下を抑制できる。そして、低結晶性炭素で黒鉛の表面を被覆した場合、被覆処理によって表面官能基が除去される。表面官能基は、電解液に対して活性であり、またそれ自身もリチウムと反応したり、前記式1で表される化合物と反応するために、ガスの発生が起こり易い。しかし、表面官能基が除去されるため、ガスの発生は抑制される。また、一般に黒鉛は、エッジ面が露出しているために、充電時の黒鉛層間への溶媒の共挿入が起こり易く、黒鉛層間への共挿入によって黒鉛層間距離が大きくなり、黒鉛粒子が膨張することがある。低結晶性炭素で黒鉛の表面を被覆した場合、充電時の黒鉛層間への溶媒の共挿入が起こり難くなり、黒鉛粒子の膨張を抑制できる。   In 1st invention, the fall of the discharge capacity at the time of repeating charging / discharging can be suppressed by using the compound represented by the said Formula 1 for electrolyte. When the surface of graphite is coated with low crystalline carbon, the surface functional groups are removed by the coating process. The surface functional group is active with respect to the electrolytic solution, and itself reacts with lithium or reacts with the compound represented by the formula 1 so that gas is easily generated. However, since surface functional groups are removed, gas generation is suppressed. In general, because graphite has an exposed edge surface, co-insertion of the solvent between the graphite layers during charging is likely to occur, and the inter-graphite interlayer increases the graphite interlayer distance, and the graphite particles expand. Sometimes. When the surface of graphite is coated with low crystalline carbon, it becomes difficult for the solvent to co-insert between the graphite layers during charging, and the expansion of the graphite particles can be suppressed.

第2発明においては、黒鉛表面を、黒鉛の質量に対して0.5質量%以上20質量%以下の低結晶性炭素で被覆した場合、充放電を繰返した際の電池容量の低下、及び、充放電を繰返した場合の電池厚みの増加が良好に抑制される。黒鉛の表面を0.5質量%未満の低結晶性炭素で被覆した場合、効果が小さく、充放電を繰返した際の電池厚みが増加する。また、黒鉛の表面を20質量%よりも多い低結晶性炭素で被覆した場合、充放電を繰返した際の電池容量が低下し、充放電を繰返した場合の電池厚みが増加する。   In the second invention, when the graphite surface is coated with 0.5% by mass or more and 20% by mass or less of low crystalline carbon with respect to the mass of graphite, the battery capacity decreases when charging and discharging are repeated, and An increase in battery thickness when charging and discharging are repeated is favorably suppressed. When the surface of graphite is coated with low crystalline carbon of less than 0.5% by mass, the effect is small, and the battery thickness increases when charging and discharging are repeated. Moreover, when the surface of graphite is coated with more than 20% by mass of low crystalline carbon, the battery capacity at the time of repeated charge / discharge decreases, and the battery thickness at the time of repeated charge / discharge increases.

第3、第6発明においては、前記式2で表される化合物又はビニレンカーボネートを電解質に添加した場合、負極上に安定した負極保護被膜が形成される。前記式1で表される化合物が負極上に形成するSEI(固体電解質界面)は、黒鉛層間への溶媒の共挿入が起こり易くなる性質を有し、前記式1で表される化合物を電解液に添加した場合、充放電を繰返した際に活物質が膨張して負極板が膨れる傾向がある。また、前記式1で表される化合物によって、バインダの結着力が低下したり、前記式1で表される化合物によってバインダ自身が膨張するために、充放電に伴う負極板の膨張収縮の際に、極板が膨張し易くなる傾向がある。しかし、負極上に安定した負極保護被膜が形成されるため、前記式1を添加したことによる上述した負極板の膨張を抑制できる。   In the third and sixth inventions, when the compound represented by Formula 2 or vinylene carbonate is added to the electrolyte, a stable negative electrode protective film is formed on the negative electrode. The SEI (solid electrolyte interface) formed by the compound represented by the formula 1 on the negative electrode has a property that the co-insertion of the solvent between the graphite layers easily occurs. When added to, the active material expands when the charge and discharge are repeated, and the negative electrode plate tends to expand. Further, the binding force of the binder is reduced by the compound represented by the formula 1 or the binder itself is expanded by the compound represented by the formula 1, so that the negative electrode plate expands and contracts due to charge / discharge. The electrode plate tends to expand easily. However, since a stable negative electrode protective film is formed on the negative electrode, the above-described expansion of the negative electrode plate due to the addition of Formula 1 can be suppressed.

第4発明においては、式1で示される化合物として、エタン−1,2−ジオールスルホン酸、又は、プロパン−1,2−ジオールスルホン酸を用いた場合、初期充電時の電池の膨れ、充放電サイクルを繰り返した際の電池容量の低下及び電池の膨れが良好に抑制される。   In the fourth aspect of the invention, when ethane-1,2-diol sulfonic acid or propane-1,2-diol sulfonic acid is used as the compound represented by formula 1, the battery swells and is charged and discharged during initial charging. A decrease in battery capacity and battery swelling when the cycle is repeated are satisfactorily suppressed.

第5発明においては、式2で示される化合物として、エチレングリコール硫酸エステル、又は、プロパンジオール硫酸エステルを用いた場合、初期充電時の電池の膨れ、充放電サイクルを繰り返した際の電池容量の低下及び電池の膨れが良好に抑制される。   In the fifth invention, when ethylene glycol sulfate or propanediol sulfate is used as the compound represented by Formula 2, the battery swells during initial charging, and the battery capacity decreases when the charge / discharge cycle is repeated. In addition, the swelling of the battery is satisfactorily suppressed.

第7発明においては、電解質に0.2〜2質量%のビニレンカーボネートを添加した場合、初期充電時の電池の膨れ、及び、充放電サイクルを繰り返した際の電池の膨れが良好に抑制される。電解質にビニレンカーボネートを2質量%よりも多く添加した場合、初期放電容量及び充放電を繰返した際の放電容量が低下すると共に、初期電池厚み及び充放電を繰返した際の厚み増分が増加する傾向にある。また、電解質にビニレンカーボネートを0.2質量未満添加した場合は、効果が小さい。   In 7th invention, when 0.2-2 mass% vinylene carbonate is added to electrolyte, the swelling of the battery at the time of initial charge and the swelling of the battery at the time of repeating charging / discharging cycle are suppressed favorably. . When vinylene carbonate is added to the electrolyte in an amount of more than 2% by mass, the initial discharge capacity and the discharge capacity upon repeated charge / discharge decrease, and the initial battery thickness and the thickness increment upon repeated charge / discharge tend to increase. It is in. Moreover, when less than 0.2 mass of vinylene carbonate is added to electrolyte, an effect is small.

第1発明によれば、初期充電時の電池の膨れ、充放電サイクルを繰り返した際の電池容量の低下及び電池の膨れを抑制できる。   According to the first invention, it is possible to suppress battery swelling during initial charging, battery capacity reduction and battery swelling when the charge / discharge cycle is repeated.

第2、第4、第5発明によれば、初期充電時の電池の膨れ、充放電サイクルを繰り返した際の電池容量の低下及び電池の膨れを、さらに良好に抑制できる。   According to the second, fourth, and fifth inventions, it is possible to more favorably suppress battery swelling during initial charging, battery capacity reduction and battery swelling when the charge / discharge cycle is repeated.

第3、第6発明によれば、初期充電時の電池の膨れ、及び、充放電サイクルを繰り返した際の電池の膨れをさらに抑制できる。   According to the 3rd and 6th invention, the swelling of the battery at the time of initial charge and the swelling of the battery at the time of repeating a charging / discharging cycle can be suppressed further.

第7発明によれば、初期充電時の電池の膨れ、及び、充放電サイクルを繰り返した際の電池の膨れを、さらに良好に抑制できる。   According to the seventh aspect of the present invention, the swelling of the battery at the time of initial charge and the swelling of the battery when the charge / discharge cycle is repeated can be further suppressed satisfactorily.

以下、本発明をその実施の形態を示す図面に基づいて具体的に説明するが、本発明は、本実施例により、何ら限定されるものではなく、その主旨を変更しない範囲において、適宜変更して実施することができる。   Hereinafter, the present invention will be specifically described with reference to the drawings illustrating the embodiments thereof, but the present invention is not limited to the embodiments in any way, and may be appropriately changed without departing from the scope of the present invention. Can be implemented.

(実施例1)
図1は、本発明に係る非水電解質二次電池(以下、電池という)の断面図である。図1において、1は電池、2は扁平巻状電極群、3は負極、4は正極、5はセパレータ、6は電池ケース、7は電池蓋、8は安全弁、9は負極端子、10は負極リードである。扁平巻状電極群2は、正極4と負極3とをセパレータ5を介して巻回したものである。電池蓋7は負極端子9及び安全弁8を有し、扁平巻状電極群2は電池ケース6に収容してあり、電池蓋7と電池ケース6とはレーザー溶接されている。負極端子9は負極リード10と接続され、負極3は電池ケース6と接続されている。
(Example 1)
FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery (hereinafter referred to as a battery) according to the present invention. In FIG. 1, 1 is a battery, 2 is a flat wound electrode group, 3 is a negative electrode, 4 is a positive electrode, 5 is a separator, 6 is a battery case, 7 is a battery lid, 8 is a safety valve, 9 is a negative electrode terminal, and 10 is a negative electrode Lead. The flat wound electrode group 2 is obtained by winding a positive electrode 4 and a negative electrode 3 through a separator 5. The battery lid 7 has a negative electrode terminal 9 and a safety valve 8, the flat wound electrode group 2 is accommodated in the battery case 6, and the battery lid 7 and the battery case 6 are laser welded. The negative electrode terminal 9 is connected to the negative electrode lead 10, and the negative electrode 3 is connected to the battery case 6.

正極合剤は、活物質としてのLiCoO2 90質量%と、導電助剤としてのアセチレンブラック5質量%と、バインダとしてのポリフッ化ビニリデン(PVDF)5質量%とを混合して正極合剤とし、N−メチル−2−ピロリドン(NMP)に分散させることによりペーストを調製した。調製したペーストを厚さ20μmのアルミニウム集電体に均一に塗布して乾燥させた後、ロールプレスで圧縮成形することにより正極を作製した。 The positive electrode mixture was prepared by mixing 90% by mass of LiCoO 2 as an active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder, A paste was prepared by dispersing in N-methyl-2-pyrrolidone (NMP). The prepared paste was uniformly applied to an aluminum current collector with a thickness of 20 μm and dried, and then subjected to compression molding with a roll press to produce a positive electrode.

負極合剤は、負極活物質としての炭素材料95質量%と、バインダとしてのカルボキシメチルセルロース3質量%及びスチレンブタジエンゴム2質量%とを混合し、蒸留水を適宜加えて分散させ、スラリーを調整した。調製したスラリーを厚さ15μmの銅集電体に均一に塗布し、100℃で5時間乾燥させた後、ロールプレスで負極合剤層の密度が1.4g/cm3 となるように圧縮成形することにより負極を作製した。 The negative electrode mixture was prepared by mixing 95% by mass of a carbon material as a negative electrode active material, 3% by mass of carboxymethyl cellulose and 2% by mass of styrene butadiene rubber as a binder, and adding and dispersing distilled water as appropriate to prepare a slurry. . The prepared slurry was uniformly applied to a 15 μm thick copper current collector, dried at 100 ° C. for 5 hours, and then compression-molded with a roll press so that the density of the negative electrode mixture layer was 1.4 g / cm 3. As a result, a negative electrode was produced.

前記炭素材料は、天然黒鉛の表面の一部又は全部を、天然黒鉛よりも結晶性の低い低結晶性炭素で被覆したもの(以下、被覆黒鉛という)であり、前記天然黒鉛は、X線広角回折法による(002)面の平均面間隔(d002)が3.357Åであり、また、アルゴンレーザーラマンによる1580cm-1付近のピークに対する1355cm-1付近のピークの強度比(I1355/I1580)が、0.25であり、さらに、学振法によるX線回折で求めた結晶子サイズLc及びLaは100nm以上であるものを用いた。また、前記被覆黒鉛は、アルゴンレーザーラマンによる1580cm-1付近のピークに対する1355cm-1付近のピークの強度比(以下、ラマンのR値という)が1.03である。 The carbon material is obtained by coating a part or all of the surface of natural graphite with low crystalline carbon having lower crystallinity than natural graphite (hereinafter referred to as coated graphite). The average plane spacing (d002) of the (002) plane by the diffraction method is 3.357 mm, and the intensity ratio (I1355 / I1580) of the peak near 1355 cm −1 to the peak near 1580 cm −1 by argon laser Raman is The crystallite size Lc and La obtained by X-ray diffraction by the Gakushin method was 100 nm or more. Further, the coated graphite, the peak intensity ratio of around 1355 cm -1 to a peak around 1580 cm -1 due to the argon laser Raman (hereinafter, referred to as Raman R value) is 1.03.

前記被覆黒鉛は、トルエンガスを炭素原料として化学蒸着処理法によって天然黒鉛の表面を天然黒鉛の質量に対して10質量%(以下、被覆量という)の低結晶性炭素で被覆したものである。化学蒸着処理方法としては、特に限定はされないが、例えば流動床式の化学蒸着処理法、又は、静置式の固定床化学蒸着処理法を用いることが可能である。   The coated graphite is obtained by coating the surface of natural graphite with 10% by mass (hereinafter referred to as coating amount) of low crystalline carbon by a chemical vapor deposition method using toluene gas as a carbon raw material. Although it does not specifically limit as a chemical vapor deposition processing method, For example, it is possible to use a fluidized bed type chemical vapor deposition processing method or a stationary type fixed bed chemical vapor deposition processing method.

流動床式の化学蒸着処理法では、まず黒鉛粒子と不活性ガスとを反応器内に供給して、嵩密度(JIS K5101)が約0.1〜0.5g/cm3 の黒鉛粒子の流動層を形成する。この状態で反応器内を昇温して反応器内が所定温度に到達した後、炭素源を反応器内に供給することによって、黒鉛粒子の表面が低結晶性炭素で被覆される。化学蒸着処理温度は炭素源として用いる有機物の種類によって異なるが、化学蒸着処理温度が850℃未満の場合は、熱分解炭素の析出速度が小さく、化学蒸着処理に長時間を要するので好ましくない。化学蒸着処理温度は特に限定されないが、850〜1200℃が好ましく、より好ましくは900〜1200℃、特に好ましくは950〜1150℃である。 In the fluidized bed chemical vapor deposition method, first, graphite particles and an inert gas are supplied into a reactor, and flow of graphite particles having a bulk density (JIS K5101) of about 0.1 to 0.5 g / cm 3. Form a layer. In this state, the temperature inside the reactor is raised and the inside of the reactor reaches a predetermined temperature, and then the surface of the graphite particles is coated with low crystalline carbon by supplying a carbon source into the reactor. The chemical vapor deposition temperature varies depending on the type of organic substance used as the carbon source. However, when the chemical vapor deposition temperature is less than 850 ° C., the deposition rate of pyrolytic carbon is low, and it takes a long time for the chemical vapor deposition, which is not preferable. The chemical vapor deposition temperature is not particularly limited, but is preferably 850 to 1200 ° C, more preferably 900 to 1200 ° C, and particularly preferably 950 to 1150 ° C.

炭素源としては、特に限定はされないが、例えばベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ビフェニル、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環〜3環の芳香族炭化水素、その誘導体、又はその混合物などの有機物を用いることが可能である。また、石炭系のタールの蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、石油系の分解油、ナフサ分解タール油、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の脂肪族炭化水素を用いたり、前記脂肪族炭化水素の誘導体であるアルコールを単独で、又は混合物として用いたり、エチレン、プロピレン、イソプロピレン、ブタジエン、アセチレン等の二重結合又は三重結合を有する有機物を用いることが可能である。   The carbon source is not particularly limited, but for example, one ring such as benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, biphenyl, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, etc. Organic substances such as ˜3-ring aromatic hydrocarbons, derivatives thereof, or mixtures thereof can be used. Also, aliphatic hydrocarbons such as gas light oil, creosote oil, anthracene oil, petroleum cracked oil, naphtha cracked tar oil, methane, ethane, propane, butane, pentane, hexane, etc., obtained in the coal tar distillation process , Alcohols that are derivatives of the above aliphatic hydrocarbons can be used alone or as a mixture, or organic substances having a double bond or triple bond such as ethylene, propylene, isopropylene, butadiene, acetylene, etc. can be used. It is.

なお、化学蒸着処理において、反応器内に供給する炭素源としての有機物は、不活性ガスで希釈した混合ガスの形態で供給することが好ましい。不活性ガスとしては、特に限定されないが、窒素又はアルゴン等を用いることが可能である。混合ガス中の有機物のモル濃度は、好ましくは2〜80%、さらに好ましくは5〜70%である。混合ガス中の有機物のモル濃度が2%未満の場合は、化学蒸着処理に長時間を要するので好ましくない。一方、混合ガス中の有機物のモル濃度が80%を超える場合は、炭素粒子表面を低結晶性炭素で被覆した後に、低結晶性炭素が炭素粒子表面から剥がれ落ち易くなるため好ましくない。以上の諸条件を適宜選択して化学蒸着処理を行うことにより、黒鉛粒子表面を低結晶性炭素で被覆することができる。なお、被覆に用いる低結晶性炭素の量(被覆量)は、化学蒸着処理時間により調節することができる。   In the chemical vapor deposition process, it is preferable to supply the organic substance as a carbon source supplied into the reactor in the form of a mixed gas diluted with an inert gas. Although it does not specifically limit as an inert gas, Nitrogen or argon can be used. The molar concentration of the organic substance in the mixed gas is preferably 2 to 80%, more preferably 5 to 70%. If the molar concentration of the organic substance in the mixed gas is less than 2%, the chemical vapor deposition process takes a long time, which is not preferable. On the other hand, when the molar concentration of the organic substance in the mixed gas exceeds 80%, the low crystalline carbon tends to peel off from the carbon particle surface after the carbon particle surface is coated with the low crystalline carbon, which is not preferable. By appropriately selecting the above conditions and performing chemical vapor deposition, the surface of the graphite particles can be coated with low crystalline carbon. The amount of low crystalline carbon used for coating (coating amount) can be adjusted by the chemical vapor deposition time.

また、静置式の固定床化学蒸着処理法では、例えば石英管中の黒鉛板上に黒鉛粒子を静置して、石英管内に炭素源となる有機物と希釈ガスとからなる混合ガスを供給しながら有機物の熱分解温度以上に加熱する。なお、炭素源となる有機物の種類、希釈ガスの種類、混合ガス中の有機物のモル濃度、及び、処理温度は、上述の流動床式の化学蒸着処理法と同様である。   In the stationary fixed bed chemical vapor deposition method, for example, graphite particles are allowed to stand on a graphite plate in a quartz tube, and a mixed gas composed of an organic substance serving as a carbon source and a dilution gas is supplied into the quartz tube. Heat above the thermal decomposition temperature of organic matter. In addition, the kind of organic substance used as a carbon source, the kind of dilution gas, the molar concentration of the organic substance in the mixed gas, and the treatment temperature are the same as those in the fluidized bed chemical vapor deposition method described above.

セパレータ5としては、厚さ20μm程度の微多孔性ポリエチレンフィルムを用いた。電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との体積比が3:7の混合溶媒にLiPF6 を1.1mol/l溶解させたものに、式1(A−R1−OH、ただし、R1は不飽和結合を含んでいてもよい炭化水素基、又は、不飽和結合を含んでいてもよくその一部もしくは全部がハロゲン元素で置換されている炭化水素基であり、Aは表1に示すA1、A2又はA3で表される構造を有する。)に係る表1に示す化合物C1を0.5質量%添加した非水電解質を用いた。電池10のサイズは、幅30mm、厚さ4.2mm、高さ50mmであり、容量は600mAhである。 As the separator 5, a microporous polyethylene film having a thickness of about 20 μm was used. The electrolyte was prepared by dissolving 1.1 mol / l of LiPF 6 in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7, and the formula 1 (A-R1-OH However, R1 is a hydrocarbon group which may contain an unsaturated bond, or a hydrocarbon group which may contain an unsaturated bond, part or all of which is substituted with a halogen element, and A is A nonaqueous electrolyte to which 0.5% by mass of the compound C1 shown in Table 1 according to A1 or A2 or A3 shown in Table 1 was added was used. The battery 10 has a width of 30 mm, a thickness of 4.2 mm, a height of 50 mm, and a capacity of 600 mAh.

Figure 2005317389
Figure 2005317389

(実施例2)
電解質に、式1に係る表1に示す化合物C2を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 2)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of the compound C2 shown in Table 1 according to Formula 1 was added to the electrolyte.

(実施例3)
電解質に、式1に係る表1に示す化合物C3を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
Example 3
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of the compound C3 shown in Table 1 according to Formula 1 was added to the electrolyte.

(実施例4)
電解質に、式1に係る表1に示す化合物C4を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 4)
A battery was produced in the same manner as in Example 1 except that 0.5% by mass of the compound C4 shown in Table 1 according to Formula 1 was added to the electrolyte.

(実施例5)
電解質に、式1に係る表1に示す化合物C5を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 5)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of the compound C5 shown in Table 1 according to Formula 1 was added to the electrolyte.

(実施例6)
電解質に、式1に係る表2に示す化合物C6を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 6)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of Compound C6 shown in Table 2 according to Formula 1 was added to the electrolyte.

Figure 2005317389
Figure 2005317389

(実施例7)
電解質に、式1に係る表2に示す化合物C7を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 7)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of Compound C7 shown in Table 2 according to Formula 1 was added to the electrolyte.

(実施例8)
電解質に、式1に係る表2に示す化合物C8を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 8)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of Compound C8 shown in Table 2 according to Formula 1 was added to the electrolyte.

(実施例9)
電解質に、式1に係る表2に示す化合物C9を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
Example 9
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of Compound C9 shown in Table 2 according to Formula 1 was added to the electrolyte.

(実施例10)
電解質に、式1に係る表3に示す化合物C10を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 10)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of the compound C10 shown in Table 3 according to Formula 1 was added to the electrolyte.

Figure 2005317389
Figure 2005317389

(実施例11)
電解質に、式1に係る表3に示す化化合物C11を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 11)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of the compound C11 shown in Table 3 according to Formula 1 was added to the electrolyte.

(実施例12)
電解質に、式1に係る表3に示す化合物C12を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 12)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of the compound C12 shown in Table 3 according to Formula 1 was added to the electrolyte.

(実施例13)
電解質に、式1に係る表3に示す化合物C13を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 13)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of Compound C13 shown in Table 3 according to Formula 1 was added to the electrolyte.

(実施例14)
電解質に、式1に係る表4に示す化合物C14を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 14)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of Compound C14 shown in Table 4 according to Formula 1 was added to the electrolyte.

Figure 2005317389
Figure 2005317389

(実施例15)
電解質に、式1に係る表4に示す化合物C15を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 15)
A battery was prepared in the same manner as in Example 1 except that 0.5% by mass of Compound C15 shown in Table 4 according to Formula 1 was added to the electrolyte.

(実施例16)
電解質に、式1に係る化合物C1を0.001質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 16)
A battery was prepared in the same manner as in Example 1 except that 0.001% by mass of the compound C1 according to Formula 1 was added to the electrolyte.

(実施例17)
電解質に、式1に係る化合物C1を0.01質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 17)
A battery was prepared in the same manner as in Example 1 except that 0.01% by mass of the compound C1 according to Formula 1 was added to the electrolyte.

(実施例18)
電解質に、式1に係る化合物C1を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 18)
A battery was produced in the same manner as in Example 1 except that 0.1% by mass of the compound C1 according to Formula 1 was added to the electrolyte.

(実施例19)
電解質に、式1に係る化合物C1を1.0質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 19)
A battery was produced in the same manner as in Example 1 except that 1.0% by mass of the compound C1 according to Formula 1 was added to the electrolyte.

(実施例20)
電解質に、式1に係る化合物C1を2.0質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 20)
A battery was produced in the same manner as in Example 1 except that 2.0% by mass of the compound C1 according to Formula 1 was added to the electrolyte.

(実施例21)
電解質に、式1に係る化合物C1を3.0質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 21)
A battery was prepared in the same manner as in Example 1 except that 3.0% by mass of the compound C1 according to Formula 1 was added to the electrolyte.

(実施例22)
電解質に、式1に係る化合物C1を4.0質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 22)
A battery was produced in the same manner as in Example 1 except that 4.0% by mass of the compound C1 according to Formula 1 was added to the electrolyte.

(実施例23)
電解質に、式1に係る化合物C2を0.001質量%添加したこと以外は、実施例2と同様な電池を作製した。
(Example 23)
A battery was prepared in the same manner as in Example 2 except that 0.001% by mass of the compound C2 according to Formula 1 was added to the electrolyte.

(実施例24)
電解質に、式1に係る化合物C2を0.01質量%添加したこと以外は、実施例2と同様な電池を作製した。
(Example 24)
A battery was prepared in the same manner as in Example 2 except that 0.01% by mass of the compound C2 according to Formula 1 was added to the electrolyte.

(実施例25)
電解質に、式1に係る化合物C2を0.1質量%添加したこと以外は、実施例2と同様な電池を作製した。
(Example 25)
A battery was prepared in the same manner as in Example 2 except that 0.1% by mass of the compound C2 according to Formula 1 was added to the electrolyte.

(実施例26)
電解質に、式1に係る化合物C2を1.0質量%添加したこと以外は、実施例2と同様な電池を作製した。
(Example 26)
A battery was prepared in the same manner as in Example 2 except that 1.0% by mass of the compound C2 according to Formula 1 was added to the electrolyte.

(実施例27)
電解質に、式1に係る化合物C2を2.0質量%添加したこと以外は、実施例2と同様な電池を作製した。
(Example 27)
A battery was prepared in the same manner as in Example 2 except that 2.0% by mass of the compound C2 according to Formula 1 was added to the electrolyte.

(実施例28)
電解質に、式1に係る化合物C2を3.0質量%添加したこと以外は、実施例2と同様な電池を作製した。
(Example 28)
A battery was prepared in the same manner as in Example 2 except that 3.0% by mass of the compound C2 according to Formula 1 was added to the electrolyte.

(実施例29)
電解質に、式1に係る化合物C2を4.0質量%添加したこと以外は、実施例2と同様な電池を作製した。
(Example 29)
A battery was produced in the same manner as in Example 2 except that 4.0% by mass of the compound C2 according to Formula 1 was added to the electrolyte.

(実施例30)
電解質に、式1に係る化合物C3を0.001質量%添加したこと以外は、実施例3と同様な電池を作製した。
(Example 30)
A battery was produced in the same manner as in Example 3, except that 0.001% by mass of the compound C3 according to Formula 1 was added to the electrolyte.

(実施例31)
電解質に、式1に係る化合物C3を0.01質量%添加したこと以外は、実施例3と同様な電池を作製した。
(Example 31)
A battery was produced in the same manner as in Example 3, except that 0.01% by mass of the compound C3 according to Formula 1 was added to the electrolyte.

(実施例32)
電解質に、式1に係る化合物C3を0.1質量%添加したこと以外は、実施例3と同様な電池を作製した。
(Example 32)
A battery was prepared in the same manner as in Example 3 except that 0.1% by mass of the compound C3 according to Formula 1 was added to the electrolyte.

(実施例33)
電解質に、式1に係る化合物C3を1.0質量%添加したこと以外は、実施例3と同様な電池を作製した。
(Example 33)
A battery was prepared in the same manner as in Example 3 except that 1.0% by mass of the compound C3 according to Formula 1 was added to the electrolyte.

(実施例34)
電解質に、式1に係る化合物C3を2.0質量%添加したこと以外は、実施例3と同様な電池を作製した。
(Example 34)
A battery was prepared in the same manner as in Example 3 except that 2.0% by mass of the compound C3 according to Formula 1 was added to the electrolyte.

(実施例35)
電解質に、式1に係る化合物C3を3.0質量%添加したこと以外は、実施例3と同様な電池を作製した。
(Example 35)
A battery was produced in the same manner as in Example 3, except that 3.0% by mass of the compound C3 according to Formula 1 was added to the electrolyte.

(実施例36)
電解質に、式1に係る化合物C3を4.0質量%添加したこと以外は、実施例3と同様な電池を作製した。
(Example 36)
A battery was produced in the same manner as in Example 3, except that 4.0% by mass of the compound C3 according to Formula 1 was added to the electrolyte.

(実施例37)
電解質に、式1に係る化合物C5を0.001質量%添加したこと以外は、実施例5と同様な電池を作製した。
(Example 37)
A battery was produced in the same manner as in Example 5 except that 0.001% by mass of the compound C5 according to Formula 1 was added to the electrolyte.

(実施例38)
電解質に、式1に係る化合物C5を0.01質量%添加したこと以外は、実施例5と同様な電池を作製した。
(Example 38)
A battery was produced in the same manner as in Example 5 except that 0.01% by mass of the compound C5 according to Formula 1 was added to the electrolyte.

(実施例39)
電解質に、式1に係る化合物C5を0.1質量%添加したこと以外は、実施例5と同様な電池を作製した。
(Example 39)
A battery was prepared in the same manner as in Example 5 except that 0.1% by mass of Compound C5 according to Formula 1 was added to the electrolyte.

(実施例40)
電解質に、式1に係る化合物C5を1.0質量%添加したこと以外は、実施例5と同様な電池を作製した。
(Example 40)
A battery was produced in the same manner as in Example 5 except that 1.0% by mass of the compound C5 according to Formula 1 was added to the electrolyte.

(実施例41)
電解質に、式1に係る化合物C5を2.0質量%添加したこと以外は、実施例5と同様な電池を作製した。
(Example 41)
A battery was produced in the same manner as in Example 5 except that 2.0% by mass of the compound C5 according to Formula 1 was added to the electrolyte.

(実施例42)
電解質に、式1に係る化合物C5を3.0質量%添加したこと以外は、実施例5と同様な電池を作製した。
(Example 42)
A battery was produced in the same manner as in Example 5 except that 3.0% by mass of the compound C5 according to Formula 1 was added to the electrolyte.

(実施例43)
電解質に、式1に係る化合物C5を4.0質量%添加したこと以外は、実施例5と同様な電池を作製した。
(Example 43)
A battery was produced in the same manner as in Example 5 except that 4.0% by mass of the compound C5 according to Formula 1 was added to the electrolyte.

(実施例44)
電解質に、式1に係る化合物C7を0.001質量%添加したこと以外は、実施例7と同様な電池を作製した。
(Example 44)
A battery was produced in the same manner as in Example 7 except that 0.001% by mass of the compound C7 according to Formula 1 was added to the electrolyte.

(実施例45)
電解質に、式1に係る化合物C7を0.01質量%添加したこと以外は、実施例7と同様な電池を作製した。
(Example 45)
A battery was produced in the same manner as in Example 7 except that 0.01% by mass of the compound C7 according to Formula 1 was added to the electrolyte.

(実施例46)
電解質に、式1に係る化合物C7を0.1質量%添加したこと以外は、実施例7と同様な電池を作製した。
(Example 46)
A battery was prepared in the same manner as in Example 7 except that 0.1% by mass of Compound C7 according to Formula 1 was added to the electrolyte.

(実施例47)
電解質に、式1に係る化合物C7を1.0質量%添加したこと以外は、実施例7と同様な電池を作製した。
(Example 47)
A battery was produced in the same manner as in Example 7 except that 1.0% by mass of the compound C7 according to Formula 1 was added to the electrolyte.

(実施例48)
電解質に、式1に係る化合物C7を2.0質量%添加したこと以外は、実施例7と同様な電池を作製した。
(Example 48)
A battery similar to that of Example 7 was prepared, except that 2.0% by mass of Compound C7 according to Formula 1 was added to the electrolyte.

(実施例49)
電解質に、式1に係る化合物C7を3.0質量%添加したこと以外は、実施例7と同様な電池を作製した。
(Example 49)
A battery was produced in the same manner as in Example 7 except that 3.0% by mass of the compound C7 according to Formula 1 was added to the electrolyte.

(実施例50)
電解質に、式1に係る化合物C7を4.0質量%添加したこと以外は、実施例7と同様な電池を作製した。
(Example 50)
A battery was prepared in the same manner as in Example 7 except that 4.0% by mass of the compound C7 according to Formula 1 was added to the electrolyte.

(実施例51)
電解質に、式1に係る化合物C12を0.001質量%添加したこと以外は、実施例12と同様な電池を作製した。
(Example 51)
A battery was produced in the same manner as in Example 12 except that 0.001% by mass of the compound C12 according to Formula 1 was added to the electrolyte.

(実施例52)
電解質に、式1に係る化合物C12を0.01質量%添加したこと以外は、実施例12と同様な電池を作製した。
(Example 52)
A battery was prepared in the same manner as in Example 12 except that 0.01% by mass of the compound C12 according to Formula 1 was added to the electrolyte.

(実施例53)
電解質に、式1に係る化合物C12を0.1質量%添加したこと以外は、実施例12と同様な電池を作製した。
(Example 53)
A battery was prepared in the same manner as in Example 12 except that 0.1% by mass of the compound C12 according to Formula 1 was added to the electrolyte.

(実施例54)
電解質に、式1に係る化合物C12を1.0質量%添加したこと以外は、実施例12と同様な電池を作製した。
(Example 54)
A battery was produced in the same manner as in Example 12 except that 1.0% by mass of the compound C12 according to Formula 1 was added to the electrolyte.

(実施例55)
電解質に、式1に係る化合物C12を2.0質量%添加したこと以外は、実施例12と同様な電池を作製した。
(Example 55)
A battery was produced in the same manner as in Example 12 except that 2.0% by mass of the compound C12 according to Formula 1 was added to the electrolyte.

(実施例56)
電解質に、式1に係る化合物C12を3.0質量%添加したこと以外は、実施例12と同様な電池を作製した。
(Example 56)
A battery similar to that of Example 12 was prepared, except that 3.0% by mass of Compound C12 according to Formula 1 was added to the electrolyte.

(実施例57)
電解質に、式1に係る化合物C12を4.0質量%添加したこと以外は、実施例12と同様な電池を作製した。
(Example 57)
A battery was produced in the same manner as in Example 12 except that 4.0% by mass of the compound C12 according to Formula 1 was added to the electrolyte.

(実施例58)
負極活物質としての被覆黒鉛における低結晶性炭素による被覆量を0.5質量%とし、被覆黒鉛のラマンのR値が0.48であること以外は、実施例46と同様な電池を作製した。
(Example 58)
A battery similar to that of Example 46 was produced, except that the amount of coating with low crystalline carbon in the coated graphite as the negative electrode active material was 0.5 mass%, and the Raman R value of the coated graphite was 0.48. .

(実施例59)
負極活物質としての被覆黒鉛における低結晶性炭素による被覆量を1.0質量%とし、被覆黒鉛のラマンのR値が0.52であること以外は、実施例46と同様な電池を作製した。
(Example 59)
A battery was produced in the same manner as in Example 46 except that the coating amount of the low crystalline carbon in the coated graphite as the negative electrode active material was 1.0% by mass and the Raman R value of the coated graphite was 0.52. .

(実施例60)
負極活物質としての被覆黒鉛における低結晶性炭素による被覆量を2.0質量%とし、被覆黒鉛のラマンのR値が0.55であること以外は、実施例46と同様な電池を作製した。
(Example 60)
A battery was produced in the same manner as in Example 46 except that the amount of coating with low crystalline carbon in the coated graphite as the negative electrode active material was 2.0 mass%, and the Raman R value of the coated graphite was 0.55. .

(実施例61)
負極活物質としての被覆黒鉛における低結晶性炭素による被覆量を5.0質量%とし、被覆黒鉛のラマンのR値が0.80であること以外は、実施例46と同様な電池を作製した。
(Example 61)
A battery was produced in the same manner as in Example 46 except that the coating amount of low crystalline carbon in the coated graphite as the negative electrode active material was 5.0 mass%, and the Raman R value of the coated graphite was 0.80. .

(実施例62)
負極活物質としての被覆黒鉛における低結晶性炭素による被覆量を15質量%とし、被覆黒鉛のラマンのR値が1.23であること以外は、実施例46と同様な電池を作製した。
(Example 62)
A battery was produced in the same manner as in Example 46 except that the coating amount of the low-crystalline carbon in the coated graphite as the negative electrode active material was 15% by mass and the Raman R value of the coated graphite was 1.23.

(実施例63)
負極活物質としての被覆黒鉛における低結晶性炭素による被覆量を20質量%とし、被覆黒鉛のラマンのR値が1.44であること以外は、実施例46と同様な電池を作製した。
(Example 63)
A battery was produced in the same manner as in Example 46 except that the coating amount of the low-crystalline carbon in the coated graphite as the negative electrode active material was 20% by mass and the Raman R value of the coated graphite was 1.44.

(実施例64)
負極活物質としての被覆黒鉛における低結晶性炭素による被覆量を25質量%とし、被覆黒鉛のラマンのR値が1.64であること以外は、実施例46と同様な電池を作製した。
(Example 64)
A battery was produced in the same manner as in Example 46 except that the coating amount of the low-crystalline carbon in the coated graphite as the negative electrode active material was 25% by mass and the Raman R value of the coated graphite was 1.64.

(実施例65)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2(R2−B−R3、ただしR2及びR3は夫々独立して、不飽和結合を含んでいてもよい炭化水素基、又は不飽和結合を含んでいてもよくその一部もしくは全部がハロゲン元素で置換されている炭化水素基を表す、又は、R2及びR3は互いに結合してBと共に環状構造を形成しており、Bは表5に示す式B1、B2、B3又はB4で表される構造を有する)に係る表5に示す化合物D1を1質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 65)
In the electrolyte, 0.1% by mass of the compound C7 according to the formula 1 and the formula 2 (R2-B-R3, where R2 and R3 are each independently a hydrocarbon group optionally containing an unsaturated bond, Or a hydrocarbon group which may contain an unsaturated bond, part or all of which is substituted with a halogen element, or R2 and R3 are bonded to each other to form a cyclic structure with B; Prepared a battery similar to that of Example 61 except that 1% by mass of the compound D1 shown in Table 5 according to Formula B1, B2, B3, or B4 shown in Table 5 was added.

Figure 2005317389
Figure 2005317389

(実施例66)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D2を1質量%添加したこと以外は、実施例61と同様な電池を作製した。
Example 66
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 1% by mass of the compound D2 shown in Table 5 according to Formula 2 were added to the electrolyte.

(実施例67)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D3を1質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 67)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 1% by mass of the compound D3 shown in Table 5 according to Formula 2 were added to the electrolyte.

(実施例68)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D4を1質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 68)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 1% by mass of the compound D4 shown in Table 5 according to Formula 2 were added to the electrolyte.

(実施例69)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D5を1質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 69)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 1% by mass of the compound D5 shown in Table 5 according to Formula 2 were added to the electrolyte.

(実施例70)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D6を1質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 70)
A battery was produced in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 1% by mass of the compound D6 shown in Table 5 according to Formula 2 were added to the electrolyte.

(実施例71)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D7を0.1質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 71)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of compound C7 according to formula 1 and 0.1% by mass of compound D7 shown in Table 5 according to formula 2 were added to the electrolyte. .

(実施例72)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D7を0.2質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 72)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 0.2% by mass of the compound D7 shown in Table 5 according to Formula 2 were added to the electrolyte. .

(実施例73)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D7を0.5質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 73)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of compound C7 according to formula 1 and 0.5% by mass of compound D7 shown in Table 5 according to formula 2 were added to the electrolyte. .

(実施例74)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D7を1質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 74)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 1% by mass of the compound D7 shown in Table 5 according to Formula 2 were added to the electrolyte.

(実施例75)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D7を2質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 75)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 2% by mass of the compound D7 shown in Table 5 according to Formula 2 were added to the electrolyte.

(実施例76)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D7を3質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 76)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 3% by mass of the compound D7 shown in Table 5 according to Formula 2 were added to the electrolyte.

(実施例77)
電解質に、式1に係る化合物C7を0.1質量%、及び、式2に係る表5に示す化合物D7を5質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 77)
A battery was produced in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 5% by mass of the compound D7 shown in Table 5 according to Formula 2 were added to the electrolyte.

(実施例78)
電解質に、式1に係る化合物C7を0.1質量%、及び、ビニレンカーボネート(VC)を0.2質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 78)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of Compound C7 according to Formula 1 and 0.2% by mass of vinylene carbonate (VC) were added to the electrolyte.

(実施例79)
電解質に、式1に係る化合物C7を0.1質量%、及び、ビニレンカーボネート(VC)を0.5質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 79)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of compound C7 according to formula 1 and 0.5% by mass of vinylene carbonate (VC) were added to the electrolyte.

(実施例80)
電解質に、式1に係る化合物C7を0.1質量%、及び、ビニレンカーボネート(VC)を1質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 80)
A battery was produced in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 1% by mass of vinylene carbonate (VC) were added to the electrolyte.

(実施例81)
電解質に、式1に係る化合物C7を0.1質量%、及び、ビニレンカーボネート(VC)を2質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 81)
A battery was produced in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 2% by mass of vinylene carbonate (VC) were added to the electrolyte.

(実施例82)
電解質に、式1に係る化合物C7を0.1質量%、及び、ビニレンカーボネート(VC)を3質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 82)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of compound C7 according to formula 1 and 3% by mass of vinylene carbonate (VC) were added to the electrolyte.

(実施例83)
電解質に、式1に係る化合物C7を0.1質量%、及び、ビニレンカーボネート(VC)を5質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 83)
A battery was produced in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 5% by mass of vinylene carbonate (VC) were added to the electrolyte.

(実施例84)
電解質に、式1に係る化合物C7を0.1質量%、及び、ビニレンカーボネート(VC)を7質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 84)
A battery was prepared in the same manner as in Example 61 except that 0.1% by mass of the compound C7 according to Formula 1 and 7% by mass of vinylene carbonate (VC) were added to the electrolyte.

(実施例85)
電解質に、式1に係る化合物C7を0.1質量%、式2に係る化合物D7を1質量%、及び、ビニレンカーボネート(VC)を1質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 85)
The same as Example 61 except that 0.1% by mass of the compound C7 according to the formula 1, 1% by mass of the compound D7 according to the formula 2, and 1% by mass of vinylene carbonate (VC) were added to the electrolyte. A battery was produced.

(実施例86)
電解質に、式1に係る化合物C7を0.1質量%、式2に係る化合物D7を0.5質量%、及び、ビニレンカーボネート(VC)を0.5質量%添加したこと以外は、実施例61と同様な電池を作製した。
(Example 86)
Example, except that 0.1% by mass of compound C7 according to formula 1, 0.5% by mass of compound D7 according to formula 2 and 0.5% by mass of vinylene carbonate (VC) were added to the electrolyte. A battery similar to 61 was produced.

(実施例87)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比が3:7の混合溶媒にLiPF6 を1.1mol/l溶解させた電解質に、式1に係る化合物C7を0.1質量%、式2に係る化合物D7を1質量%、及び、ビニレンカーボネート(VC)を1質量%添加したこと以外は、実施例85と同様な電池を作製した。
(Example 87)
In an electrolyte obtained by dissolving 1.1 mol / l of LiPF 6 in a mixed solvent having a volume ratio of ethylene carbonate (EC) and diethyl carbonate (DEC) of 3: 7, 0.1% by mass of the compound C7 according to Formula 1; A battery was produced in the same manner as in Example 85 except that 1% by mass of compound D7 according to formula 2 and 1% by mass of vinylene carbonate (VC) were added.

(実施例88)
エチレンカーボネート(EC)とジメチルカーボネート(DMC)との体積比が3:7の混合溶媒にLiPF6 を1.1mol/l溶解させた電解質に、式1に係る化合物C7を0.1質量%、式2に係る化合物D7を1質量%、及び、ビニレンカーボネート(VC)を1質量%添加したこと以外は、実施例85と同様な電池を作製した。
(Example 88)
In an electrolyte prepared by dissolving 1.1 mol / l of LiPF 6 in a mixed solvent having a volume ratio of ethylene carbonate (EC) and dimethyl carbonate (DMC) of 3: 7, 0.1% by mass of the compound C7 according to the formula 1 is dissolved. A battery was produced in the same manner as in Example 85 except that 1% by mass of compound D7 according to formula 2 and 1% by mass of vinylene carbonate (VC) were added.

(実施例89)
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジエチルカーボネート(DEC)との体積比が3:5:2の混合溶媒にLiPF6 を1.1mol/l溶解させた電解質に、式1に係る化合物C7を0.1質量%、式2に係る化合物D7を1質量%、及び、ビニレンカーボネート(VC)を1質量%添加したこと以外は、実施例85と同様な電池を作製した。
Example 89
An electrolyte in which 1.1 mol / l of LiPF 6 is dissolved in a mixed solvent having a volume ratio of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) of 3: 5: 2 is expressed by Formula 1. A battery was produced in the same manner as in Example 85 except that 0.1% by mass of compound C7, 1% by mass of compound D7 according to formula 2 and 1% by mass of vinylene carbonate (VC) were added.

(実施例90)
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との体積比が3:7の混合溶媒にLiPF6 を1.5mol/l溶解させた電解質に、式1に係る化合物C7を0.1質量%、式2に係る化合物D7を1質量%、及び、ビニレンカーボネート(VC)を1質量%添加したこと以外は、実施例85と同様な電池を作製した。
(Example 90)
In an electrolyte in which 1.5 mol / l of LiPF 6 was dissolved in a mixed solvent having a volume ratio of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) of 3: 7, 0.1% by mass of compound C7 according to formula 1 A battery was produced in the same manner as in Example 85 except that 1% by mass of Compound D7 according to Formula 2 and 1% by mass of vinylene carbonate (VC) were added.

(実施例91)
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との体積比が3:7の混合溶媒にLiPF6 を0.7mol/l溶解させた電解質に、式1に係る化合物C7を0.1質量%、式2に係る化合物D7を1質量%、及び、ビニレンカーボネート(VC)を1質量%添加したこと以外は、実施例85と同様な電池を作製した。
(Example 91)
In an electrolyte in which 0.7 mol / l of LiPF 6 was dissolved in a mixed solvent having a volume ratio of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) of 3: 7, 0.1% by mass of the compound C7 according to Formula 1 A battery was produced in the same manner as in Example 85 except that 1% by mass of Compound D7 according to Formula 2 and 1% by mass of vinylene carbonate (VC) were added.

(実施例92)
エチレンカーボネート(EC)とプロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)との体積比が2:1:7の混合溶媒にLiPF6 を1.1mol/l溶解させた電解質に、式1に係る化合物C7を0.1質量%、式2に係る化合物D7を1質量%、及び、ビニレンカーボネート(VC)を1質量%添加したこと以外は、実施例85と同様な電池を作製した。
(Example 92)
An electrolyte in which 1.1 mol / l of LiPF 6 was dissolved in a mixed solvent having a volume ratio of ethylene carbonate (EC), propylene carbonate (PC), and ethyl methyl carbonate (EMC) of 2: 1: 7 is expressed by Formula 1. A battery was produced in the same manner as in Example 85 except that 0.1% by mass of compound C7, 1% by mass of compound D7 according to formula 2 and 1% by mass of vinylene carbonate (VC) were added.

(実施例93)
負極活物質として70質量%の被覆黒鉛と、30質量%の人造黒鉛とを用いたこと以外は、実施例85と同様の電池を作製した。
(Example 93)
A battery was prepared in the same manner as in Example 85 except that 70% by mass of coated graphite and 30% by mass of artificial graphite were used as the negative electrode active material.

(実施例94)
負極活物質として50質量%の被覆黒鉛と、50質量%の人造黒鉛とを用いたこと以外は、実施例85と同様の電池を作製した。
(Example 94)
A battery was produced in the same manner as in Example 85 except that 50% by mass of coated graphite and 50% by mass of artificial graphite were used as the negative electrode active material.

(実施例95)
負極活物質として40質量%の被覆黒鉛と、60質量%の人造黒鉛とを用いたこと以外は、実施例85と同様の電池を作製した。
(Example 95)
A battery was prepared in the same manner as in Example 85 except that 40% by mass of coated graphite and 60% by mass of artificial graphite were used as the negative electrode active material.

(実施例96)
負極活物質として30質量%の被覆黒鉛と、70質量%の人造黒鉛とを用いたこと以外は、実施例85と同様の電池を作製した。
(Example 96)
A battery was produced in the same manner as in Example 85 except that 30% by mass of coated graphite and 70% by mass of artificial graphite were used as the negative electrode active material.

(実施例97)
負極活物質として50質量%の被覆黒鉛と、50質量%のメソフェーズ系黒鉛とを用いたこと以外は、実施例85と同様の電池を作製した。
(Example 97)
A battery was produced in the same manner as in Example 85 except that 50% by mass of coated graphite and 50% by mass of mesophase-based graphite were used as the negative electrode active material.

(実施例98)
負極活物質として60質量%の被覆黒鉛と、30質量%のメソフェーズ系黒鉛と、10質量%の人造黒鉛とを用いたこと以外は、実施例85と同様の電池を作製した。
(Example 98)
A battery was produced in the same manner as in Example 85 except that 60% by mass of coated graphite, 30% by mass of mesophase-based graphite, and 10% by mass of artificial graphite were used as the negative electrode active material.

(実施例99)
負極活物質として40質量%の被覆黒鉛と、60質量%のメソフェーズ系黒鉛とを用いたこと以外は、実施例85と同様の電池を作製した。
Example 99
A battery was produced in the same manner as in Example 85 except that 40% by mass of coated graphite and 60% by mass of mesophase-based graphite were used as the negative electrode active material.

(実施例100)
負極活物質として98質量%の被覆黒鉛と、2質量%のアセチレンブラック(AB)とを用いたこと以外は、実施例85と同様の電池を作製した。
(Example 100)
A battery was prepared in the same manner as in Example 85 except that 98% by mass of coated graphite and 2% by mass of acetylene black (AB) were used as the negative electrode active material.

(実施例101)
負極活物質として98質量%の被覆黒鉛と、2質量%の気相成長炭素(VGCF)とを用いたこと以外は、実施例85と同様の電池を作製した。
(Example 101)
A battery was produced in the same manner as in Example 85 except that 98% by mass of coated graphite and 2% by mass of vapor grown carbon (VGCF) were used as the negative electrode active material.

(比較例1)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用いたこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 1)
A battery was produced in the same manner as in Example 1 except that natural graphite whose surface was not coated with low crystalline carbon was used as the negative electrode active material.

(比較例2)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表1に示す化合物C2を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 2)
Example 1 except that natural graphite not coated on the surface with low crystalline carbon was used as the negative electrode active material, and 0.5% by mass of compound C2 shown in Table 1 according to Formula 1 was added to the electrolyte. A similar battery was produced.

(比較例3)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表1に示す化合物C3を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 3)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, is used as the negative electrode active material, and 0.5% by mass of compound C3 shown in Table 1 according to Formula 1 is added to the electrolyte. A similar battery was produced.

(比較例4)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表1に示す化合物C4を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 4)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, is used as the negative electrode active material, and 0.5% by mass of compound C4 shown in Table 1 according to Formula 1 is added to the electrolyte. A similar battery was produced.

(比較例5)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表1に示す化合物C5を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 5)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, is used as the negative electrode active material, and 0.5% by mass of compound C5 shown in Table 1 according to Formula 1 is added to the electrolyte. A similar battery was produced.

(比較例6)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表2に示す化合物C6を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 6)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, was used as the negative electrode active material, and 0.5% by mass of compound C6 shown in Table 2 according to Formula 1 was added to the electrolyte. A similar battery was produced.

(比較例7)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表2に示す化合物C7を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 7)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, was used as the negative electrode active material, and 0.5% by mass of Compound C7 shown in Table 2 according to Formula 1 was added to the electrolyte. A similar battery was produced.

(比較例8)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表2に示す化合物C8を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 8)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, was used as the negative electrode active material, and 0.5% by mass of Compound C8 shown in Table 2 according to Formula 1 was added to the electrolyte. A similar battery was produced.

(比較例9)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表2に示す化合物C9を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 9)
Example 1 except that natural graphite not coated on the surface with low crystalline carbon was used as the negative electrode active material, and 0.5% by mass of Compound C9 shown in Table 2 according to Formula 1 was added to the electrolyte. A similar battery was produced.

(比較例10)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表3に示す化合物C10を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 10)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, is used as the negative electrode active material, and 0.5% by mass of compound C10 shown in Table 3 according to Formula 1 is added to the electrolyte. A similar battery was produced.

(比較例11)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表3に示す化合物C11を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 11)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, is used as the negative electrode active material, and 0.5% by mass of compound C11 shown in Table 3 according to Formula 1 is added to the electrolyte. A similar battery was produced.

(比較例12)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表3に示す化合物C12を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 12)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, was used as the negative electrode active material, and 0.5% by mass of compound C12 shown in Table 3 according to Formula 1 was added to the electrolyte. A similar battery was produced.

(比較例13)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表3に示す化合物C13を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 13)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, was used as the negative electrode active material, and 0.5% by mass of compound C13 shown in Table 3 according to Formula 1 was added to the electrolyte. A similar battery was produced.

(比較例14)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表4に示す化合物C14を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 14)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, is used as the negative electrode active material and 0.5% by mass of compound C14 shown in Table 4 according to Formula 1 is added to the electrolyte. A similar battery was produced.

(比較例15)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る表4に示す化合物C15を0.5質量%添加したこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 15)
Example 1 except that natural graphite, the surface of which is not coated with low crystalline carbon, was used as the negative electrode active material, and 0.5% by mass of Compound C15 shown in Table 4 according to Formula 1 was added to the electrolyte. A similar battery was produced.

(比較例16)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛を用い、電解質に、式1に係る化合物を添加しなかったこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 16)
A battery was prepared in the same manner as in Example 1 except that natural graphite whose surface was not coated with low crystalline carbon was used as the negative electrode active material, and the compound according to Formula 1 was not added to the electrolyte.

(比較例17)
電解質に、式1に係る化合物を添加しなかったこと以外は、実施例1と同様の電池を作製した。
(Comparative Example 17)
A battery was prepared in the same manner as in Example 1 except that the compound according to Formula 1 was not added to the electrolyte.

(比較例18)
負極活物質として、低結晶性炭素で表面が被覆されていない天然黒鉛(ラマンのR値は0.25)を用いたこと以外は、実施例46と同様な電池を作製した。
(Comparative Example 18)
A battery was produced in the same manner as in Example 46, except that natural graphite whose surface was not coated with low crystalline carbon (Raman R value was 0.25) was used as the negative electrode active material.

これらの各実施例および各比較例の電池について、充放電サイクル試験及び電池厚み試験を行った。まず、各実施例および各比較例毎に同じ条件の電池を5セル作製し、これらの電池を、電流600mAで電圧4.2Vまで3時間定電流定電圧充電し、その後、電流600mAで電圧3Vまで放電を行い、初期の放電容量及び初期の電池厚みを測定した。その後、同様の充放電を500サイクル繰返し、500サイクル目の放電容量及び電池厚みを測定し、容量保持率(%)及び厚み増分(mm)を算出し、5セルの平均値を求めた。ここで、容量保持率は、初期の放電容量に対する500サイクル目の放電容量の比率(%)であり、厚み増分は、500サイクル目の電池厚みから初期の電池厚みを減算した差(mm)である。試験結果を表6〜14に示す。   A charge / discharge cycle test and a battery thickness test were performed on the batteries of the respective Examples and Comparative Examples. First, 5 batteries of the same conditions were prepared for each example and each comparative example, and these batteries were charged at a constant current and a constant voltage for 3 hours to a voltage of 4.2 V at a current of 600 mA, and then a voltage of 3 V at a current of 600 mA. The initial discharge capacity and the initial battery thickness were measured. Thereafter, the same charge and discharge was repeated 500 cycles, the discharge capacity and battery thickness at the 500th cycle were measured, the capacity retention rate (%) and the thickness increment (mm) were calculated, and the average value of 5 cells was obtained. Here, the capacity retention is the ratio (%) of the discharge capacity at the 500th cycle to the initial discharge capacity, and the thickness increment is the difference (mm) obtained by subtracting the initial battery thickness from the battery thickness at the 500th cycle. is there. Test results are shown in Tables 6-14.

表6は実施例1〜15、比較例1〜16の試験結果を示している。   Table 6 shows the test results of Examples 1 to 15 and Comparative Examples 1 to 16.

Figure 2005317389
Figure 2005317389

表6の比較例1〜16に示すように、式1に係る化合物Cを電解質に添加していない電池(比較例16)は、添加している電池(比較例1〜15)に比べて、初期放電容量及び初期電池厚みは大きな違いは無く、サイクル後の厚み増分は優れているが、サイクル後の容量保持率は大きく劣っている。また、表6の実施例1〜15及び比較例1〜15に示すように、負極活物質として被覆炭素を用いていない電池(比較例1〜15)は、用いている電池(実施例1〜15)に比べて、初期放電容量、初期電池厚み、サイクル後の容量保持率は若干劣っており、サイクル厚み後の厚み増分は大きく劣っている。式1に係る化合物Cを電解質に添加した場合はサイクル後の容量保持率が向上しており、負極活物質に被覆黒鉛を用いた場合はサイクル後の厚み増分が抑制されている。   As shown in Comparative Examples 1 to 16 in Table 6, the battery (Comparative Example 16) in which the compound C according to Formula 1 is not added to the electrolyte is compared to the battery (Comparative Examples 1 to 15) in which the battery is added. The initial discharge capacity and the initial battery thickness are not significantly different and the thickness increment after cycling is excellent, but the capacity retention after cycling is greatly inferior. Further, as shown in Examples 1 to 15 and Comparative Examples 1 to 15 in Table 6, batteries not using coated carbon as a negative electrode active material (Comparative Examples 1 to 15) are used (Examples 1 to 15). Compared with 15), the initial discharge capacity, the initial battery thickness, and the capacity retention after the cycle are slightly inferior, and the thickness increment after the cycle thickness is greatly inferior. When the compound C according to Formula 1 is added to the electrolyte, the capacity retention after the cycle is improved, and when the coated graphite is used as the negative electrode active material, the increase in thickness after the cycle is suppressed.

初期電池厚みの増大は、電解質の負極上での還元分解によるガス発生によるものと考えられる。低結晶性炭素で表面が被覆されていない黒鉛は表面にカルボキシル基又は水酸基などの表面官能基が多数存在し、表面水酸基は電解質に対して活性であると共に、リチウム又は式1に係る化合物Cと反応するために、ガスの発生が起こり易いと推測される。黒鉛の表面を低結晶性炭素で被覆した場合、被覆処理によって表面官能基が除去されるため、初期充電時における表面官能基と式1で表される化合物との分解が抑制されると考えられる。   The increase in the initial battery thickness is thought to be due to gas generation due to reductive decomposition of the electrolyte on the negative electrode. Graphite whose surface is not coated with low crystalline carbon has a large number of surface functional groups such as carboxyl groups or hydroxyl groups on the surface, and the surface hydroxyl groups are active against the electrolyte, and lithium or compound C according to Formula 1 It is presumed that gas is likely to be generated due to the reaction. When the surface of graphite is coated with low crystalline carbon, the surface functional groups are removed by the coating treatment, so that it is considered that the decomposition of the surface functional groups and the compound represented by Formula 1 during initial charging is suppressed. .

また、黒鉛はエッジ面が露出しているために、充電時の黒鉛層間への溶媒の共挿入が起こり易く、例えば電解質中にプロピレンカーボネート(PC)が含まれている場合、PCの黒鉛層間への共挿入によって、黒鉛層間距離が大きくなって黒鉛粒子が膨張したり、PC含有濃度が高い場合は黒鉛層間が剥離することがある。さらに、式1に係る化合物Cを電解液に添加し、充放電を繰り返し行った場合、式1に係る化合物Cが負極上に形成するSEI(固体電解質界面)は、黒鉛層間への溶媒の共挿入を起こり易くする性質がある。また、式1に係る化合物Cによって、バインダの結着力が低下し、また、式1に係る化合物Cによってバインダ自身が膨張するために、充放電に伴う負極板の膨張収縮の際に、極板が膨張し易くなる。低結晶性炭素によって黒鉛を被覆した場合、充電時の黒鉛層間への溶媒の共挿入が起こり難くなり、黒鉛粒子の膨張を抑制できると考えられる。   Moreover, since the edge surface of graphite is exposed, co-insertion of the solvent between the graphite layers during charging is likely to occur. For example, when propylene carbonate (PC) is contained in the electrolyte, the graphite is inserted between the graphite layers of the PC. By co-insertion, the graphite interlayer distance increases, and the graphite particles expand, or when the PC-containing concentration is high, the graphite layers may peel off. Further, when the compound C according to the formula 1 is added to the electrolytic solution and charging / discharging is repeated, the SEI (solid electrolyte interface) formed on the negative electrode by the compound C according to the formula 1 is the co-solvent between the graphite layers. Has the property of facilitating insertion. Further, the binding force of the binder is reduced by the compound C according to the formula 1, and the binder itself is expanded by the compound C according to the formula 1, so that the electrode plate is expanded and contracted due to charge / discharge. Becomes easy to expand. When the graphite is coated with low crystalline carbon, it is considered that co-insertion of the solvent between the graphite layers at the time of charging hardly occurs, and the expansion of the graphite particles can be suppressed.

実施例1と5、実施例2と6の化合物CのR1は同じでAが異なっているが、何れも良好な試験結果が得られている。ただし、A3を用いた実施例5及び6は、A1を用いた実施例1及びA2を用いた実施例2よりも、初期放電容量、初期電池厚み、及びサイクル後の容量保持率が優れている。これはA3がその構造内にA1又はA2よりも酸素を多く含んでいるために、初期充電時に形成される負極被膜の性質がより安定になるためであると推察される。   Although R1 of the compound C of Example 1 and 5 and Example 2 and 6 is the same and A is different, the favorable test result is obtained in all. However, Examples 5 and 6 using A3 are superior in Example 1 using A1 and Example 2 using A2 in initial discharge capacity, initial battery thickness, and capacity retention after cycling. . This is presumably because A3 contains more oxygen than A1 or A2 in its structure, and thus the properties of the negative electrode film formed during initial charging become more stable.

実施例3,4,8のように、式1に係る化合物CのR1は不飽和結合を含んでいてもよい。不飽和結合を含んでいる場合、負極とより安定な被膜が形成されると考えられる。また、実施例4,7,8,9,10,11,12のように、式1に係る化合物CのR1の側鎖は、長くしたり、複数にしてもよい。側鎖を長くしたり複数にした場合、界面活性効果が大きくなるため、セパレータと電解質との親和性が向上し、極板内に電解液が浸透しやすくなり、初期容量が大きくなる。ただし、側鎖を長くすると式1に係る化合物Cを電解質に添加した際に電解質の粘性が高くなる場合があり、充放電性能が低下することがあるので、R1の側鎖の炭素数は8以下が好ましい。   As in Examples 3, 4 and 8, R1 of Compound C according to Formula 1 may contain an unsaturated bond. When the unsaturated bond is included, it is considered that a negative electrode and a more stable film are formed. Further, as in Examples 4, 7, 8, 9, 10, 11, 12, the side chain of R1 of compound C according to Formula 1 may be lengthened or plural. When the side chain is made long or plural, the surface active effect is increased, so that the affinity between the separator and the electrolyte is improved, the electrolyte solution easily penetrates into the electrode plate, and the initial capacity is increased. However, if the side chain is lengthened, the viscosity of the electrolyte may increase when the compound C according to Formula 1 is added to the electrolyte, and the charge / discharge performance may be reduced. Therefore, the carbon number of the side chain of R1 is 8 The following is preferred.

式1に係る化合物CのR1は、ハロゲン化されていてもよい。電子吸引性のハロゲンが付加されている場合、酸化され難く、また還元され易くなる。酸化され難いため、正極上での酸化分解反応が抑制され、正極表面上の分解物の堆積による充放電サイクル特性(容量保持率)の低下が抑制される。また、還元され易いため、負極にハロゲンを含むLiF又はLiClのような無機質の安定な被膜が形成され、他の電解質の還元分解反応を抑制するために、初期の充放電効率が向上し、放電容量が大きくなると考えられる。   R1 of compound C according to Formula 1 may be halogenated. When an electron withdrawing halogen is added, it is difficult to oxidize and is easily reduced. Since it is difficult to oxidize, the oxidative decomposition reaction on the positive electrode is suppressed, and the decrease in charge / discharge cycle characteristics (capacity retention) due to the deposition of decomposition products on the positive electrode surface is suppressed. In addition, since it is easy to be reduced, a stable inorganic coating such as LiF or LiCl containing halogen is formed on the negative electrode. In order to suppress the reductive decomposition reaction of other electrolytes, the initial charge / discharge efficiency is improved, and the discharge The capacity is thought to increase.

表7〜8は実施例1,2,3,5,7,12、実施例16〜57、比較例17の試験結果を示している。   Tables 7 to 8 show the test results of Examples 1, 2, 3, 5, 7, 12, Examples 16 to 57, and Comparative Example 17.

Figure 2005317389
Figure 2005317389

Figure 2005317389
Figure 2005317389

表7及び8に示すように、化合物Cを添加した場合(実施例1,2,3,5,7,12、実施例16〜57)、添加していない場合(比較例17)と比べて、サイクル後の容量保持率が向上し、厚み増分が抑制されている。しかし、化合物Cの添加量が少ない場合はサイクル後の容量保持率が十分でなく、添加量が多い場合は、初期の電池厚み及びサイクル後の厚み増分の抑制が十分でない。式1に係る化合物Cの添加量は、種類にかかわらず0.1〜2質量%が好ましい。式1に係る化合物Cの添加量が多い場合は、初期充電時に、式1に係る化合物Cの負極上での還元分解によってガス発生が多くなり、電池厚みが増加すると考えられる。また、発生したガスが極板間に溜まって、ガス溜まり周辺に電流が集中し、負極上に金属リチウムデンドライトが析出し、充放電効率が若干低下すると考えられる。   As shown in Tables 7 and 8, when Compound C was added (Examples 1, 2, 3, 5, 7, 12, and Examples 16 to 57), compared with the case where Compound C was not added (Comparative Example 17). The capacity retention after the cycle is improved, and the increase in thickness is suppressed. However, when the amount of compound C added is small, the capacity retention after the cycle is not sufficient, and when the amount added is large, the initial battery thickness and the increase in thickness after the cycle are not sufficiently suppressed. The addition amount of the compound C according to Formula 1 is preferably 0.1 to 2% by mass regardless of the type. When the amount of Compound C according to Formula 1 is large, it is considered that during initial charging, gas generation increases due to reductive decomposition on the negative electrode of Compound C according to Formula 1 and the battery thickness increases. In addition, it is considered that the generated gas is accumulated between the electrode plates, current is concentrated around the gas reservoir, metal lithium dendrite is deposited on the negative electrode, and charge / discharge efficiency is slightly reduced.

表9は実施例58〜64、比較例18の試験結果を示している。   Table 9 shows the test results of Examples 58 to 64 and Comparative Example 18.

Figure 2005317389
Figure 2005317389

表9に示すように、低結晶性炭素で天然黒鉛表面を被覆している場合(実施例46、58〜64)は、被覆していない場合(比較例18)よりもサイクル後の厚み増分が抑制されている。サイクル後の厚み増分は、被覆量が2質量%以上になると良好に抑制されている。また、被覆量が10質量%よりも大きくなった場合、サイクル後の容量保持率が低下する傾向、及び、サイクル後の厚み増分が増える傾向にある。これは、被覆量が10質量%よりも大きくなった場合、表面を被覆する低結晶性炭素によって粒子が硬くなり、負極活物質層を所定の密度に圧縮し難くなり、圧縮加工時に粒子にかかるストレスが大きくなったために、粒子が破壊され、被覆されていない活物質内面が剥き出しとなったためであると考えられる。被覆量は2〜10質量%が好ましい。   As shown in Table 9, when the natural graphite surface was coated with low crystalline carbon (Examples 46 and 58 to 64), the thickness increment after the cycle was larger than that when not coated (Comparative Example 18). It is suppressed. The increase in thickness after the cycle is well suppressed when the coating amount is 2% by mass or more. Further, when the coating amount is larger than 10% by mass, the capacity retention after the cycle tends to decrease, and the thickness increment after the cycle tends to increase. This is because when the coating amount is larger than 10% by mass, the particles become hard due to the low crystalline carbon covering the surface, and it becomes difficult to compress the negative electrode active material layer to a predetermined density, which is applied to the particles during compression processing. It is considered that because the stress was increased, the particles were destroyed and the inner surface of the uncoated active material was exposed. The coating amount is preferably 2 to 10% by mass.

表10は実施例61、65〜77の試験結果を示している。   Table 10 shows the test results of Examples 61 and 65 to 77.

Figure 2005317389
Figure 2005317389

表10に示すように、式2に係る化合物Dを電解質に1質量%添加した場合(実施例65〜70、74)は、添加していない場合(実施例61)と比べて、サイクル後の容量保持率が向上し、厚み増分が抑制されている。式2に係る化合物Dは、Bの種類にかかわらず効果があり、また、式2に係る化合物DはD5のように鎖状、及び、D6又はD7のような環状の場合も効果がある。特にD7の場合は、初期放電容量、初期電池厚み、サイクル後の容量保持率及び厚み増分の何れも良好である。これは、B4を構造内に含む環状硫酸エステルは、初期充電時に良好な被膜を形成するためであると考えられる。   As shown in Table 10, when 1% by mass of the compound D according to Formula 2 was added to the electrolyte (Examples 65 to 70, 74), compared to the case where it was not added (Example 61), after the cycle The capacity retention rate is improved and the thickness increment is suppressed. The compound D according to the formula 2 is effective regardless of the kind of B, and the compound D according to the formula 2 is also effective in the case of a chain like D5 and a ring like D6 or D7. In particular, in the case of D7, the initial discharge capacity, the initial battery thickness, the capacity retention after the cycle, and the thickness increment are all good. This is presumably because the cyclic sulfate ester containing B4 in the structure forms a good film at the initial charge.

また、D7の添加量を0.1〜5質量%と変えた場合(実施例71〜77)、添加量が0.1〜3質量%でより効果が得られており、特に0.5質量%以上3質量%以下でサイクル後の容量保持率が大きく向上している。ただし、添加量が3質量%以上の場合、D7によって形成される負極の被膜が厚くなって被膜抵抗が大きくなり、充電時に負極上に金属リチウムが析出するため、負極の厚みが増加して初期の電池厚みが大きくなり、またサイクル中も金属リチウム析出が断続的に進行するためにサイクル後の厚み増分も大きくなっている。式2に係る化合物Dの添加量は、0.5〜2質量%が特に好ましい。   Moreover, when the addition amount of D7 was changed with 0.1-5 mass% (Examples 71-77), the effect was acquired more with the addition amount of 0.1-3 mass%, especially 0.5 mass. % And 3% by mass or less, the capacity retention after the cycle is greatly improved. However, when the addition amount is 3% by mass or more, the negative electrode film formed by D7 becomes thick and the film resistance increases, and metallic lithium is deposited on the negative electrode during charging. In addition, the thickness of the battery after the cycle increases because the metal lithium deposition proceeds intermittently even during the cycle. As for the addition amount of the compound D which concerns on Formula 2, 0.5-2 mass% is especially preferable.

表11は実施例61、78〜84の試験結果を示している。   Table 11 shows the test results of Examples 61 and 78 to 84.

Figure 2005317389
Figure 2005317389

表11に示すように、ビニレンカーボネート(VC)を電解質に添加した場合(実施例78〜84)、添加していない場合(実施例61)と比べて、水素ガスの発生が抑制され、初期電池厚み及びサイクル後の厚み増加分が小さくなっている。また、サイクル後の容量保持率も同等又は向上している。ただし、VCを3質量%以上添加した場合、初期放電容量及びサイクル後の容量保持率が低下し、初期電池厚み及びサイクル後の厚み増分が増加する傾向にある。VCの添加量が3質量%以上になった場合、VCによって形成される負極の被膜が厚くなって被膜抵抗が大きくなることにより充電時に金属リチウムが負極上に析出するため、負極の厚みが厚くなって初期の電池厚みが大きく、またサイクル中も金属リチウム析出が断続的に進行するためにサイクル後の厚みも大きくなる。従って、電解質へのVCの添加量は0.2〜2質量%が好ましい。   As shown in Table 11, when the vinylene carbonate (VC) was added to the electrolyte (Examples 78 to 84), compared with the case where it was not added (Example 61), the generation of hydrogen gas was suppressed, and the initial battery The thickness and the thickness increase after the cycle are small. Further, the capacity retention after the cycle is equivalent or improved. However, when VC is added in an amount of 3% by mass or more, the initial discharge capacity and the capacity retention after the cycle tend to decrease, and the initial battery thickness and the thickness increment after the cycle tend to increase. When the amount of VC added is 3% by mass or more, the negative electrode film formed by VC becomes thick and the film resistance increases, so that metal lithium is deposited on the negative electrode during charging. Thus, the initial battery thickness is large, and since the lithium metal deposition proceeds intermittently even during the cycle, the thickness after the cycle also increases. Therefore, the amount of VC added to the electrolyte is preferably 0.2 to 2% by mass.

表12は実施例74,80、85〜86の試験結果を示している。   Table 12 shows the test results of Examples 74, 80, and 85-86.

Figure 2005317389
Figure 2005317389

表12に示すように、VC及びD7の両方を電解質に添加した場合(実施例85,86)、片方しか添加していない場合と比べて、サイクル後の容量保持率及び厚み増分が同等又は向上している。VCとD7とを混合して使用することによって、単独で使用した以上の効果が得られる。これは、D7の還元分解電位(Li/Li+に対する電位)が1.9Vであり、VCの還元分解電位(1.5V)よりも高電位であるため、負極上でD7の被膜が形成された後にVCの被膜が形成され、この被膜は各々単独のものよりも、良好な特性を示したからであると考えられる。一般に、式2に係る化合物Dについても還元分解電位がVCよりも高電位であるために、同じような効果を得ることができる。   As shown in Table 12, when both VC and D7 were added to the electrolyte (Examples 85 and 86), the capacity retention and thickness increment after the cycle were equal or improved compared to the case where only one was added. doing. By using a mixture of VC and D7, the effect more than that used alone can be obtained. This is because the reductive decomposition potential of D7 (potential with respect to Li / Li +) is 1.9 V, which is higher than the reductive decomposition potential of VC (1.5 V), so that a film of D7 was formed on the negative electrode. This is probably because a VC film was formed later, and each film showed better characteristics than the single film. In general, the same effect can be obtained for the compound D according to Formula 2 because the reductive decomposition potential is higher than that of VC.

表13は実施例85,87〜92の試験結果を示している。   Table 13 shows the test results of Examples 85 and 87-92.

Figure 2005317389
Figure 2005317389

表13に示すように、電解質の組成又は濃度が変化した場合であっても、本発明の効果は特に変わらず、良好な試験結果が得られている。   As shown in Table 13, even when the composition or concentration of the electrolyte is changed, the effect of the present invention is not particularly changed, and good test results are obtained.

表14は実施例93〜101の試験結果を示している。   Table 14 shows the test results of Examples 93 to 101.

Figure 2005317389
Figure 2005317389

表14の実施例93〜96に示すように、人造黒鉛を混合、好ましくは30質量%以下混合することによって、サイクル後の容量保持率が向上している。天然黒鉛に低結晶性炭素を被覆した場合、被覆された天然黒鉛は電子伝導性が低くなるため、負極合剤中において粒子間の導電性が低下する。適当な人造黒鉛、アセチレンブラック、又はVGCFなどの導電助剤を配合することによって、充放電時の活物質の膨張収縮に伴う活物質粒子間の導電性の低下による容量低下を抑制することができ、かつサイクル後の厚み増分も小さくすることができる。表14の実施例100又は101に示すように、アセチレンブラック又はVGCFは、少量でも導電性付与効果を得ることができるため、被覆黒鉛の負極活物質比率を高くすることができるのでより好ましい。表14の実施例97〜99に示すように、負極活物質として、被覆黒鉛と充放電サイクル時の厚み増大が少ないメソフェーズ系黒鉛とを混合することが特に好ましい。メソフェーズ系黒鉛は電解液に対して安定なので、充放電サイクル時の電解液の断続的な分解による液の枯渇などが少ないため、サイクル特性が向上する。人造黒鉛とメソフェーズ系黒鉛とは適宜配合することが可能である。   As shown in Examples 93 to 96 in Table 14, the capacity retention after the cycle is improved by mixing artificial graphite, preferably 30% by mass or less. When natural graphite is coated with low crystalline carbon, the coated natural graphite has low electron conductivity, and therefore, the conductivity between particles in the negative electrode mixture is lowered. By blending a suitable conductive assistant such as artificial graphite, acetylene black, or VGCF, it is possible to suppress a decrease in capacity due to a decrease in conductivity between active material particles due to expansion and contraction of the active material during charge and discharge. In addition, the thickness increment after the cycle can be reduced. As shown in Example 100 or 101 of Table 14, acetylene black or VGCF is more preferable because the conductivity imparting effect can be obtained even in a small amount, and the ratio of the negative electrode active material of the coated graphite can be increased. As shown in Examples 97 to 99 in Table 14, it is particularly preferable to mix coated graphite and mesophase-based graphite with a small increase in thickness during the charge / discharge cycle as the negative electrode active material. Since mesophase graphite is stable with respect to the electrolytic solution, cycle characteristics are improved because there is little depletion of the solution due to intermittent decomposition of the electrolytic solution during the charge / discharge cycle. Artificial graphite and mesophase graphite can be appropriately blended.

以上、本発明に係る実施例について説明したが、負極の活物質に用いる黒鉛粒子は、上述した実施例に限定はされず、天然黒鉛又は人造黒鉛が好ましく、X線広角回折法による(002)面の平均面間隔(d002)が3.354〜3.4Å、より好ましくは3.354〜3.38Åの天然黒鉛であり、アルゴンレーザーラマンによる1580cm-1付近のピークに対する1355cm-1付近のピークの強度比(I1355/I1580)が0.40以下であり、学振法によるX線回折で求めた結晶子サイズLc及びLaは100nm以上であるものが好ましい。 As mentioned above, although the Example which concerns on this invention was described, the graphite particle used for the active material of a negative electrode is not limited to the Example mentioned above, Natural graphite or artificial graphite is preferable, and the X-ray wide angle diffraction method (002) A natural graphite having an average surface separation (d002) of 3.354 to 3.4 mm, more preferably 3.354 to 3.38 mm, and a peak near 1355 cm −1 with respect to a peak near 1580 cm −1 by argon laser Raman. The intensity ratio (I1355 / I1580) is 0.40 or less, and the crystallite sizes Lc and La determined by X-ray diffraction by the Gakushin method are preferably 100 nm or more.

また、前記黒鉛粒子の表面の一部又は全部が低結晶性炭素で被覆された被覆黒鉛は、上述した実施例に限定はされず、X線広角回折法による(002)面の平均面間隔(d002)が3.354〜3.4Åであり、かつアルゴンレーザーラマンによる1580cm-1付近のピークに対する1355cm-1付近のピークの強度比(I1355/I1580)が0.45以上であるものが好ましい。 Further, the coated graphite in which a part or all of the surface of the graphite particles is coated with low crystalline carbon is not limited to the above-described embodiment, and the average spacing of (002) planes by the X-ray wide angle diffraction method ( It is preferable that d002) is 3.354 to 3.4 mm and the intensity ratio (I1355 / I1580) of the peak near 1355 cm −1 to the peak near 1580 cm −1 by argon laser Raman is 0.45 or more.

前記黒鉛粒子の被覆方法は、上述した実施例に限定はされず、化学蒸着処理法(気相、液相、固相いずれも)が好ましい。被覆の均一性又は有効性を考えると、流動床式の化学蒸着処理法が好ましい。また、気相、液相、固相の原料を用いて被覆したもの全てを単独あるいは併用して用いることができる。   The method for coating the graphite particles is not limited to the above-described embodiment, and a chemical vapor deposition method (all of gas phase, liquid phase, and solid phase) is preferable. Considering the uniformity or effectiveness of the coating, a fluidized bed chemical vapor deposition method is preferred. In addition, all those coated with gas phase, liquid phase, and solid phase materials can be used alone or in combination.

なお、黒鉛粒子をピッチに浸漬して、不活性雰囲気中で熱処理するピッチ被覆では、まず、黒鉛粒子をピッチに温度10〜300℃程度で、好ましくは100〜200℃程度で、5〜60分程度、好ましくは10〜30分程度浸漬する。その際使用するピッチは、石炭、石油、又は木材などの有機物質の乾留によって得られるタールを蒸留したときの釜残油であれば特に限定されず、例えばコールタールピッチ又は石油ピッチ等を使用することが可能である。次に、ピッチから、黒鉛粒子を分離した後に、有機溶媒を加えて10〜300℃程度、好ましくは10〜100℃程度で洗浄処理する。そして、不活性雰囲気中で黒鉛粒子表面に被覆したピッチを炭化することにより、低結晶性炭素で表面が被覆された黒鉛(被覆黒鉛)が得られる。   In pitch coating in which graphite particles are immersed in pitch and heat-treated in an inert atmosphere, first, graphite particles are pitched at a temperature of about 10 to 300 ° C., preferably at about 100 to 200 ° C. for 5 to 60 minutes. Soak for about 10 minutes, preferably about 10 to 30 minutes. The pitch used in that case is not particularly limited as long as it is a residue oil obtained by distilling tar obtained by dry distillation of an organic substance such as coal, petroleum, or wood. For example, coal tar pitch or petroleum pitch is used. It is possible. Next, after separating the graphite particles from the pitch, an organic solvent is added and washing is performed at about 10 to 300 ° C., preferably about 10 to 100 ° C. And the graphite (coating graphite) by which the surface was coat | covered with the low crystalline carbon is obtained by carbonizing the pitch coat | covered on the graphite particle surface in inert atmosphere.

ここで、洗浄用の有機溶媒としては特に限定されず、例えばトルエン、メタノール、アセトン、ヘキサン、ベンゼン、キシレン、メチルナフタレン、タール中油などを使用することが可能である。なお、被覆に用いる低結晶性炭素の量(被覆量)は、洗浄に使用する有機溶媒の種類、洗浄時間、洗浄温度等により調整することができる。不活性雰囲気中でのピッチを炭化する温度は、特に限定されないが、例えば600〜1500℃であり、好ましくは800〜1200℃であり、さらに好ましくは900〜1000℃である。また、炭化処理時間も特に限定されないが、1〜20時間程度、好ましくは3〜12時間程度である。   Here, the organic solvent for cleaning is not particularly limited, and for example, toluene, methanol, acetone, hexane, benzene, xylene, methylnaphthalene, tar oil, and the like can be used. The amount of low crystalline carbon used for coating (coating amount) can be adjusted by the type of organic solvent used for cleaning, the cleaning time, the cleaning temperature, and the like. Although the temperature which carbonizes the pitch in an inert atmosphere is not specifically limited, For example, it is 600-1500 degreeC, Preferably it is 800-1200 degreeC, More preferably, it is 900-1000 degreeC. Also, the carbonization time is not particularly limited, but is about 1 to 20 hours, preferably about 3 to 12 hours.

被覆黒鉛における低結晶性炭素による被覆量は、被覆の形態又は黒鉛によって異なるが、黒鉛の質量に対して0.5質量%以上被覆すると本発明の効果を得ることができる。被覆量の上限は特にないが、被覆量が多い場合、被覆に用いる低結晶性炭素によって粒子自体が硬くなり、負極の充填性が低下したり、充放電の電圧挙動が変化したりする場合があるため、被覆量は20質量%以下が好ましく、より好ましい被覆量は2質量%以上、15質量%以下である。   The coating amount of the low crystalline carbon in the coated graphite varies depending on the form of the coating or the graphite, but the effect of the present invention can be obtained by coating 0.5 mass% or more with respect to the mass of the graphite. The upper limit of the coating amount is not particularly limited. However, when the coating amount is large, the particles themselves are hardened by the low crystalline carbon used for coating, and the negative electrode filling property may be decreased, or the voltage behavior of charge / discharge may be changed. Therefore, the coating amount is preferably 20% by mass or less, and more preferably 2% by mass or more and 15% by mass or less.

負極活物質に含まれる被覆黒鉛の含有量は高い方が好ましいが、式1で表される化合物の量、又は、要求される電池の性能に応じて適宜選択することが可能である。負極活物質中の被覆黒鉛の含有量は、上述した実施例に限定はされないが、40質量%以上が好ましく、特に好ましいのは50質量%から98質量%である。   The content of the coated graphite contained in the negative electrode active material is preferably high, but can be appropriately selected according to the amount of the compound represented by Formula 1 or the required battery performance. Although content of the covering graphite in a negative electrode active material is not limited to the Example mentioned above, 40 mass% or more is preferable, and 50 mass% to 98 mass% is especially preferable.

被覆黒鉛以外の負極活物質については、上述した実施例に限定はされず、好ましくは天然黒鉛、人造黒鉛、リチウムを吸蔵放出する金属又は金属酸化物を用いることが可能であり、メソフェーズ系黒鉛(MCMB又はMCF)が特に好ましい。   The negative electrode active material other than the coated graphite is not limited to the above-described examples, and preferably, natural graphite, artificial graphite, metal or metal oxide that absorbs and releases lithium can be used, and mesophase-based graphite ( MCMB or MCF) is particularly preferred.

前記被覆量が4質量%以上の場合、低結晶性炭素によって活物質同士の導電性が低下するために、導電性を向上させる導電助剤を添加することが好ましい。導電助剤は、一般に使用されている黒鉛、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、気相成長炭素(VGCF)等を用いることが可能であるが、黒鉛を使用する場合は式1で表される化合物との悪影響が考えられるので使用量は必要最小限にとどめておくことが好ましい。特に好ましい量は2質量%〜20質量%である。導電助剤としてさらに好ましいのは、黒鉛よりも結晶性が低く、式1で示される化合物と相互作用の少ないカーボンブラック、アセチレンブラック、又はVGCFである。添加量は、使用する負極活物質又はバインダによっても異なるが、導電性を維持するためには一般的に0.5質量%〜10質量%が好ましく、2質量%〜5質量%がより好ましい。   When the coating amount is 4% by mass or more, the conductivity between the active materials is lowered due to the low crystalline carbon. Therefore, it is preferable to add a conductive additive that improves the conductivity. As the conductive assistant, generally used graphite, carbon black (CB), acetylene black (AB), ketjen black, vapor grown carbon (VGCF), etc. can be used. Is considered to have an adverse effect on the compound represented by Formula 1, and therefore the amount used is preferably kept to the minimum necessary. A particularly preferable amount is 2% by mass to 20% by mass. More preferable as the conductive assistant is carbon black, acetylene black, or VGCF, which has lower crystallinity than graphite and has less interaction with the compound represented by Formula 1. The addition amount varies depending on the negative electrode active material or the binder to be used, but is generally preferably 0.5% by mass to 10% by mass and more preferably 2% by mass to 5% by mass in order to maintain conductivity.

負極のバインダについては、上述した実施例に限定はされず、密着性又は電池性能を考えると、ポリフッ化ビニリデン(PVDF)、PVDFの一部をカルボキシ変性したもの、スチレンブタジエンゴム、又はカルボキシメチルセルロースなどが好ましい。特に、PVDFよりも柔らかいために活物質の膨張収縮に伴う負極の厚み増加が大きくなるスチレンブタジエンゴムとカルボキシメチルセルロースとの混合物を使用した際に、本発明の効果が大きい。   The binder of the negative electrode is not limited to the above-described embodiments, and considering adhesiveness or battery performance, polyvinylidene fluoride (PVDF), a part of PVDF carboxy-modified, styrene butadiene rubber, carboxymethyl cellulose, etc. Is preferred. In particular, when a mixture of styrene butadiene rubber and carboxymethyl cellulose, which is softer than PVDF and increases in thickness of the negative electrode accompanying expansion and contraction of the active material, is used, the effect of the present invention is great.

また、電解質に添加する表5に示した式2(R2−B−R3)に係る化合物Dは、上述した実施例に限定はされず、R2及びR3がとりうるアルキル基は、好ましくは炭素数1〜4のアルキル基であり、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基などを用いることが可能である。アルキル基の置換基となるアリール基としては、フェニル基、ナフチル基、アントラニル基などを用いることが可能であるが、フェニル基が好ましい。また、アルキル基の置換基となるハロゲン原子としては、フッ素原子、塩素原子、臭素原子を用いることが可能である。これらの置換基はアルキル基に複数個置換してもよく、また、アリール基とハロゲン原子がともに置換してもよい。   Moreover, the compound D which concerns on Formula 2 (R2-B-R3) shown in Table 5 added to electrolyte is not limited to the Example mentioned above, Preferably the alkyl group which R2 and R3 can take is carbon number. 1 to 4 alkyl groups, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and the like can be used. As the aryl group serving as a substituent for the alkyl group, a phenyl group, a naphthyl group, an anthranyl group, and the like can be used, and a phenyl group is preferable. Moreover, as a halogen atom which becomes a substituent of an alkyl group, it is possible to use a fluorine atom, a chlorine atom, or a bromine atom. A plurality of these substituents may be substituted with an alkyl group, or both an aryl group and a halogen atom may be substituted.

式2のR2とR3が互いに結合して−B−とともに形成する環状構造は4員環以上であり、二重結合または三重結合を含んでいてもよい。R2とR3が互いに結合して形成する結合基として、例えば、−CH2 CH2 −、−CH2 CH2 CH2 −、−CH2 CH2 CH2 CH2 −、−CH2 CH2 CH2 CH2 CH2 −、−CH=CH−、−CH=CHCH2 −、−CH=CHCH2 CH2 −、−CH2 CH=CHCH2 −、−CH2 CH2 C≡CCH2 CH2 −を用いることが可能である。これらの1以上の水素原子は、アルキル基、ハロゲン原子、アリール基などによって置換されていてもよい。 The cyclic structure formed by combining R2 and R3 of Formula 2 together with -B- is a 4-membered ring or more and may contain a double bond or a triple bond. As coupling groups R2 and R3 is formed by bonding, for example, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 -, - CH = CH -, - CH = CHCH 2 -, - CH = CHCH 2 CH 2 -, - CH 2 CH = CHCH 2 -, - CH 2 CH 2 C≡CCH 2 CH 2 - and It is possible to use. These one or more hydrogen atoms may be substituted with an alkyl group, a halogen atom, an aryl group, or the like.

式2のBがB1で表される構造を有する化合物としては、例えばジメチルサルファイト、ジエチルサルファイト、エチルメチルサルファイト、メチルプロピルサルファイト、エチルプロピルサルファイト、ジフェニルサルファイト、メチルフェニルサルファイト、エチルサルファイト、ジベンジルサルファイト、ベンジルメチルサルファイト、ベンジルエチルサルファイトなどの鎖状サルファイトを用いたり、エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ビニレンサルファイト、フェニルエチレンサルファイト、1−メチル−2−フェニルエチレンサルファイト、1−エチル−2−フェニルエチレンサルファイトなどの環状サルファイトを用いたり、前記鎖状サルファイト又は環状サルファイトのハロゲン化物を用いることが可能である。   Examples of the compound having a structure in which B in Formula 2 is represented by B1 include dimethyl sulfite, diethyl sulfite, ethyl methyl sulfite, methyl propyl sulfite, ethyl propyl sulfite, diphenyl sulfite, methyl phenyl sulfite, Chain sulfites such as ethyl sulfite, dibenzyl sulfite, benzyl methyl sulfite, and benzyl ethyl sulfite are used, ethylene sulfite, propylene sulfite, butylene sulfite, vinylene sulfite, phenylethylene sulfite, 1 -Cyclic sulfite such as methyl-2-phenylethylene sulfite or 1-ethyl-2-phenylethylene sulfite, or the chain sulfite or cyclic sulfite halide It is possible to use.

式2のBがB2で表される構造を有する化合物としては、例えばジメチルスルホン、ジエチルスルホン、エチルメチルスルホン、メチルプロピルスルホン、エチルプロピルスルホン、ジフェニルスルホン、メチルフェニルスルホン、エチルフェニルスルホン、ジベンジルスルホン、ベンジルメチルスルホン、ベンジルエチルスルホンなどの鎖状スルホンを用いたり、スルフォラン、2−メチルスルフォラン、3−メチルスルフォラン、2−エチルスルフォラン、3−エチルスルフォラン、2,4−ジメチルスルフォラン、スルフォレン、3−メチルスルフォレン、2−フェニルスルフォラン、3−フェニルスルフォランなどの環状スルホンを用いたり、前記鎖状スルホン又は環状スルホンのハロゲン化物などを用いることが可能である。   Examples of the compound having a structure in which B in Formula 2 is represented by B2 include dimethylsulfone, diethylsulfone, ethylmethylsulfone, methylpropylsulfone, ethylpropylsulfone, diphenylsulfone, methylphenylsulfone, ethylphenylsulfone, dibenzylsulfone. Chain sulfone such as benzyl methyl sulfone and benzyl ethyl sulfone, sulfolane, 2-methyl sulfolane, 3-methyl sulfolane, 2-ethyl sulfolane, 3-ethyl sulfolane, 2,4-dimethyl sulfolane It is possible to use cyclic sulfones such as sulfolene, 3-methylsulfolene, 2-phenylsulfolane, 3-phenylsulfolane, the chain sulfone or the cyclic sulfone halide.

式2のBがB3で表される構造を有する化合物としては、例えばメタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸プロピル、エタンスルホン酸メチル、エタンスルホン酸エチル、エタンスルホン酸プロピル、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸プロピル、メタンスルホン酸フェニル、エタンスルホン酸フェニル、プロパンスルホン酸フェニル、ベンジルスルホン酸メチル、ベンジルスルホン酸エチル、ベンジルスルホン酸プロピル、メタンスルホン酸ベンジル、エタンスルホン酸ベンジル、プロパンスルホン酸ベンジルなどの鎖状スルホン酸エステルを用いたり、1,3−プロパンスルトン、1,4−ブタンスルトン、3−フェニル−1,3−プロパンスルトン、4−フェニル−1,4−ブタンスルトンなどの環状スルホン酸エステルを用いたり、前記鎖状スルホン酸エステル又は環状スルホン酸エステルのハロゲン化物を用いることが可能である。   Examples of the compound having a structure in which B in Formula 2 is represented by B3 include, for example, methyl methanesulfonate, ethyl methanesulfonate, propyl methanesulfonate, methyl ethanesulfonate, ethyl ethanesulfonate, propyl ethanesulfonate, and benzenesulfone. Methyl acetate, ethyl benzenesulfonate, propyl benzenesulfonate, phenyl methanesulfonate, phenyl ethanesulfonate, phenyl propanesulfonate, methyl benzylsulfonate, ethyl benzylsulfonate, propyl benzylsulfonate, benzyl methanesulfonate, ethanesulfone A chain sulfonic acid ester such as benzyl acid and benzyl propane sulfonate, 1,3-propane sultone, 1,4-butane sultone, 3-phenyl-1,3-propane sultone, 4-phenyl Or using a cyclic sulfonic acid esters such as 1,4-butane sultone, it is possible to use a halide of the chain sulfonic acid esters or cyclic sulfonic acid ester.

式2のBがB4で表される構造を有する化合物としては、例えば硫酸ジメチル、硫酸ジエチル、硫酸エチルメチル、硫酸メチルプロピル、硫酸エチルプロピル、硫酸メチルフェニル、硫酸エチルフェニル、硫酸フェニルプロピル、硫酸ベンジルメチル、硫酸ベンジルエチルなどの鎖状硫酸エステルを用いたり、エチレングリコール硫酸エステル、1,2−プロパンジオール硫酸エステル、1,3−プロパンジオール硫酸エステル、1,2−ブタンジオール硫酸エステル、1,3−ブタンジオール硫酸エステル、2,3−ブタジオール硫酸エステル、フェニルエチレングリコール硫酸エステル、メチルフェニルエチレングリコール硫酸エステル、エチルフェニルエチレングリコール硫酸エステルなどの環状硫酸エステルを用いたり、前記鎖状硫酸エステル又は環状硫酸エステルのハロゲン化物を用いることが可能である。   Examples of the compound having a structure in which B in Formula 2 is represented by B4 include dimethyl sulfate, diethyl sulfate, ethyl methyl sulfate, methyl propyl sulfate, ethyl propyl sulfate, methyl phenyl sulfate, ethyl phenyl sulfate, phenyl propyl sulfate, benzyl sulfate. A chain sulfate such as methyl and benzylethyl sulfate is used, ethylene glycol sulfate, 1,2-propanediol sulfate, 1,3-propanediol sulfate, 1,2-butanediol sulfate, 1,3 A cyclic sulfate such as butanediol sulfate, 2,3-butadiol sulfate, phenylethylene glycol sulfate, methylphenylethylene glycol sulfate, ethylphenylethylene glycol sulfate, It is possible to use a halide of an ester or cyclic sulfate.

これらの式2で表される化合物は、1種類だけを選択して使用してもよいし、2種類以上を組合わせて用いてもよい。また、ビニレンカーボネートと併用して使用することも可能である。   These compounds represented by Formula 2 may be used by selecting only one type or by combining two or more types. It can also be used in combination with vinylene carbonate.

図1は、本発明に係る非水電解質二次電池の断面図である。FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery according to the present invention.

符号の説明Explanation of symbols

1 電池(非水電解質二次電池)
2 扁平巻状電極群
3 負極
4 正極
5 セパレータ
6 電池ケース
7 電池蓋
8 安全弁
9 負極端子
10 負極リード
1 battery (non-aqueous electrolyte secondary battery)
2 Flat wound electrode group 3 Negative electrode 4 Positive electrode 5 Separator 6 Battery case 7 Battery lid 8 Safety valve 9 Negative electrode terminal 10 Negative electrode lead

Claims (7)

正極、負極、及び電解質を備える非水電解質二次電池において、
前記電解質は、下記式1で表される化合物を含み、
前記負極は、低結晶性炭素で表面の一部又は全部が被覆された黒鉛を含むことを特徴とする非水電解質二次電池。
A−R1−OH(1)
(式中、R1は不飽和結合を含んでいてもよい炭化水素基、又は、不飽和結合を含んでいてもよくその一部もしくは全部がハロゲン元素で置換されている炭化水素基であり、Aは下記式A1、A2又はA3で表される構造を有する。)
Figure 2005317389

Figure 2005317389

Figure 2005317389
In a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and an electrolyte,
The electrolyte includes a compound represented by the following formula 1,
The non-aqueous electrolyte secondary battery, wherein the negative electrode includes graphite whose surface is partially or entirely coated with low crystalline carbon.
A-R1-OH (1)
(In the formula, R1 is a hydrocarbon group which may contain an unsaturated bond, or a hydrocarbon group which may contain an unsaturated bond, part or all of which is substituted with a halogen element; Has a structure represented by the following formula A1, A2 or A3.)
Figure 2005317389

Figure 2005317389

Figure 2005317389
前記被覆された黒鉛は、表面の一部又は全部が0.5質量%以上、20質量%以下の低結晶性炭素で被覆されていることを特徴とする請求項1記載の非水電解質二次電池。   2. The non-aqueous electrolyte secondary according to claim 1, wherein a part or all of the surface of the coated graphite is coated with low crystalline carbon of 0.5% by mass or more and 20% by mass or less. battery. 電解質は、下記式2で表される化合物を含むことを特徴とする請求項1又は2記載の非水電解質二次電池。
R2−B−R3(2)
(式中、R2及びR3は夫々独立して、不飽和結合を含んでいてもよい炭化水素基、又は不飽和結合を含んでいてもよくその一部もしくは全部がハロゲン元素で置換されている炭化水素基を表す、又は、R2及びR3は互いに結合してBと共に環状構造を形成しており、Bは下記式B1、B2、B3又はB4で表される構造を有する。)
Figure 2005317389

Figure 2005317389

Figure 2005317389

Figure 2005317389
The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolyte contains a compound represented by the following formula 2.
R2-B-R3 (2)
(In the formula, R 2 and R 3 are each independently a hydrocarbon group which may contain an unsaturated bond, or a carbon atom which may contain an unsaturated bond, part or all of which is substituted with a halogen element. Represents a hydrogen group, or R2 and R3 are bonded to each other to form a cyclic structure with B, and B has a structure represented by the following formula B1, B2, B3, or B4.
Figure 2005317389

Figure 2005317389

Figure 2005317389

Figure 2005317389
前記式1で表される化合物は、エタン−1,2−ジオールスルホン酸、又は、プロパン−1,2−ジオールスルホン酸であることを特徴とする請求項1乃至3の何れかに記載の非水電解質二次電池。   The compound represented by Formula 1 is ethane-1,2-diol sulfonic acid or propane-1,2-diol sulfonic acid, according to any one of claims 1 to 3. Water electrolyte secondary battery. 前記式2で表される化合物は、エチレングリコール硫酸エステル、又は、プロパンジオール硫酸エステルであることを特徴とする請求項3記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 3, wherein the compound represented by Formula 2 is ethylene glycol sulfate or propanediol sulfate. 電解質は、ビニレンカーボネートを含むことを特徴とする請求項1乃至5の何れかに記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolyte contains vinylene carbonate. 電解質は、0.2質量%以上、2質量%以下のビニレンカーボネートを含むことを特徴とする請求項6記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 6, wherein the electrolyte contains 0.2% by mass or more and 2% by mass or less of vinylene carbonate.
JP2004134620A 2004-04-28 2004-04-28 Non-aqueous electrolyte secondary battery Pending JP2005317389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134620A JP2005317389A (en) 2004-04-28 2004-04-28 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134620A JP2005317389A (en) 2004-04-28 2004-04-28 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005317389A true JP2005317389A (en) 2005-11-10

Family

ID=35444576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134620A Pending JP2005317389A (en) 2004-04-28 2004-04-28 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005317389A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140115A (en) * 2004-11-15 2006-06-01 Hitachi Maxell Ltd Non-aqueous electrolytic liquid secondary battery
JP2007042387A (en) * 2005-08-02 2007-02-15 Sony Corp Electrolyte, electrode, and battery
JP2007157560A (en) * 2005-12-07 2007-06-21 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2007173014A (en) * 2005-12-21 2007-07-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2012111546A1 (en) * 2011-02-17 2012-08-23 株式会社 東芝 Battery electrode and manufacturing method thereof, non-aqueous electrolyte battery, battery pack, and active material
US8460821B2 (en) 2010-06-28 2013-06-11 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery, non-aqueous electrolyte, and method for fabricating non-aqueous electrolyte secondary battery
WO2013137418A1 (en) * 2012-03-15 2013-09-19 株式会社 東芝 Non-aqueous electrolyte secondary battery and battery pack
JP2014103066A (en) * 2012-11-22 2014-06-05 Tdk Corp Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
CN103718373B (en) * 2012-03-15 2016-11-30 株式会社东芝 Rechargeable nonaqueous electrolytic battery and set of cells
JP2017530509A (en) * 2014-07-29 2017-10-12 エルジー・ケム・リミテッド Graphite secondary particles and lithium secondary battery containing the same
CN111584833A (en) * 2019-02-15 2020-08-25 Sk新技术株式会社 Lithium secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003724A (en) * 1997-08-22 2000-01-07 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2003077534A (en) * 2001-08-31 2003-03-14 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2003272621A (en) * 2002-03-15 2003-09-26 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it
JP2003308876A (en) * 2002-04-16 2003-10-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003308838A (en) * 2002-04-16 2003-10-31 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode manufactured from it
JP2004087437A (en) * 2002-08-29 2004-03-18 Mitsui Chemicals Inc Lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003724A (en) * 1997-08-22 2000-01-07 Ube Ind Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2003077534A (en) * 2001-08-31 2003-03-14 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2003272621A (en) * 2002-03-15 2003-09-26 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it
JP2003308876A (en) * 2002-04-16 2003-10-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003308838A (en) * 2002-04-16 2003-10-31 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode manufactured from it
JP2004087437A (en) * 2002-08-29 2004-03-18 Mitsui Chemicals Inc Lithium secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140115A (en) * 2004-11-15 2006-06-01 Hitachi Maxell Ltd Non-aqueous electrolytic liquid secondary battery
JP2007042387A (en) * 2005-08-02 2007-02-15 Sony Corp Electrolyte, electrode, and battery
JP2007157560A (en) * 2005-12-07 2007-06-21 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2007173014A (en) * 2005-12-21 2007-07-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US8460821B2 (en) 2010-06-28 2013-06-11 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery, non-aqueous electrolyte, and method for fabricating non-aqueous electrolyte secondary battery
WO2012111546A1 (en) * 2011-02-17 2012-08-23 株式会社 東芝 Battery electrode and manufacturing method thereof, non-aqueous electrolyte battery, battery pack, and active material
US9698411B2 (en) 2011-02-17 2017-07-04 Kabushiki Kaisha Toshiba Electrode for battery and production method thereof, nonaqueous electrolyte battery, battery pack, and active material
US9825330B2 (en) 2012-03-15 2017-11-21 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery pack
WO2013137418A1 (en) * 2012-03-15 2013-09-19 株式会社 東芝 Non-aqueous electrolyte secondary battery and battery pack
CN103718373A (en) * 2012-03-15 2014-04-09 株式会社东芝 Non-aqueous electrolyte secondary battery and battery pack
JPWO2013137418A1 (en) * 2012-03-15 2015-08-03 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack
CN103718373B (en) * 2012-03-15 2016-11-30 株式会社东芝 Rechargeable nonaqueous electrolytic battery and set of cells
JP2014103066A (en) * 2012-11-22 2014-06-05 Tdk Corp Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2017530509A (en) * 2014-07-29 2017-10-12 エルジー・ケム・リミテッド Graphite secondary particles and lithium secondary battery containing the same
US10361426B2 (en) 2014-07-29 2019-07-23 Lg Chem, Ltd. Secondary graphite particle and secondary lithium battery comprising the same
CN111584833A (en) * 2019-02-15 2020-08-25 Sk新技术株式会社 Lithium secondary battery

Similar Documents

Publication Publication Date Title
JP5501657B2 (en) Lithium ion secondary battery
JP3558007B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4188851B2 (en) ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP4950468B2 (en) Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
JP6301657B2 (en) Recycling method of lithium ion secondary battery
WO2005057714A1 (en) Electrolyte solution for secondary battery and secondary battery using same
KR20160080995A (en) Lithium secondary battery
KR102425826B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery employing the same
JP2004134232A (en) Non-aqueous electrolytic solution and lithium secondary battery using it
JP2009105069A (en) Electrolyte for lithium secondary battery, and lithium secondary battery containing same
JP2010232117A (en) Lithium secondary battery
JP5167598B2 (en) Nonaqueous electrolyte secondary battery
JP2007173014A (en) Nonaqueous electrolyte secondary battery
JP2005317389A (en) Non-aqueous electrolyte secondary battery
JP4051953B2 (en) Non-aqueous electrolyte secondary battery
KR102425830B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery employing the same
JP2016091632A (en) Lithium ion secondary battery
JP2007122975A (en) Nonaqueous electrolyte secondary battery
JP6177042B2 (en) Lithium secondary battery
US10490853B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2004273186A (en) Lithium battery
JP2002319433A (en) Nonaqueous electrolyte secondary cell and nonaqueous electrolytic solution used for the same
JP2005129540A (en) Organic electrolytic solution and lithium cell using it
JP2005340157A (en) Non-aqueous secondary battery
JP5193921B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110215