JP2007173014A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2007173014A JP2007173014A JP2005368666A JP2005368666A JP2007173014A JP 2007173014 A JP2007173014 A JP 2007173014A JP 2005368666 A JP2005368666 A JP 2005368666A JP 2005368666 A JP2005368666 A JP 2005368666A JP 2007173014 A JP2007173014 A JP 2007173014A
- Authority
- JP
- Japan
- Prior art keywords
- same
- battery
- electrolyte
- mass
- different
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は、正極、負極、及び電解質を備える非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and an electrolyte.
近年、携帯可能な電子機器の高性能化及び小型軽量化が進んでおり、これら電子機器に使用する高エネルギー密度の電池として、リチウムイオン電池等の非水電解質二次電池の使用が拡大している。リチウムイオン電池等の非水電解質二次電池は、充放電を繰返すのに従い、放電容量が減少する傾向がある。
そのため、充放電を繰返した場合の放電容量の減少を防止すべく、電解質に鎖状ジオールスルホン酸を添加した非水電解質二次電池の発明が特許文献1に開示されている。
また、特許文献2には、電解質が鎖状ジオールスルホン酸を含み、負極が0.5質量%以上20質量%以下の低結晶性炭素により表面の一部又は全部が被覆された黒鉛を含む非水電解質二次電池の発明が開示されている。
Therefore, Patent Document 1 discloses an invention of a non-aqueous electrolyte secondary battery in which a chain diol sulfonic acid is added to an electrolyte in order to prevent a decrease in discharge capacity when charging and discharging are repeated.
Further,
しかし、特許文献1の非水電解質二次電池は、充放電を繰返した場合に、放電容量の低下は抑制出来るが、負極板の膨張が大きくなるために、電池の膨れが大きくなるという問題がある。また、初期充電時に、鎖状ジオールスルホン酸が分解して負極表面に厚い被膜を形成し、負極の抵抗が増加するために、低温で充電した際に負極上にリチウムが析出して負極の厚みが厚くなり、電池の膨れが大きくなるという問題がある。 However, the non-aqueous electrolyte secondary battery of Patent Document 1 can suppress a decrease in discharge capacity when charging and discharging are repeated, but the problem is that the expansion of the negative electrode plate increases, so that the expansion of the battery increases. is there. Also, during initial charging, the chain diol sulfonic acid decomposes to form a thick film on the negative electrode surface, and the resistance of the negative electrode increases, so that lithium deposits on the negative electrode when charged at a low temperature and the thickness of the negative electrode There is a problem that the battery becomes thicker and the swelling of the battery becomes larger.
特許文献2の非水電解質二次電池の場合も、特許文献1の非水電解質二次電池と同様に、鎖状ジオールスルホン酸が初期充電時に分解して負極表面に厚い被膜を形成し、負極の抵抗が増加するために、低温で充電した際に負極上にリチウムが析出して負極の厚みが厚くなり、電池の膨れが大きくなるという問題がある。
In the case of the non-aqueous electrolyte secondary battery of
本発明は斯かる事情に鑑みてなされたものであり、電解質に、後述する化学式(1)で表される化合物と、化学式(2)、化学式(3)、化学式(4)及び化学式(5)で表される化合物のうちの少なくとも1種と、化学式(6)で表される化合物とを添加することにより、充放電サイクルを繰り返した際の電池容量の低下及び電池の膨れを抑制することが出来、低温で充放電した後においても電池の厚みの増加を抑制することが出来る非水電解質二次電池を提供することを目的とする。 This invention is made | formed in view of such a situation, and the compound represented by Chemical formula (1) mentioned later, Chemical formula (2), Chemical formula (3), Chemical formula (4), and Chemical formula (5) is made into electrolyte. By adding at least one of the compounds represented by formula (6) and the compound represented by the chemical formula (6), it is possible to suppress a decrease in battery capacity and a swelling of the battery when the charge / discharge cycle is repeated. An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of suppressing an increase in battery thickness even after being charged and discharged at a low temperature.
第1発明に係る非水電解質二次電池は、正極、負極、及び電解質を備える非水電解質二次電池において、前記電解質は、下記化学式(1);
HO−R1−A (1)
(式中、R1は不飽和結合を含んでいてもよい炭化水素基、又は、不飽和結合を含んでいてもよくその一部若しくは全部がハロゲン元素で置換されている炭化水素基であり、Aは下記A1、A2又はA3で表される構造を有する。)で表される化合物と、
A nonaqueous electrolyte secondary battery according to a first aspect of the present invention is a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the electrolyte has the following chemical formula (1);
HO-R1-A (1)
(Wherein R1 is a hydrocarbon group that may contain an unsaturated bond, or a hydrocarbon group that may contain an unsaturated bond, part or all of which is substituted with a halogen element, and Has a structure represented by the following A1, A2 or A3):
下記化学式(2); The following chemical formula (2);
(式中、R2及びR3は、各々独立して、水素原子、同一種若しくは異種のアルキル基、同一種若しくは異種のビニル基、同一種若しくは異種のアルコキシ基、同一種若しくは異種のアリル基、同一種若しくは異種のアリール基、同一種若しくは異種のハロゲン、同一種若しくは異種のハロゲンを有するアルキル基、同一種若しくは異種のハロゲンを有するアリル基、又は同一種若しくは異種のハロゲンを有するアリール基を表す。)で表される環状硫酸エステル誘導体、
下記化学式(3);
(Wherein R2 and R3 are each independently a hydrogen atom, the same or different alkyl group, the same or different vinyl group, the same or different alkoxy group, the same or different allyl group, the same One or different aryl groups, the same or different halogen, an alkyl group having the same or different halogen, an allyl group having the same or different halogen, or an aryl group having the same or different halogen. ) Cyclic sulfate derivatives represented by
The following chemical formula (3);
(式中、R4及びR5は、各々独立して、水素原子、同一種若しくは異種のアルキル基、同一種若しくは異種のビニル基、同一種若しくは異種のアルコキシ基、同一種若しくは異種のアリル基、同一種若しくは異種のアリール基、同一種若しくは異種のハロゲン、同一種若しくは異種のハロゲンを有するアルキル基、同一種若しくは異種のハロゲンを有するアリル基、又は同一種若しくは異種のハロゲンを有するアリール基を表す。)で表される不飽和環状硫酸エステル誘導体、
下記化学式(4);
(Wherein R4 and R5 are each independently a hydrogen atom, the same or different alkyl group, the same or different vinyl group, the same or different alkoxy group, the same or different allyl group, the same One or different aryl groups, the same or different halogen, an alkyl group having the same or different halogen, an allyl group having the same or different halogen, or an aryl group having the same or different halogen. ) Unsaturated cyclic sulfate derivatives represented by
The following chemical formula (4);
(式中、R6及びR7は、各々独立して、水素原子、同一種若しくは異種のアルキル基、同一種若しくは異種のビニル基、同一種若しくは異種のアルコキシ基、同一種若しくは異種のアリル基、同一種若しくは異種のアリール基、同一種若しくは異種のハロゲン、同一種若しくは異種のハロゲンを有するアルキル基、同一種若しくは異種のハロゲンを有するアリル基、又は同一種若しくは異種のハロゲンを有するアリール基を表す。)で表される環状硫酸エステル誘導体、及び
下記化学式(5);
(Wherein R6 and R7 are each independently a hydrogen atom, the same or different alkyl group, the same or different vinyl group, the same or different alkoxy group, the same or different allyl group, the same One or different aryl groups, the same or different halogen, an alkyl group having the same or different halogen, an allyl group having the same or different halogen, or an aryl group having the same or different halogen. And a cyclic sulfate derivative represented by the following chemical formula (5):
(式中、R8〜R10は、各々独立して、水素原子、同一種若しくは異種のアルキル基、同一種若しくは異種のビニル基、同一種若しくは異種のアルコキシ基、同一種若しくは異種のアリル基、同一種若しくは異種のアリール基、同一種若しくは異種のハロゲン、同一種若しくは異種のハロゲンを有するアルキル基、同一種若しくは異種のハロゲンを有するアリル基、又は同一種若しくは異種のハロゲンを有するアリール基を表す。)で表される1,3−プロペンスルトン誘導体から選ばれる少なくとも1種の化合物と、
下記化学式(6);
R11−SO4 −R12 (6)
(式中、R11及びR12は、各々独立して、同一種又は異種のアルキル基を表す。)で表される鎖状の硫酸エステル化合物と
を含んでなることを特徴とする。
第2発明に係る非水電解質二次電池は、前記硫酸エステル化合物が、硫酸ジメチル、硫酸ジエチル及び硫酸エチルメチルのうちの少なくとも1つであることを特徴とする。
(Wherein R8 to R10 are each independently a hydrogen atom, the same or different alkyl group, the same or different vinyl group, the same or different alkoxy group, the same or different allyl group, the same One or different aryl groups, the same or different halogen, an alkyl group having the same or different halogen, an allyl group having the same or different halogen, or an aryl group having the same or different halogen. At least one compound selected from 1,3-propene sultone derivatives represented by:
The following chemical formula (6);
R11-SO 4 -R12 (6)
(Wherein R11 and R12 each independently represents the same or different alkyl group) and a chain-like sulfate ester compound.
The non-aqueous electrolyte secondary battery according to a second aspect is characterized in that the sulfate ester compound is at least one of dimethyl sulfate, diethyl sulfate, and ethyl methyl sulfate.
本発明においては、電解質に、化学式(1)に係る化合物を用いることにより、充放電を繰返した場合の放電容量の低下を抑制することが出来る。この化合物を含有させることにより、負極活物質の表面に良好なSEI(Solid Electrolyte Interphase)が形成され、その後の負極上での非水電解質の分解が抑制され、その結果、充放電サイクル時の容量低下が小さくなると考えられる。SEIとは、非水電解質中で金属リチウムや炭素材料の初充電を行った場合、電解質中の溶媒や、電解質中に含まれる成分が還元されて、金属リチウムや炭素材料の表面に形成される不働体膜をいう。そして、金属リチウムや炭素材料の表面に形成されたSEIが、リチウムイオン伝導性の保護膜として働き、その後の金属リチウムや炭素材料と溶媒との反応が抑制される。
化学式(2)〜(5)で表される化合物を電解質に添加した場合、負極上に安定した負極保護被膜が形成される。前記化学式(1)で表される化合物によって、負極のバインダの結着力が低下したり、バインダ自身が膨張するために、充放電に伴う負極板の膨張収縮の際に、極板が膨張し易くなる傾向がある。しかし、負極上に安定した負極保護被膜が形成されるため、前記化学式(1)を添加したことによる上述した負極板の膨張を抑制することが出来る。
In this invention, the fall of the discharge capacity at the time of repeating charging / discharging can be suppressed by using the compound which concerns on Chemical formula (1) for electrolyte. By containing this compound, good SEI (Solid Electrolyte Interphase) is formed on the surface of the negative electrode active material, and the subsequent decomposition of the non-aqueous electrolyte on the negative electrode is suppressed. As a result, the capacity during the charge / discharge cycle is reduced. The decrease is considered to be small. When SEI is the first charge of lithium metal or carbon material in a non-aqueous electrolyte, the solvent in the electrolyte and components contained in the electrolyte are reduced and formed on the surface of the metal lithium or carbon material. A passive membrane. And SEI formed on the surface of metallic lithium or a carbon material works as a lithium ion conductive protective film, and the subsequent reaction between metallic lithium or carbon material and a solvent is suppressed.
When the compounds represented by the chemical formulas (2) to (5) are added to the electrolyte, a stable negative electrode protective film is formed on the negative electrode. Due to the compound represented by the chemical formula (1), the binding force of the binder of the negative electrode decreases or the binder itself expands, so that the electrode plate easily expands during expansion / contraction of the negative electrode plate due to charge / discharge. Tend to be. However, since a stable negative electrode protective film is formed on the negative electrode, the above-described expansion of the negative electrode plate due to the addition of the chemical formula (1) can be suppressed.
化学式(6)で表される化合物は、充放電を繰返した場合の放電容量の低下を抑制することが出来る。化学式(1)で表される化合物は負極表面に厚い被膜を形成して負極の抵抗を増加させるが、鎖状の硫酸エステル化合物は負極表面に被膜を形成せず、さらに化学式(1)で表される化合物の分解により生じる被膜の成長を抑制するので、負極の抵抗が上昇しない。化学式(6)の化合物を添加した場合、電池がリチウムを吸蔵放出可能な化合物である正極活物質を有する場合、低温下でのリチウムの充電受け入れ性が低下せず、表面上への析出を抑制することが出来る。 The compound represented by the chemical formula (6) can suppress a decrease in discharge capacity when charging and discharging are repeated. The compound represented by the chemical formula (1) forms a thick film on the negative electrode surface to increase the resistance of the negative electrode. However, the chain sulfate ester compound does not form a film on the negative electrode surface, and is further represented by the chemical formula (1). Since the growth of the film caused by the decomposition of the generated compound is suppressed, the resistance of the negative electrode does not increase. When the compound of the chemical formula (6) is added, when the battery has a positive electrode active material that is a compound capable of occluding and releasing lithium, the charge acceptability of lithium at a low temperature is not lowered, and the deposition on the surface is suppressed. I can do it.
第1発明によれば、充放電サイクルを繰り返した際の電池容量の低下及び電池の膨れを抑制することが出来、低温で充放電した後においても電池の厚みの増加を抑制することが出来る。
第2発明によれば、低温で充放電した後においても電池の厚みの増加をさらに良好に抑制出来る。
According to the first invention, it is possible to suppress a decrease in battery capacity and swelling of the battery when the charge / discharge cycle is repeated, and it is possible to suppress an increase in the thickness of the battery even after charging / discharging at a low temperature.
According to the second invention, an increase in the thickness of the battery can be suppressed even better even after charging and discharging at a low temperature.
以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
本発明は、非水電解質二次電池において、非水電解質中に、下記化学式(1);
HO−R1−A (1)
(式中、R1は不飽和結合を含んでいてもよい炭化水素基、又は、不飽和結合を含んでいてもよくその一部若しくは全部がハロゲン元素で置換されている炭化水素基であり、Aは下記A1、A2又はA3で表される構造を有する。)で表される化合物と、
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
In the nonaqueous electrolyte secondary battery, the present invention includes the following chemical formula (1) in the nonaqueous electrolyte:
HO-R1-A (1)
(Wherein R1 is a hydrocarbon group that may contain an unsaturated bond, or a hydrocarbon group that may contain an unsaturated bond, part or all of which is substituted with a halogen element, and Has a structure represented by the following A1, A2 or A3):
下記化学式(2); The following chemical formula (2);
で表される環状硫酸エステル誘導体、
下記化学式(3);
A cyclic sulfate derivative represented by:
The following chemical formula (3);
で表される不飽和環状硫酸エステル誘導体、
下記化学式(4);
An unsaturated cyclic sulfate derivative represented by:
The following chemical formula (4);
で表される環状硫酸エステル誘導体、及び
下記化学式(5);
A cyclic sulfate derivative represented by the formula:
で表される1,3−プロペンスルトン誘導体のうちの少なくとも1種の化合物と、
下記化学式(6);
R11−SO4 −R12 (6)
で表される鎖状の硫酸エステル化合物とを含んでなる。
但し、化学式(2)、(3)、(4)及び(5)中、R2〜R10は、各々独立して、水素原子、同一種若しくは異種のアルキル基、同一種若しくは異種のビニル基、同一種若しくは異種のアルコキシ基、同一種若しくは異種のアリル基、同一種若しくは異種のアリール基、同一種若しくは異種のハロゲン、同一種若しくは異種のハロゲンを有するアルキル基、同一種若しくは異種のハロゲンを有するアリル基、又は同一種若しくは異種のハロゲンを有するアリール基を表す。
また、式(6)中、R11及びR12は、各々独立して、同一種又は異種のアルキル基を表す。
At least one compound of 1,3-propene sultone derivatives represented by:
The following chemical formula (6);
R11-SO 4 -R12 (6)
And a chain sulfate ester compound represented by the formula:
However, in chemical formulas (2), (3), (4) and (5), R2 to R10 are each independently a hydrogen atom, the same or different alkyl group, the same or different vinyl group, One or different alkoxy groups, same or different allyl groups, same or different aryl groups, same or different halogens, alkyl groups having the same or different halogens, allyls having the same or different halogens Or an aryl group having the same or different halogen.
In formula (6), R11 and R12 each independently represent the same or different alkyl group.
化学式(1)で表される化合物の非水電解質全体に対する添加量は、0.001質量%以上4質量%以下であるのが好ましい。化学式(1)で表される化合物の添加量が後述の実施例で述べる0.001質量%未満であっても、本発明の効果は認められる。前記化合物の添加量が4質量%を超える場合は、この電解質を用いた電池において、初期充電時にガスが発生するために電池の内圧が上昇し、電池が膨れるという問題が生じる。 The amount of the compound represented by the chemical formula (1) added to the entire nonaqueous electrolyte is preferably 0.001% by mass or more and 4% by mass or less. Even if the addition amount of the compound represented by the chemical formula (1) is less than 0.001% by mass described in Examples described later, the effect of the present invention is recognized. When the added amount of the compound exceeds 4% by mass, in the battery using this electrolyte, gas is generated at the time of initial charge, so that the internal pressure of the battery rises and the battery swells.
化学式(2)、(3)、(4)及び(5)で表される化合物のうちの少なくとも1種の化合物の非水電解質全体に対する添加量は、0.01質量%以上2質量%以下が好ましく、下限は0.1質量%であるのがさらに好ましい。添加量が0.01質量%以上である場合、期待する効果が顕著に得られる。添加量が2質量%を超える場合、初充放電サイクル時の不可逆容量が大きくなるために、初期容量が小さくなるという問題が生じる。 The addition amount of at least one of the compounds represented by the chemical formulas (2), (3), (4) and (5) to the whole nonaqueous electrolyte is 0.01% by mass or more and 2% by mass or less. The lower limit is more preferably 0.1% by mass. When the addition amount is 0.01% by mass or more, the expected effect is remarkably obtained. When the addition amount exceeds 2% by mass, the irreversible capacity during the initial charge / discharge cycle is increased, which causes a problem that the initial capacity is decreased.
化学式(6)で表される鎖状の硫酸エステル化合物として、例えば、硫酸ジメチル、硫酸ジエチル、硫酸エチルメチル、硫酸メチルプロピル、硫酸エチルプロピル、硫酸メチルフェニル、硫酸エチルフェニル、硫酸フェニルプロピル、硫酸ベンジルメチル、硫酸ベンジルエチル等が挙げられる。中でも、硫酸ジメチル、硫酸ジエチル、硫酸エチルメチルが好ましい。
この鎖状の硫酸エステル化合物の非水電解質全体に対する添加量は、0.05質量%以上1質量%以下であるのが好ましく、下限は0.1質量%、上限は0.5質量%であるのがさらに好ましい。添加量が0.05質量%以上である場合、期待する効果が顕著に得られる。添加量が1質量%を超える場合、この電解質を用いた電池において、初期充電時にガスが発生するために電池の内圧が上昇し、電池が膨れるという問題が生じる。
Examples of the chain sulfate ester compound represented by the chemical formula (6) include dimethyl sulfate, diethyl sulfate, ethyl methyl sulfate, methyl propyl sulfate, ethyl propyl sulfate, methyl phenyl sulfate, ethyl phenyl sulfate, phenyl propyl sulfate, and benzyl sulfate. Examples include methyl and benzylethyl sulfate. Of these, dimethyl sulfate, diethyl sulfate, and ethyl methyl sulfate are preferable.
The amount of the chain sulfate ester compound added to the whole non-aqueous electrolyte is preferably 0.05% by mass or more and 1% by mass or less, the lower limit is 0.1% by mass, and the upper limit is 0.5% by mass. Is more preferable. When the addition amount is 0.05% by mass or more, the expected effect is remarkably obtained. When the addition amount exceeds 1% by mass, in the battery using this electrolyte, gas is generated at the time of initial charging, so that the internal pressure of the battery rises and the battery swells.
本発明の非水電解質二次電池を作製する場合には、上記の非水電解質を用い、通常の方法により電池を作製すれば良い。
本発明の非水電解質二次電池に用いる正極活物質としては、リチウムを吸蔵放出可能な化合物である、組成式Lix MO2 、又はLiy M2O4 (ただしMは遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル状の空孔を有する酸化物、層状構造の金属カルコゲン化物を用いることが出来る。その具体例としては、LiCoO2、LiNiO2 、LiMn2 O4 、Li2 Mn2O4 等があり、これらを混合して用いても良い。また、粒状の活物質を用いる場合には、例えば、活物質粒子と導電助剤と結着剤とからなる合材をアルミニウム等の金属集電体上に形成することで作製出来る。
When producing the non-aqueous electrolyte secondary battery of the present invention, the above-described non-aqueous electrolyte may be used to produce a battery by an ordinary method.
As a positive electrode active material used for the nonaqueous electrolyte secondary battery of the present invention, a composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦ A composite oxide represented by x ≦ 1, 0 ≦ y ≦ 2), an oxide having a tunnel-like hole, or a metal chalcogenide having a layered structure can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4, etc., and these may be used in combination. Moreover, when using a granular active material, it can produce, for example by forming the composite material which consists of an active material particle, a conductive support agent, and a binder on metal current collectors, such as aluminum.
また、負極活物質としては、例えば、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe2 O3 、WO2 、MoO2 等の遷移金属酸化物、グラファイト、カーボン等の炭素材料、Li3 (Li3 N)等の窒化リチウム、もしくは金属リチウム箔、又は、これらの混合物を用いても良い。また、粒状の炭素材料を用いる場合には、例えば、活物質粒子と結着剤とからなる合材を銅等の金属集電体上に形成することで作製出来る。前記炭素材料としては、天然黒鉛、人造黒鉛(MCMB又はMCF等のメソフェーズ系黒鉛)を用いることが好ましく、メソフェーズ系黒鉛(MCMB又はMCF)を用いることがさらに好ましい。また、天然黒鉛の表面の一部又は全部を、天然黒鉛よりも結晶性が低い低結晶性炭素で被覆したものを用いても良い。 Examples of the negative electrode active material include alloys of lithium with Al, Si, Pb, Sn, Zn, Cd, etc., transition metal oxides such as LiFe 2 O 3 , WO 2 , MoO 2 , graphite, carbon, etc. A carbon material, lithium nitride such as Li 3 (Li 3 N), a metal lithium foil, or a mixture thereof may be used. Moreover, when using a granular carbon material, it can produce, for example by forming the compound material which consists of an active material particle and a binder on metal collectors, such as copper. As the carbon material, natural graphite or artificial graphite (mesophase graphite such as MCMB or MCF) is preferably used, and mesophase graphite (MCMB or MCF) is more preferably used. Moreover, you may use what coat | covered the part or all of the surface of natural graphite with the low crystalline carbon whose crystallinity is lower than natural graphite.
非水電解質の溶媒としては、エチレンカーボネート、ビニレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート等の非水溶媒を、単独、又はこれらを混合して使用することが出来る。また、適宜、ビフェニル、シクロヘキシルベンゼン等の重合剤等の添加剤を、適量含有したものでも良い。 Non-aqueous electrolyte solvents include ethylene carbonate, vinylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2- Nonaqueous solvents such as methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl propyl carbonate, etc. These can be used alone or as a mixture thereof. Moreover, it may contain an appropriate amount of an additive such as a polymerization agent such as biphenyl or cyclohexylbenzene.
非水電解質は、これらの非水溶媒に支持塩を溶解して使用する。支持塩としては、LiClO4 、LiPF6 、LiBF4 、LiAsF6、LiCF3 CO2 、LiCF3 SO3 、LiCF3CF2 SO3 、LiCF3 CF2 CF2 SO3、LiN(SO2 CF3 )2 、LiN(SO2 CF2CF3 )2 、LiN(COCF3 )2 、LiN(COCF2CF3 )2 、LiPF3 (CF2 CF3 )3、LiFOB(リチウムジフルオロオキサラートボレート)、及びLiBOB(リチウムビスオキサラートボレート)等の塩、もしくはこれらの混合物を使用することが出来る。 The nonaqueous electrolyte is used by dissolving the supporting salt in these nonaqueous solvents. Examples of the supporting salt include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN (SO 2 CF 3 ). 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 , LiPF 3 (CF 2 CF 3 ) 3 , LiFOB (lithium difluorooxalate borate), and LiBOB A salt such as (lithium bisoxalate borate) or a mixture thereof can be used.
本発明の非水電解質二次電池は、通常、その構成として正極、負極及びセパレータと非水電解質との組み合わせからなっているが、セパレータとしては、多孔性ポリオレフィン膜や多孔性ポリ塩化ビニル膜等の多孔性ポリマー膜、あるいは、リチウムイオン又はイオン導電性ポリマー電解質膜を、単独、又は組み合わせて使用することが出来る。
また、電池の形状は、特に限定されるものではなく、本発明は、角形、円筒形、長円筒形、コイン形、ボタン形、シート形電池等の様々な形状の非水電解質二次電池に適用可能である。
The non-aqueous electrolyte secondary battery of the present invention is usually composed of a combination of a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte as its configuration. Examples of the separator include a porous polyolefin film and a porous polyvinyl chloride film. These porous polymer membranes or lithium ion or ion conductive polymer electrolyte membranes can be used alone or in combination.
In addition, the shape of the battery is not particularly limited, and the present invention is applicable to non-aqueous electrolyte secondary batteries having various shapes such as a square, cylindrical, long cylindrical, coin, button, and sheet batteries. Applicable.
以下に好適な実施例を用いて本発明を説明するが、本発明は、本実施例により、何ら限定されるものではなく、その主旨を変更しない範囲において、適宜変更して実施することが出来る。
(実施例1)
図1は、本発明に係る非水電解質二次電池(以下、電池という)の断面図である。図1において、1は電池、2は扁平巻状電極群、3は負極、4は正極、5はセパレータ、6は電池ケース、7は電池蓋、8は安全弁、9は負極端子、10は負極リードである。扁平巻状電極群2は、正極4と負極3とをセパレータ5を介して巻回したものである。電池蓋7は負極端子9及び安全弁8を有し、扁平巻状電極群2は電池ケース6に収容してあり、電池蓋7と電池ケース6とはレーザー溶接されている。負極端子9は負極リード10と接続され、正極4は電池ケース6と接続されている。
The present invention will be described below with reference to preferred examples. However, the present invention is not limited to the examples, and can be appropriately modified and implemented without departing from the scope of the present invention. .
Example 1
FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery (hereinafter referred to as a battery) according to the present invention. In FIG. 1, 1 is a battery, 2 is a flat wound electrode group, 3 is a negative electrode, 4 is a positive electrode, 5 is a separator, 6 is a battery case, 7 is a battery lid, 8 is a safety valve, 9 is a negative electrode terminal, and 10 is a negative electrode Lead. The flat
正極合剤は、正極活物質としてのLiCoO2 90質量%と、導電助剤としてのアセチレンブラック5質量%と、バインダとしてのポリフッ化ビニリデン(PVDF)5質量%とを混合し、N−メチル−2−ピロリドン(NMP)に分散させることによりペーストを調製した。調製したペーストを厚さ20μmのアルミニウム集電体に均一に塗布して乾燥させた後、ロールプレスで正極合剤層の密度が3.2g/cm3 となるように圧縮成形することにより正極を作製した。 The positive electrode mixture was prepared by mixing 90% by mass of LiCoO 2 as a positive electrode active material, 5% by mass of acetylene black as a conductive auxiliary agent, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder. A paste was prepared by dispersing in 2-pyrrolidone (NMP). The prepared paste is uniformly applied to an aluminum current collector having a thickness of 20 μm and dried, and then the positive electrode is formed by compression molding with a roll press so that the density of the positive electrode mixture layer is 3.2 g / cm 3. Produced.
負極合剤は、負極活物質としての炭素材料97質量%と、バインダとしてのカルボキシメチルセルロース1.5質量%及びスチレンブタジエンゴム1.5質量%とを混合し、蒸留水を適宜加えて分散させ、スラリーを調整した。調製したスラリーを厚さ15μmの銅集電体に均一に塗布し、100℃で5時間乾燥させた後、ロールプレスで負極合剤層の密度が1.4g/cm3 となるように圧縮成形することにより負極を作製した。 The negative electrode mixture is a mixture of 97% by mass of a carbon material as a negative electrode active material, 1.5% by mass of carboxymethyl cellulose as a binder and 1.5% by mass of styrene butadiene rubber, and dispersed by adding distilled water as appropriate. The slurry was adjusted. The prepared slurry was uniformly applied to a 15 μm thick copper current collector, dried at 100 ° C. for 5 hours, and then compression-molded with a roll press so that the density of the negative electrode mixture layer was 1.4 g / cm 3. As a result, a negative electrode was produced.
前記炭素材料は、天然黒鉛の表面の一部又は全部を、天然黒鉛よりも結晶性の低い低結晶性炭素で被覆したもの(以下、被覆黒鉛という)であり、前記天然黒鉛は、X線広角回折法による(002)面の平均面間隔(d002)が3.357Åであり、また、アルゴンレーザーラマンによる1580cm-1付近のピークに対する1355cm-1付近のピークの強度比(I1355/I1580)が、0.25であり、さらに、学振法によるX線回折で求めた結晶子サイズLc及びLaは100nm以上であるものを用いた。また、前記被覆黒鉛は、アルゴンレーザーラマンによる1580cm-1付近のピークに対する1355cm-1付近のピークの強度比が1.03である。 The carbon material is obtained by coating a part or all of the surface of natural graphite with low crystalline carbon having lower crystallinity than natural graphite (hereinafter referred to as coated graphite). The average plane spacing (d002) of the (002) plane by the diffraction method is 3.357 mm, and the intensity ratio (I1355 / I1580) of the peak near 1355 cm −1 to the peak near 1580 cm −1 by argon laser Raman is The crystallite size Lc and La obtained by X-ray diffraction by the Gakushin method was 100 nm or more. The coated graphite has an intensity ratio of a peak near 1355 cm −1 to a peak near 1580 cm −1 by an argon laser Raman of 1.03.
前記被覆黒鉛は、トルエンガスを炭素原料として化学蒸着処理法によって天然黒鉛の表面を天然黒鉛の質量に対して10質量%の低結晶性炭素で被覆したものである。 The coated graphite is obtained by coating the surface of natural graphite with 10% by mass of low crystalline carbon based on the mass of natural graphite by a chemical vapor deposition method using toluene gas as a carbon raw material.
セパレータ5としては、厚さ20μm程度の微多孔性ポリエチレンフィルムを用いた。電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との体積比が3:7の混合溶媒にLiPF6 を1.1mol/L溶解させたものに、前記化学式(1)に係る表1に示す化合物C1を0.1質量%、前記化学式(2)に係る下記構造式に示すPGLST(プロピレングリコール硫酸エステル)を0.5質量%、及び化学式(6)に係るDEST(硫酸ジエチル)を0.2質量%添加した電解質を用いた。電池1のサイズは、幅30mm、厚さ4.2mm、高さ48mmであり、容量は600mAhである。
As the
(実施例2)
電解質に、化学式(1)に係る表1に示す化合物C2を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(実施例3)
電解質に、化学式(1)に係る表1に示す化合物C3を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(実施例4)
電解質に、化学式(1)に係る表1に示す化合物C4を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(実施例5)
電解質に、化学式(1)に係る表1に示す化合物C5を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 2)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of the compound C2 shown in Table 1 according to the chemical formula (1) was added to the electrolyte.
(Example 3)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of the compound C3 shown in Table 1 according to the chemical formula (1) was added to the electrolyte.
Example 4
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of the compound C4 shown in Table 1 according to the chemical formula (1) was added to the electrolyte.
(Example 5)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of the compound C5 shown in Table 1 according to the chemical formula (1) was added to the electrolyte.
(実施例6)
電解質に、化学式(1)に係る表2に示す化合物C6を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 6)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of the compound C6 shown in Table 2 according to the chemical formula (1) was added to the electrolyte.
(実施例7)
電解質に、化学式(1)に係る表2に示す化合物C7を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(実施例8)
電解質に、化学式(1)に係る表2に示す化合物C8を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(実施例9)
電解質に、化学式(1)に係る表2に示す化合物C9を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 7)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of Compound C7 shown in Table 2 according to Chemical Formula (1) was added to the electrolyte.
(Example 8)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of the compound C8 shown in Table 2 related to the chemical formula (1) was added to the electrolyte.
Example 9
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of Compound C9 shown in Table 2 according to Chemical Formula (1) was added to the electrolyte.
(実施例10)
電解質に、化学式(1)に係る表3に示す化合物C10を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 10)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of the compound C10 shown in Table 3 according to the chemical formula (1) was added to the electrolyte.
(実施例11)
電解質に、化学式(1)に係る表3に示す化合物C11を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(実施例12)
電解質に、化学式(1)に係る表3に示す化合物C12を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(実施例13)
電解質に、化学式(1)に係る表3に示す化合物C13を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(実施例14)
電解質に、化学式(1)に係る表4に示す化合物C14を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 11)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of the compound C11 shown in Table 3 according to the chemical formula (1) was added to the electrolyte.
(Example 12)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of the compound C12 shown in Table 3 according to the chemical formula (1) was added to the electrolyte.
(Example 13)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of Compound C13 shown in Table 3 according to Chemical Formula (1) was added to the electrolyte.
(Example 14)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of Compound C14 shown in Table 4 according to Chemical Formula (1) was added to the electrolyte.
(実施例15)
電解質に、化学式(1)に係る表4に示す化合物C15を0.1質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 15)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of Compound C15 shown in Table 4 according to Chemical Formula (1) was added to the electrolyte.
(実施例16)
電解質に、化学式(1)に係る表1に示す化合物C5を0.1質量%、化学式(2)に係る下記構造式に示すGLST(エチレングリコール硫酸エステル)を0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(Example 16)
Other than adding 0.1% by mass of compound C5 shown in Table 1 according to chemical formula (1) and 0.5% by mass of GLST (ethylene glycol sulfate) shown in the following structural formula according to chemical formula (2) to the electrolyte Produced the same battery as Example 1.
(実施例17)
電解質に、化学式(5)に係る下記構造式に示すPRS(1,3−プロペンスルトン)を0.5質量%添加したこと以外は、実施例16と同様な電池を作製した。
(Example 17)
A battery was produced in the same manner as in Example 16 except that 0.5% by mass of PRS (1,3-propene sultone) represented by the following structural formula according to chemical formula (5) was added to the electrolyte.
(実施例18)
電解質に、化学式(2)に係る下記構造式に示すBGLST(ブチレングリコール硫酸エステル)を0.5質量%添加したこと以外は、実施例16と同様な電池を作製した。
(Example 18)
A battery was prepared in the same manner as in Example 16 except that 0.5% by mass of BGLST (butylene glycol sulfate) represented by the following structural formula according to chemical formula (2) was added to the electrolyte.
(実施例19)
電解質に、化学式(2)に係る下記構造式に示すDMGLST(ジメチルグリコール硫酸エステル)を0.5質量%添加したこと以外は、実施例16と同様な電池を作製した。
Example 19
A battery was produced in the same manner as in Example 16 except that 0.5% by mass of DMGLST (dimethyl glycol sulfate) represented by the following structural formula according to chemical formula (2) was added to the electrolyte.
(実施例20)
電解質に、化学式(2)に係る下記構造式に示すVEST(ビニルエチレングリコール硫酸エステル)を0.5質量%添加したこと以外は、実施例16と同様な電池を作製した。
(Example 20)
A battery was produced in the same manner as in Example 16 except that 0.5% by mass of VEST (vinyl ethylene glycol sulfate) represented by the following structural formula according to chemical formula (2) was added to the electrolyte.
(実施例21)
電解質に、化学式(3)に係る下記構造式に示すVST(ビニレングリコール硫酸エステル)を0.5質量%添加したこと以外は、実施例16と同様な電池を作製した。
(Example 21)
A battery was prepared in the same manner as in Example 16 except that 0.5% by mass of VST (vinylene glycol sulfate) represented by the following structural formula according to chemical formula (3) was added to the electrolyte.
(実施例22)
電解質に、化学式(4)に係る下記構造式に示すTMST(トリメチレングリコール硫酸エステル)を0.5質量%添加したこと以外は、実施例16と同様な電池を作製した。
(Example 22)
A battery was produced in the same manner as in Example 16 except that 0.5% by mass of TMST (trimethylene glycol sulfate) represented by the following structural formula according to chemical formula (4) was added to the electrolyte.
(実施例23)
電解質に、化学式(4)に係る下記構造式に示す2MTMST(2−メチルトリメチレングリコール硫酸エステル)を0.5質量%添加したこと以外は、実施例16と同様な電池を作製した。
(Example 23)
A battery was produced in the same manner as in Example 16 except that 0.5% by mass of 2MTMST (2-methyltrimethylene glycol sulfate) represented by the following structural formula according to chemical formula (4) was added to the electrolyte.
(実施例24)
電解質に、化学式(4)に係る下記構造式に示す3MTMST(3−メチルトリメチレングリコール硫酸エステル)を0.5質量%添加したこと以外は、実施例16と同様な電池を作製した。
(Example 24)
A battery was produced in the same manner as in Example 16 except that 0.5% by mass of 3MTMST (3-methyltrimethylene glycol sulfate) represented by the following structural formula according to chemical formula (4) was added to the electrolyte.
(実施例25)
電解質に、化合物C7を0.1質量%、GLSTを0.5質量%添加したこと以外は、実施例1と同様な電池を作製した。
(実施例26)
電解質に、PRSを0.5質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例27)
電解質に、BGLSTを0.5質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例28)
電解質に、DMGLSTを0.5質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例29)
電解質に、VESTを0.5質量%添加したこと以外は、実施例25と同様な電池を作製した。
(Example 25)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of compound C7 and 0.5% by mass of GLST were added to the electrolyte.
(Example 26)
A battery was prepared in the same manner as in Example 25 except that 0.5% by mass of PRS was added to the electrolyte.
(Example 27)
A battery was produced in the same manner as in Example 25 except that 0.5% by mass of BGLST was added to the electrolyte.
(Example 28)
A battery was produced in the same manner as in Example 25 except that 0.5% by mass of DMGLST was added to the electrolyte.
(Example 29)
A battery was produced in the same manner as in Example 25 except that 0.5% by mass of VEST was added to the electrolyte.
(実施例30)
電解質に、VSTを0.5質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例31)
電解質に、TMSTを0.5質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例32)
電解質に、2MTMSTを0.5質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例33)
電解質に、3MTMSTを0.5質量%添加したこと以外は、実施例25と同様な電池を作製した。
(Example 30)
A battery was prepared in the same manner as in Example 25 except that 0.5% by mass of VST was added to the electrolyte.
(Example 31)
A battery was prepared in the same manner as in Example 25 except that 0.5% by mass of TMST was added to the electrolyte.
(Example 32)
A battery was produced in the same manner as in Example 25 except that 2% by mass of 2MTMST was added to the electrolyte.
(Example 33)
A battery was produced in the same manner as in Example 25 except that 0.5% by mass of 3MTMST was added to the electrolyte.
(実施例34)
電解質に、化合物C5を0.1質量%、PGLSTを0.5質量%、及びDMST(硫酸ジメチル)を0.2質量%添加したこと以外は、実施例1と同様な電池を作製した。
(実施例35)
電解質に、EMST(硫酸エチルメチル)を0.2質量%添加したこと以外は、実施例34と同様な電池を作製した。
(Example 34)
A battery was prepared in the same manner as in Example 1 except that 0.1% by mass of compound C5, 0.5% by mass of PGLST, and 0.2% by mass of DMST (dimethyl sulfate) were added to the electrolyte.
(Example 35)
A battery was prepared in the same manner as in Example 34 except that 0.2% by mass of EMST (ethyl methyl sulfate) was added to the electrolyte.
(実施例36)
電解質に、化合物C7を0.1質量%添加したこと以外は、実施例34と同様な電池を作製した。
(実施例37)
電解質に、EMSTを0.2質量%添加したこと以外は、実施例36と同様な電池を作製した。
(実施例38)
電解質に、GLSTを0.5質量%添加したこと以外は、実施例34と同様な電池を作製した。
(実施例39)
電解質に、EMSTを0.2質量%添加したこと以外は、実施例38と同様な電池を作製した。
(Example 36)
A battery was prepared in the same manner as in Example 34 except that 0.1% by mass of compound C7 was added to the electrolyte.
(Example 37)
A battery was prepared in the same manner as in Example 36 except that 0.2% by mass of EMST was added to the electrolyte.
(Example 38)
A battery was produced in the same manner as in Example 34 except that 0.5% by mass of GLST was added to the electrolyte.
(Example 39)
A battery was produced in the same manner as in Example 38 except that 0.2% by mass of EMST was added to the electrolyte.
(実施例40)
電解質に、化合物C7を0.1質量%添加したこと以外は、実施例38と同様な電池を作製した。
(実施例41)
電解質に、EMSTを0.2質量%添加したこと以外は、実施例40と同様な電池を作製した。
(実施例42)
電解質に、PRSを0.5質量%添加したこと以外は、実施例34と同様な電池を作製した。
(実施例43)
電解質に、EMSTを0.2質量%添加したこと以外は、実施例42と同様な電池を作製した。
(実施例44)
電解質に、化合物C7を0.1質量%添加したこと以外は、実施例42と同様な電池を作製した。
(実施例45)
電解質に、EMSTを0.2質量%添加したこと以外は、実施例44と同様な電池を作製した。
(Example 40)
A battery was produced in the same manner as in Example 38 except that 0.1% by mass of compound C7 was added to the electrolyte.
(Example 41)
A battery was produced in the same manner as in Example 40 except that 0.2% by mass of EMST was added to the electrolyte.
(Example 42)
A battery was prepared in the same manner as in Example 34 except that 0.5 mass% of PRS was added to the electrolyte.
(Example 43)
A battery was prepared in the same manner as in Example 42 except that 0.2% by mass of EMST was added to the electrolyte.
(Example 44)
A battery was produced in the same manner as in Example 42 except that 0.1% by mass of compound C7 was added to the electrolyte.
(Example 45)
A battery was prepared in the same manner as in Example 44 except that 0.2% by mass of EMST was added to the electrolyte.
(実施例46)
電解質に、化合物C5を0.001質量%添加したこと以外は、実施例5と同様な電池を作製した。
(実施例47)
電解質に、化合物C5を0.01質量%添加したこと以外は、実施例5と同様な電池を作製した。
(Example 46)
A battery was prepared in the same manner as in Example 5 except that 0.001% by mass of compound C5 was added to the electrolyte.
(Example 47)
A battery was prepared in the same manner as in Example 5 except that 0.01% by mass of compound C5 was added to the electrolyte.
(実施例48)
電解質に、化合物C5を0.5質量%添加したこと以外は、実施例5と同様な電池を作製した。
(実施例49)
電解質に、化合物C5を1質量%添加したこと以外は、実施例5と同様な電池を作製した。
(実施例50)
電解質に、化合物C5を2質量%添加したこと以外は、実施例5と同様な電池を作製した。
(実施例51)
電解質に、化合物C5を3質量%添加したこと以外は、実施例5と同様な電池を作製した。
(実施例52)
電解質に、化合物C5を4質量%添加したこと以外は、実施例5と同様な電池を作製した。
(Example 48)
A battery was prepared in the same manner as in Example 5 except that 0.5% by mass of compound C5 was added to the electrolyte.
(Example 49)
A battery was prepared in the same manner as in Example 5 except that 1% by mass of compound C5 was added to the electrolyte.
(Example 50)
A battery was prepared in the same manner as in Example 5 except that 2% by mass of compound C5 was added to the electrolyte.
(Example 51)
A battery was prepared in the same manner as in Example 5 except that 3% by mass of compound C5 was added to the electrolyte.
(Example 52)
A battery was prepared in the same manner as in Example 5 except that 4% by mass of Compound C5 was added to the electrolyte.
(実施例53)
電解質に、化合物C5を0.001質量%添加したこと以外は、実施例16と同様な電池を作製した。
(実施例54)
電解質に、化合物C5を0.01質量%添加したこと以外は、実施例16と同様な電池を作製した。
(実施例55)
電解質に、化合物C5を0.5質量%添加したこと以外は、実施例16と同様な電池を作製した。
(実施例56)
電解質に、化合物C5を1質量%添加したこと以外は、実施例16と同様な電池を作製した。
(実施例57)
電解質に、化合物C5を2質量%添加したこと以外は、実施例16と同様な電池を作製した。
(実施例58)
電解質に、化合物C5を3質量%添加したこと以外は、実施例16と同様な電池を作製した。
(実施例59)
電解質に、化合物C5を4質量%添加したこと以外は、実施例16と同様な電池を作製した。
(Example 53)
A battery was prepared in the same manner as in Example 16 except that 0.001% by mass of compound C5 was added to the electrolyte.
(Example 54)
A battery was produced in the same manner as in Example 16 except that 0.01% by mass of compound C5 was added to the electrolyte.
(Example 55)
A battery was produced in the same manner as in Example 16 except that 0.5% by mass of compound C5 was added to the electrolyte.
(Example 56)
A battery was prepared in the same manner as in Example 16 except that 1% by mass of compound C5 was added to the electrolyte.
(Example 57)
A battery was prepared in the same manner as in Example 16 except that 2% by mass of the compound C5 was added to the electrolyte.
(Example 58)
A battery was prepared in the same manner as in Example 16 except that 3% by mass of compound C5 was added to the electrolyte.
(Example 59)
A battery was produced in the same manner as in Example 16 except that 4% by mass of the compound C5 was added to the electrolyte.
(実施例60)
電解質に、化合物C5を0.001質量%添加したこと以外は、実施例17と同様な電池を作製した。
(実施例61)
電解質に、化合物C5を0.01質量%添加したこと以外は、実施例17と同様な電池を作製した。
(実施例62)
電解質に、化合物C5を0.5質量%添加したこと以外は、実施例17と同様な電池を作製した。
(実施例63)
電解質に、化合物C5を1質量%添加したこと以外は、実施例17と同様な電池を作製した。
(実施例64)
電解質に、化合物C5を2質量%添加したこと以外は、実施例17と同様な電池を作製した。
(実施例65)
電解質に、化合物C5を3質量%添加したこと以外は、実施例17と同様な電池を作製した。
(実施例66)
電解質に、化合物C5を4質量%添加したこと以外は、実施例17と同様な電池を作製した。
(Example 60)
A battery was produced in the same manner as in Example 17 except that 0.001% by mass of compound C5 was added to the electrolyte.
(Example 61)
A battery was prepared in the same manner as in Example 17 except that 0.01% by mass of compound C5 was added to the electrolyte.
(Example 62)
A battery was prepared in the same manner as in Example 17 except that 0.5% by mass of compound C5 was added to the electrolyte.
(Example 63)
A battery was prepared in the same manner as in Example 17 except that 1% by mass of compound C5 was added to the electrolyte.
(Example 64)
A battery was prepared in the same manner as in Example 17 except that 2% by mass of compound C5 was added to the electrolyte.
(Example 65)
A battery was prepared in the same manner as in Example 17 except that 3% by mass of compound C5 was added to the electrolyte.
Example 66
A battery was prepared in the same manner as in Example 17 except that 4% by mass of compound C5 was added to the electrolyte.
(実施例67)
電解質に、化合物C7を0.001質量添加したこと以外は、実施例7と同様な電池を作製した。
(実施例68)
電解質に、化合物C7を0.01質量%添加したこと以外は、実施例7と同様な電池を作製した。
(実施例69)
電解質に、化合物C7を0.5質量%添加したこと以外は、実施例7と同様な電池を作製した。
(実施例70)
電解質に、化合物C7を1質量%添加したこと以外は、実施例7と同様な電池を作製した。
(実施例71)
電解質に、化合物C7を2質量%添加したこと以外は、実施例7と同様な電池を作製した。
(実施例72)
電解質に、化合物C7を3質量%添加したこと以外は、実施例7と同様な電池を作製した。
(実施例73)
電解質に、化合物C7を4質量%添加したこと以外は、実施例7と同様な電池を作製した。
(Example 67)
A battery similar to that of Example 7 was produced, except that 0.001 mass of Compound C7 was added to the electrolyte.
(Example 68)
A battery was prepared in the same manner as in Example 7 except that 0.01% by mass of compound C7 was added to the electrolyte.
(Example 69)
A battery was prepared in the same manner as in Example 7 except that 0.5% by mass of compound C7 was added to the electrolyte.
(Example 70)
A battery was prepared in the same manner as in Example 7 except that 1% by mass of compound C7 was added to the electrolyte.
(Example 71)
A battery was prepared in the same manner as in Example 7 except that 2% by mass of compound C7 was added to the electrolyte.
(Example 72)
A battery was prepared in the same manner as in Example 7 except that 3% by mass of compound C7 was added to the electrolyte.
(Example 73)
A battery was prepared in the same manner as in Example 7 except that 4% by mass of Compound C7 was added to the electrolyte.
(実施例74)
電解質に、化合物C7を0.001質量添加したこと以外は、実施例25と同様な電池を作製した。
(実施例75)
電解質に、化合物C7を0.01質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例76)
電解質に、化合物C7を0.5質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例77)
電解質に、化合物C7を1質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例78)
電解質に、化合物C7を2質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例79)
電解質に、化合物C7を3質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例80)
電解質に、化合物C7を4質量%添加したこと以外は、実施例25と同様な電池を作製した。
(Example 74)
A battery was produced in the same manner as in Example 25 except that 0.001 mass of compound C7 was added to the electrolyte.
(Example 75)
A battery was produced in the same manner as in Example 25 except that 0.01% by mass of compound C7 was added to the electrolyte.
(Example 76)
A battery was produced in the same manner as in Example 25 except that 0.5% by mass of compound C7 was added to the electrolyte.
(Example 77)
A battery was produced in the same manner as in Example 25 except that 1% by mass of compound C7 was added to the electrolyte.
(Example 78)
A battery was produced in the same manner as in Example 25 except that 2% by mass of compound C7 was added to the electrolyte.
(Example 79)
A battery was produced in the same manner as in Example 25 except that 3% by mass of compound C7 was added to the electrolyte.
(Example 80)
A battery was produced in the same manner as in Example 25 except that 4% by mass of compound C7 was added to the electrolyte.
(実施例81)
電解質に、化合物C7を0.001質量添加したこと以外は、実施例26と同様な電池を作製した。
(実施例82)
電解質に、化合物C7を0.01質量%添加したこと以外は、実施例26と同様な電池を作製した。
(実施例83)
電解質に、化合物C7を0.5質量%添加したこと以外は、実施例26と同様な電池を作製した。
(実施例84)
電解質に、化合物C7を1質量%添加したこと以外は、実施例26と同様な電池を作製した。
(実施例85)
電解質に、化合物C7を2質量%添加したこと以外は、実施例26と同様な電池を作製した。
(実施例86)
電解質に、化合物C7を3質量%添加したこと以外は、実施例26と同様な電池を作製した。
(実施例87)
電解質に、化合物C7を4質量%添加したこと以外は、実施例26と同様な電池を作製した。
(Example 81)
A battery was produced in the same manner as in Example 26 except that 0.001 mass of compound C7 was added to the electrolyte.
(Example 82)
A battery was produced in the same manner as in Example 26 except that 0.01% by mass of compound C7 was added to the electrolyte.
(Example 83)
A battery was prepared in the same manner as in Example 26 except that 0.5% by mass of compound C7 was added to the electrolyte.
(Example 84)
A battery was produced in the same manner as in Example 26 except that 1% by mass of compound C7 was added to the electrolyte.
(Example 85)
A battery was produced in the same manner as in Example 26 except that 2% by mass of the compound C7 was added to the electrolyte.
(Example 86)
A battery was produced in the same manner as in Example 26 except that 3% by mass of compound C7 was added to the electrolyte.
(Example 87)
A battery was produced in the same manner as in Example 26 except that 4% by mass of compound C7 was added to the electrolyte.
(実施例88)
電解質に、化合物C7を0.001質量添加したこと以外は、実施例36と同様な電池を作製した。
(実施例89)
電解質に、化合物C7を0.01質量%添加したこと以外は、実施例36と同様な電池を作製した。
(実施例90)
電解質に、化合物C7を0.5質量%添加したこと以外は、実施例36と同様な電池を作製した。
(実施例91)
電解質に、化合物C7を1質量%添加したこと以外は、実施例36と同様な電池を作製した。
(実施例92)
電解質に、化合物C7を2質量%添加したこと以外は、実施例36と同様な電池を作製した。
(実施例93)
電解質に、化合物C7を3質量%添加したこと以外は、実施例36と同様な電池を作製した。
(実施例94)
電解質に、化合物C7を4質量%添加したこと以外は、実施例36と同様な電池を作製した。
(Example 88)
A battery similar to that of Example 36 was produced, except that 0.001 mass of Compound C7 was added to the electrolyte.
Example 89
A battery was produced in the same manner as in Example 36 except that 0.01% by mass of compound C7 was added to the electrolyte.
(Example 90)
A battery was produced in the same manner as in Example 36 except that 0.5% by mass of compound C7 was added to the electrolyte.
(Example 91)
A battery similar to that of Example 36 was produced, except that 1% by mass of compound C7 was added to the electrolyte.
(Example 92)
A battery was produced in the same manner as in Example 36 except that 2% by mass of the compound C7 was added to the electrolyte.
(Example 93)
A battery was produced in the same manner as in Example 36 except that 3% by mass of the compound C7 was added to the electrolyte.
(Example 94)
A battery was prepared in the same manner as in Example 36 except that 4% by mass of compound C7 was added to the electrolyte.
(実施例95)
電解質に、化合物C7を0.001質量添加したこと以外は、実施例37と同様な電池を作製した。
(実施例96)
電解質に、化合物C7を0.01質量%添加したこと以外は、実施例37と同様な電池を作製した。
(実施例97)
電解質に、化合物C7を0.5質量%添加したこと以外は、実施例37と同様な電池を作製した。
(実施例98)
電解質に、化合物C7を1質量%添加したこと以外は、実施例37と同様な電池を作製した。
(実施例99)
電解質に、化合物C7を2質量%添加したこと以外は、実施例37と同様な電池を作製した。
(実施例100)
電解質に、化合物C7を3質量%添加したこと以外は、実施例37と同様な電池を作製した。
(実施例101)
電解質に、化合物C7を4質量%添加したこと以外は、実施例37と同様な電池を作製した。
(Example 95)
A battery was produced in the same manner as in Example 37 except that 0.001 mass of compound C7 was added to the electrolyte.
Example 96
A battery was produced in the same manner as in Example 37 except that 0.01% by mass of compound C7 was added to the electrolyte.
(Example 97)
A battery was produced in the same manner as in Example 37 except that 0.5% by mass of compound C7 was added to the electrolyte.
(Example 98)
A battery was produced in the same manner as in Example 37 except that 1% by mass of compound C7 was added to the electrolyte.
Example 99
A battery was produced in the same manner as in Example 37 except that 2% by mass of compound C7 was added to the electrolyte.
(Example 100)
A battery was produced in the same manner as in Example 37 except that 3% by mass of the compound C7 was added to the electrolyte.
(Example 101)
A battery was produced in the same manner as in Example 37 except that 4% by mass of compound C7 was added to the electrolyte.
(実施例102)
電解質に、PGLSTを0.1質量%添加したこと以外は、実施例7と同様な電池を作製した。
(実施例103)
電解質に、PGLSTを1質量%添加したこと以外は、実施例7と同様な電池を作製した。
(実施例104)
電解質に、PGLSTを2質量%添加したこと以外は、実施例7と同様な電池を作製した。
(Example 102)
A battery was prepared in the same manner as in Example 7 except that 0.1% by mass of PGLST was added to the electrolyte.
(Example 103)
A battery was prepared in the same manner as in Example 7 except that 1% by mass of PGLST was added to the electrolyte.
(Example 104)
A battery was prepared in the same manner as in Example 7 except that 2% by mass of PGLST was added to the electrolyte.
(実施例105)
電解質に、GLSTを0.1質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例106)
電解質に、GLSTを1質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例107)
電解質に、GLSTを2質量%添加したこと以外は、実施例25と同様な電池を作製した。
(Example 105)
A battery was produced in the same manner as in Example 25 except that 0.1% by mass of GLST was added to the electrolyte.
(Example 106)
A battery was produced in the same manner as in Example 25 except that 1% by mass of GLST was added to the electrolyte.
(Example 107)
A battery was produced in the same manner as in Example 25 except that 2% by mass of GLST was added to the electrolyte.
(実施例108)
電解質に、PRSを0.1質量%添加したこと以外は、実施例26と同様な電池を作製した。
(実施例109)
電解質に、PRSを1質量%添加したこと以外は、実施例26と同様な電池を作製した。
(実施例110)
電解質に、PRSを2質量%添加したこと以外は、実施例26と同様な電池を作製した。
(Example 108)
A battery was prepared in the same manner as in Example 26 except that 0.1 mass% of PRS was added to the electrolyte.
(Example 109)
A battery was produced in the same manner as in Example 26 except that 1% by mass of PRS was added to the electrolyte.
(Example 110)
A battery was prepared in the same manner as in Example 26 except that 2% by mass of PRS was added to the electrolyte.
(実施例111)
電解質に、DESTを0.05質量%添加したこと以外は、実施例7と同様な電池を作製した。
(実施例112)
電解質に、DESTを0.1質量%添加したこと以外は、実施例7と同様な電池を作製した。
(実施例113)
電解質に、DESTを0.5質量%添加したこと以外は、実施例7と同様な電池を作製した。
(実施例114)
電解質に、DESTを1質量%添加したこと以外は、実施例7と同様な電池を作製した。
(Example 111)
A battery was prepared in the same manner as in Example 7 except that 0.05% by mass of DEST was added to the electrolyte.
(Example 112)
A battery was prepared in the same manner as in Example 7 except that 0.1% by mass of DEST was added to the electrolyte.
(Example 113)
A battery was prepared in the same manner as in Example 7 except that 0.5% by mass of DEST was added to the electrolyte.
(Example 114)
A battery was produced in the same manner as in Example 7 except that 1% by mass of DEST was added to the electrolyte.
(実施例115)
電解質に、DMSTを0.05質量%添加したこと以外は、実施例36と同様な電池を作製した。
(実施例116)
電解質に、DMSTを0.1質量%添加したこと以外は、実施例36と同様な電池を作製した。
(実施例117)
電解質に、DMSTを0.5質量%添加したこと以外は、実施例36と同様な電池を作製した。
(実施例118)
電解質に、DMSTを1質量%添加したこと以外は、実施例36と同様な電池を作製した。
(Example 115)
A battery was prepared in the same manner as in Example 36 except that 0.05% by mass of DMST was added to the electrolyte.
(Example 116)
A battery was produced in the same manner as in Example 36 except that 0.1% by mass of DMST was added to the electrolyte.
(Example 117)
A battery was produced in the same manner as in Example 36 except that 0.5% by mass of DMST was added to the electrolyte.
(Example 118)
A battery was prepared in the same manner as in Example 36 except that 1% by mass of DMST was added to the electrolyte.
(実施例119)
電解質に、EMSTを0.05質量%添加したこと以外は、実施例37と同様な電池を作製した。
(実施例120)
電解質に、EMSTを0.1質量%添加したこと以外は、実施例37と同様な電池を作製した。
(実施例121)
電解質に、EMSTを0.5質量%添加したこと以外は、実施例37と同様な電池を作製した。
(実施例122)
電解質に、EMSTを1質量%添加したこと以外は、実施例37と同様な電池を作製した。
(Example 119)
A battery was prepared in the same manner as in Example 37 except that 0.05% by mass of EMST was added to the electrolyte.
(Example 120)
A battery was prepared in the same manner as in Example 37 except that 0.1% by mass of EMST was added to the electrolyte.
(Example 121)
A battery was prepared in the same manner as in Example 37 except that 0.5% by mass of EMST was added to the electrolyte.
(Example 122)
A battery was prepared in the same manner as in Example 37 except that 1% by mass of EMST was added to the electrolyte.
(実施例123)
電解質に、DESTを0.05質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例124)
電解質に、DESTを0.1質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例125)
電解質に、DESTを0.5質量%添加したこと以外は、実施例25と同様な電池を作製した。
(実施例126)
電解質に、DESTを1質量%添加したこと以外は、実施例25と同様な電池を作製した。
(Example 123)
A battery was produced in the same manner as in Example 25 except that 0.05% by mass of DEST was added to the electrolyte.
(Example 124)
A battery was produced in the same manner as in Example 25 except that 0.1% by mass of DEST was added to the electrolyte.
(Example 125)
A battery was produced in the same manner as in Example 25 except that 0.5% by mass of DEST was added to the electrolyte.
(Example 126)
A battery was produced in the same manner as in Example 25 except that 1% by mass of DEST was added to the electrolyte.
(実施例127)
電解質に、DMSTを0.05質量%添加したこと以外は、実施例40と同様な電池を作製した。
(実施例128)
電解質に、DMSTを0.1質量%添加したこと以外は、実施例40と同様な電池を作製した。
(実施例129)
電解質に、DMSTを0.5質量%添加したこと以外は、実施例40と同様な電池を作製した。
(実施例130)
電解質に、DMSTを1質量%添加したこと以外は、実施例40と同様な電池を作製した。
(Example 127)
A battery was prepared in the same manner as in Example 40 except that 0.05% by mass of DMST was added to the electrolyte.
(Example 128)
A battery was produced in the same manner as in Example 40 except that 0.1% by mass of DMST was added to the electrolyte.
(Example 129)
A battery was produced in the same manner as in Example 40 except that 0.5% by mass of DMST was added to the electrolyte.
(Example 130)
A battery was prepared in the same manner as in Example 40 except that 1% by mass of DMST was added to the electrolyte.
(実施例131)
電解質に、EMSTを0.05質量%添加したこと以外は、実施例41と同様な電池を作製した。
(実施例132)
電解質に、EMSTを0.1質量%添加したこと以外は、実施例41と同様な電池を作製した。
(実施例133)
電解質に、EMSTを0.5質量%添加したこと以外は、実施例41と同様な電池を作製した。
(実施例134)
電解質に、EMSTを1質量%添加したこと以外は、実施例41と同様な電池を作製した。
(Example 131)
A battery was prepared in the same manner as in Example 41 except that 0.05% by mass of EMST was added to the electrolyte.
(Example 132)
A battery was produced in the same manner as in Example 41 except that 0.1% by mass of EMST was added to the electrolyte.
(Example 133)
A battery was produced in the same manner as in Example 41 except that 0.5% by mass of EMST was added to the electrolyte.
(Example 134)
A battery was prepared in the same manner as in Example 41 except that 1% by mass of EMST was added to the electrolyte.
(実施例135)
電解質に、DESTを0.05質量%添加したこと以外は、実施例26と同様な電池を作製した。
(実施例136)
電解質に、DESTを0.1質量%添加したこと以外は、実施例26と同様な電池を作製した。
(実施例137)
電解質に、DESTを0.5質量%添加したこと以外は、実施例26と同様な電池を作製した。
(実施例138)
電解質に、DESTを1質量%添加したこと以外は、実施例26と同様な電池を作製した。
(Example 135)
A battery was prepared in the same manner as in Example 26 except that 0.05% by mass of DEST was added to the electrolyte.
(Example 136)
A battery was produced in the same manner as in Example 26 except that 0.1% by mass of DEST was added to the electrolyte.
(Example 137)
A battery was produced in the same manner as in Example 26 except that 0.5% by mass of DEST was added to the electrolyte.
(Example 138)
A battery was produced in the same manner as in Example 26 except that 1% by mass of DEST was added to the electrolyte.
(実施例139)
電解質に、DMSTを0.05質量%添加したこと以外は、実施例44と同様な電池を作製した。
(実施例140)
電解質に、DMSTを0.1質量%添加したこと以外は、実施例44と同様な電池を作製した。
(実施例141)
電解質に、DMSTを0.5質量%添加したこと以外は、実施例44と同様な電池を作製した。
(実施例142)
電解質に、DMSTを1質量%添加したこと以外は、実施例44と同様な電池を作製した。
(Example 139)
A battery was produced in the same manner as in Example 44 except that 0.05 mass% of DMST was added to the electrolyte.
(Example 140)
A battery was produced in the same manner as in Example 44 except that 0.1% by mass of DMST was added to the electrolyte.
(Example 141)
A battery was produced in the same manner as in Example 44 except that 0.5% by mass of DMST was added to the electrolyte.
(Example 142)
A battery was produced in the same manner as in Example 44 except that 1% by mass of DMST was added to the electrolyte.
(実施例143)
電解質に、EMSTを0.05質量%添加したこと以外は、実施例45と同様な電池を作製した。
(実施例144)
電解質に、EMSTを0.1質量%添加したこと以外は、実施例45と同様な電池を作製した。
(実施例145)
電解質に、EMSTを0.5質量%添加したこと以外は、実施例45と同様な電池を作製した。
(実施例146)
電解質に、EMSTを1質量%添加したこと以外は、実施例45と同様な電池を作製した。
(Example 143)
A battery was prepared in the same manner as in Example 45 except that 0.05% by mass of EMST was added to the electrolyte.
(Example 144)
A battery was prepared in the same manner as in Example 45 except that 0.1% by mass of EMST was added to the electrolyte.
(Example 145)
A battery was prepared in the same manner as in Example 45 except that 0.5% by mass of EMST was added to the electrolyte.
(Example 146)
A battery was prepared in the same manner as in Example 45 except that 1% by mass of EMST was added to the electrolyte.
(比較例1〜15)
電解質に、化学式(6)の化合物を添加せずに、PGLSTを0.5質量%添加し、化学式(1)の化合物の種類は各々、実施例1〜15に対応させて添加して比較例1〜15の電池を作製した。
(Comparative Examples 1-15)
Comparative example in which 0.5% by mass of PGLST was added to the electrolyte without adding the compound of the chemical formula (6), and the types of the compounds of the chemical formula (1) were added corresponding to Examples 1 to 15, respectively. 1 to 15 batteries were produced.
(比較例16〜30)
電解質に、化学式(6)の化合物を添加せずに、PRSを0.5質量%添加し、化学式(1)の化合物の種類は各々、実施例1〜15に対応させて添加して比較例16〜30の電池を作製した。
(Comparative Examples 16-30)
Comparative example in which 0.5 mass% of PRS was added to the electrolyte without adding the compound of the chemical formula (6), and the types of the compounds of the chemical formula (1) were added corresponding to each of Examples 1 to 15. 16-30 batteries were produced.
(比較例31)
電解質に、化学式(1)の化合物、化学式(2)〜(5)の化合物、及び化学式(6)の化合物のいずれも添加せずに、あとは実施例1と同様にして電池を作製した。
(Comparative Example 31)
A battery was fabricated in the same manner as in Example 1 without adding any of the compound of the chemical formula (1), the compounds of the chemical formulas (2) to (5), and the compound of the chemical formula (6) to the electrolyte.
(比較例32)
電解質に、化合物C5を0.001質量%添加したこと以外は、比較例5と同様の電池を作製した。
(比較例33)
電解質に、化合物C5を0.01質量%添加したこと以外は、比較例5と同様の電池を作製した。
(比較例34)
電解質に、化合物C5を0.5質量%添加したこと以外は、比較例5と同様の電池を作製した。
(比較例35)
電解質に、化合物C5を1質量%添加したこと以外は、比較例5と同様の電池を作製した。
(比較例36)
電解質に、化合物C5を2質量%添加したこと以外は、比較例5と同様の電池を作製した。
(比較例37)
電解質に、化合物C5を3質量%添加したこと以外は、比較例5と同様の電池を作製した。
(比較例38)
電解質に、化合物C5を4質量%添加したこと以外は、比較例5と同様の電池を作製した。
(Comparative Example 32)
A battery was prepared in the same manner as in Comparative Example 5 except that 0.001% by mass of compound C5 was added to the electrolyte.
(Comparative Example 33)
A battery was prepared in the same manner as in Comparative Example 5 except that 0.01% by mass of Compound C5 was added to the electrolyte.
(Comparative Example 34)
A battery was prepared in the same manner as in Comparative Example 5 except that 0.5% by mass of compound C5 was added to the electrolyte.
(Comparative Example 35)
A battery was prepared in the same manner as in Comparative Example 5 except that 1% by mass of Compound C5 was added to the electrolyte.
(Comparative Example 36)
A battery was prepared in the same manner as in Comparative Example 5 except that 2% by mass of Compound C5 was added to the electrolyte.
(Comparative Example 37)
A battery was prepared in the same manner as in Comparative Example 5 except that 3% by mass of compound C5 was added to the electrolyte.
(Comparative Example 38)
A battery was prepared in the same manner as in Comparative Example 5 except that 4% by mass of Compound C5 was added to the electrolyte.
(比較例39)
電解質に、化合物C7を0.001質量%添加したこと以外は、比較例7と同様の電池を作製した。
(比較例40)
電解質に、化合物C7を0.01質量%添加したこと以外は、比較例7と同様の電池を作製した。
(比較例41)
電解質に、化合物C7を0.5質量%添加したこと以外は、比較例7と同様の電池を作製した。
(比較例42)
電解質に、化合物C7を1質量%添加したこと以外は、比較例7と同様の電池を作製した。
(比較例43)
電解質に、化合物C7を2質量%添加したこと以外は、比較例7と同様の電池を作製した。
(比較例44)
電解質に、化合物C7を3質量%添加したこと以外は、比較例7と同様の電池を作製した。
(比較例45)
電解質に、化合物C7を4質量%添加したこと以外は、比較例7と同様の電池を作製した。
(Comparative Example 39)
A battery was prepared in the same manner as in Comparative Example 7, except that 0.001% by mass of compound C7 was added to the electrolyte.
(Comparative Example 40)
A battery was prepared in the same manner as in Comparative Example 7, except that 0.01% by mass of compound C7 was added to the electrolyte.
(Comparative Example 41)
A battery was prepared in the same manner as in Comparative Example 7, except that 0.5% by mass of compound C7 was added to the electrolyte.
(Comparative Example 42)
A battery was produced in the same manner as in Comparative Example 7, except that 1% by mass of compound C7 was added to the electrolyte.
(Comparative Example 43)
A battery was prepared in the same manner as in Comparative Example 7, except that 2% by mass of compound C7 was added to the electrolyte.
(Comparative Example 44)
A battery was prepared in the same manner as in Comparative Example 7, except that 3% by mass of compound C7 was added to the electrolyte.
(Comparative Example 45)
A battery was prepared in the same manner as in Comparative Example 7, except that 4% by mass of Compound C7 was added to the electrolyte.
(比較例46)
電解質に、化合物C5を0.001質量%添加したこと以外は、比較例20と同様の電池を作製した。
(比較例47)
電解質に、化合物C5を0.01質量%添加したこと以外は、比較例20と同様の電池を作製した。
(比較例48)
電解質に、化合物C5を0.5質量%添加したこと以外は、比較例20と同様の電池を作製した。
(比較例49)
電解質に、化合物C5を1質量%添加したこと以外は、比較例20と同様の電池を作製した。
(比較例50)
電解質に、化合物C5を2質量%添加したこと以外は、比較例20と同様の電池を作製した。
(比較例51)
電解質に、化合物C5を3質量%添加したこと以外は、比較例20と同様の電池を作製した。
(比較例52)
電解質に、化合物C5を4質量%添加したこと以外は、比較例20と同様の電池を作製した。
(Comparative Example 46)
A battery was produced in the same manner as in Comparative Example 20, except that 0.001% by mass of compound C5 was added to the electrolyte.
(Comparative Example 47)
A battery was prepared in the same manner as in Comparative Example 20, except that 0.01% by mass of compound C5 was added to the electrolyte.
(Comparative Example 48)
A battery was prepared in the same manner as in Comparative Example 20, except that 0.5% by mass of compound C5 was added to the electrolyte.
(Comparative Example 49)
A battery was prepared in the same manner as in Comparative Example 20, except that 1% by mass of compound C5 was added to the electrolyte.
(Comparative Example 50)
A battery was produced in the same manner as in Comparative Example 20, except that 2% by mass of compound C5 was added to the electrolyte.
(Comparative Example 51)
A battery was prepared in the same manner as in Comparative Example 20, except that 3% by mass of compound C5 was added to the electrolyte.
(Comparative Example 52)
A battery was prepared in the same manner as in Comparative Example 20, except that 4% by mass of compound C5 was added to the electrolyte.
(比較例53)
電解質に、化合物C7を0.001質量%添加したこと以外は、比較例22と同様の電池を作製した。
(比較例54)
電解質に、化合物C7を0.01質量%添加したこと以外は、比較例22と同様の電池を作製した。
(比較例55)
電解質に、化合物C7を0.5質量%添加したこと以外は、比較例22と同様の電池を作製した。
(比較例56)
電解質に、化合物C7を1質量%添加したこと以外は、比較例22と同様の電池を作製した。
(比較例57)
電解質に、化合物C7を2質量%添加したこと以外は、比較例22と同様の電池を作製した。
(比較例58)
電解質に、化合物C7を3質量%添加したこと以外は、比較例22と同様の電池を作製した。
(比較例59)
電解質に、化合物C7を4質量%添加したこと以外は、比較例22と同様の電池を作製した。
(Comparative Example 53)
A battery was produced in the same manner as in Comparative Example 22 except that 0.001 mass% of compound C7 was added to the electrolyte.
(Comparative Example 54)
A battery was prepared in the same manner as in Comparative Example 22 except that 0.01% by mass of compound C7 was added to the electrolyte.
(Comparative Example 55)
A battery was prepared in the same manner as in Comparative Example 22 except that 0.5% by mass of compound C7 was added to the electrolyte.
(Comparative Example 56)
A battery was prepared in the same manner as in Comparative Example 22 except that 1% by mass of compound C7 was added to the electrolyte.
(Comparative Example 57)
A battery was prepared in the same manner as in Comparative Example 22 except that 2% by mass of compound C7 was added to the electrolyte.
(Comparative Example 58)
A battery was prepared in the same manner as in Comparative Example 22 except that 3% by mass of compound C7 was added to the electrolyte.
(Comparative Example 59)
A battery was prepared in the same manner as in Comparative Example 22 except that 4% by mass of compound C7 was added to the electrolyte.
これらの各実施例及び各比較例の電池について、以下の25℃充放電サイクル試験及び0℃サイクル試験を行った。
(25℃充放電サイクル試験)
まず、各実施例及び比較例の電池を5セルずつ作製し、25℃の周囲温度下、電流600mAで、電圧4.2Vまで定電流・定電圧で3時間充電し、電流600mAで電圧3Vまで放電を行い、初期の放電容量を測定した。その後、同様の充放電を500サイクル繰返し、500サイクル目の放電容量を測定し、容量保持率(%)を算出し、5セルの平均値を求めた。ここで、容量保持率は、初期の放電容量に対する500サイクル目の放電容量の比率(%)である。この試験結果を表に示す。
The batteries of these Examples and Comparative Examples were subjected to the following 25 ° C. charge / discharge cycle test and 0 ° C. cycle test.
(25 ° C charge / discharge cycle test)
First, 5 batteries of each example and comparative example were prepared, and charged at a constant current / constant voltage for 3 hours at a current of 600 mA and at a current of 600 mA at an ambient temperature of 25 ° C., and up to a voltage of 3 V at a current of 600 mA. Discharge was performed and the initial discharge capacity was measured. Thereafter, the same charge and discharge was repeated 500 cycles, the discharge capacity at the 500th cycle was measured, the capacity retention rate (%) was calculated, and the average value of 5 cells was obtained. Here, the capacity retention is the ratio (%) of the discharge capacity at the 500th cycle to the initial discharge capacity. The test results are shown in the table.
(0℃サイクル試験)
まず、各実施例及び比較例の電池を5セルずつ作製し、25℃の周囲温度下、電流600mAで、電圧4.2Vまで定電流・定電圧で3時間充電し、電流600mAで電圧3Vまで放電を行い、初期の放電容量及び初期の電池厚みを測定した。その後、同様の充放電サイクルを0℃の周囲温度下で20サイクル繰り返した。サイクル終了後に25℃の周囲温度下で5時間以上放置した後に、電流600mAで、電圧4.2Vまで定電流・定電圧で3時間充電し、電流600mAで電圧3Vまで放電を行った。試験終了後に、厚み増分(mm)を算出し、5セルの平均値を求めた。厚み増分は、試験後の電池厚みから初期の電池厚みを減算した差(mm)である。この試験結果を表5〜12に示す。
(0 ° C cycle test)
First, 5 batteries of each example and comparative example were prepared, and charged at a constant current / constant voltage for 3 hours at a current of 600 mA and at a current of 600 mA at an ambient temperature of 25 ° C., and up to a voltage of 3 V at a current of 600 mA. Discharge was performed, and the initial discharge capacity and initial battery thickness were measured. Thereafter, the same charge / discharge cycle was repeated 20 cycles at an ambient temperature of 0 ° C. After the end of the cycle, the sample was left for 5 hours or more at an ambient temperature of 25 ° C., then charged at a current of 600 mA to a voltage of 4.2 V at a constant current / constant voltage for 3 hours, and discharged at a current of 600 mA to a voltage of 3 V. After the test, the thickness increment (mm) was calculated, and the average value of 5 cells was obtained. The thickness increment is a difference (mm) obtained by subtracting the initial battery thickness from the battery thickness after the test. The test results are shown in Tables 5-12.
化学式(6)の化合物を添加していない、表6の比較例1〜30の電池は、前記化合物を添加している、表5及び6の実施例1〜45の電池と比較して、容量保持率が劣り、厚み増分は大きく劣っている。
化学式(1)で表される化合物は負極表面に厚い被膜を形成して負極の抵抗を増加させるが、化学式(6)で表される鎖状の硫酸エステル化合物は負極表面に被膜を形成せず、さらに化学式(1)で表される化合物の分解により生じる被膜の成長を抑制するので、負極の抵抗が上昇しない。化学式(6)の化合物を添加した場合、低温下におけるリチウムの充電受け入れ性が低下せず、リチウムの負極表面上への析出を抑制することが出来る。従って、低温で充放電した後においても、電池厚みの増加を抑制することが出来る。
また、化学式(1)の化合物、及び化学式(2)〜(5)の化合物も添加していない比較例31の電池は、実施例の電池と比較して容量保持率も大きく劣っている。化学式(1)の化合物、及び化学式(2)〜(5)の化合物を添加することにより、充放電を繰り返した後の電池容量の低下が抑制されていることが分かる。
The batteries of Comparative Examples 1 to 30 in Table 6 to which the compound of Chemical Formula (6) was not added had a capacity compared to the batteries of Examples 1 to 45 in Tables 5 and 6 to which the compound was added. Retention rate is inferior and thickness increment is greatly inferior.
The compound represented by the chemical formula (1) forms a thick film on the negative electrode surface to increase the resistance of the negative electrode, but the chain sulfate ester compound represented by the chemical formula (6) does not form a film on the negative electrode surface. Furthermore, since the growth of the film caused by the decomposition of the compound represented by the chemical formula (1) is suppressed, the resistance of the negative electrode does not increase. When the compound of the chemical formula (6) is added, lithium charge acceptability at a low temperature does not decrease, and precipitation of lithium on the negative electrode surface can be suppressed. Therefore, an increase in battery thickness can be suppressed even after charging / discharging at a low temperature.
Moreover, the battery of the comparative example 31 which has not added the compound of Chemical formula (1) and the compound of Chemical formula (2)-(5) is also inferior in capacity retention compared with the battery of an Example. It turns out that the fall of the battery capacity after repeating charging / discharging is suppressed by adding the compound of Chemical formula (1) and the compound of Chemical formula (2)-(5).
実施例1と5、実施例2と6の化学式(1)に係る化合物のR1は同じでAが異なっているが、何れも良好な試験結果が得られている。ただし、A3を用いた実施例5及び6は、A1を用いた実施例1及びA2を用いた実施例2よりも、サイクル後の容量保持率が優れている。これはA3がその構造内にA1又はA2よりも酸素を多く含んでいるために、初期充電時に形成される負極被膜の性質がより安定になるためであると推察される。 Although R1 of the compound which concerns on Chemical formula (1) of Example 1 and 5 and Example 2 and 6 is the same and A is different, all have a favorable test result. However, Examples 5 and 6 using A3 are superior in capacity retention after cycling to Examples 1 using A1 and Example 2 using A2. This is presumably because A3 contains more oxygen than A1 or A2 in its structure, and thus the properties of the negative electrode film formed during initial charging become more stable.
実施例3,4,8のように、化学式(1)に係る化合物のR1は不飽和結合を含んでいても良い。不飽和結合を含んでいる場合、負極とより安定な被膜が形成されると考えられる。また、実施例4,7,8,9,10,11,12のように、化学式(1)に係る化合物CのR1の側鎖は、長くしたり、複数にしても良い。側鎖を長くしたり複数にした場合、界面活性効果が大きくなるため、セパレータと電解質との親和性が向上し、極板内に電解液が浸透しやすくなり、初期容量が大きくなる。ただし、側鎖を長くすると化学式(1)に係る化合物Cを電解質に添加した際に電解質の粘性が高くなる場合があり、充放電性能が低下することがあるので、R1の側鎖の炭素数は8以下が好ましい。 As in Examples 3, 4 and 8, R1 of the compound according to chemical formula (1) may contain an unsaturated bond. When the unsaturated bond is included, it is considered that a negative electrode and a more stable film are formed. Further, as in Examples 4, 7, 8, 9, 10, 11, 12, the side chain of R1 of compound C according to chemical formula (1) may be lengthened or plural. When the side chain is made long or plural, the surface active effect is increased, so that the affinity between the separator and the electrolyte is improved, the electrolyte solution easily penetrates into the electrode plate, and the initial capacity is increased. However, if the side chain is lengthened, the viscosity of the electrolyte may increase when the compound C according to the chemical formula (1) is added to the electrolyte, and the charge / discharge performance may be deteriorated. Is preferably 8 or less.
化学式(1)に係る化合物CのR1は、ハロゲン化されていても良い。電子吸引性のハロゲンが付加されている場合、酸化され難く、また還元され易くなる。酸化され難いため、正極上での酸化分解反応が抑制され、正極表面上の分解物の堆積による充放電サイクル特性(容量保持率)の低下が抑制される。また、還元され易いため、負極にハロゲンを含むLiF又はLiClのような無機質の安定な被膜が形成され、他の電解質の還元分解反応を抑制するために、初期の充放電効率が向上し、放電容量が大きくなると考えられる。 R1 of compound C according to chemical formula (1) may be halogenated. When an electron withdrawing halogen is added, it is difficult to oxidize and is easily reduced. Since it is difficult to oxidize, the oxidative decomposition reaction on the positive electrode is suppressed, and the decrease in charge / discharge cycle characteristics (capacity retention) due to the deposition of decomposition products on the positive electrode surface is suppressed. In addition, since it is easy to be reduced, a stable inorganic coating such as LiF or LiCl containing halogen is formed on the negative electrode. In order to suppress the reductive decomposition reaction of other electrolytes, the initial charge / discharge efficiency is improved, and the discharge The capacity is thought to increase.
下記の表7〜9に示すように、化学式(6)の化合物を添加している実施例46〜101は、添加していない比較例32〜59と比較して、500サイクル後の容量保持率が向上し、低温サイクル後の厚み増分が抑制されている。しかし、化学式(1)の化合物の添加量が少ない場合、及び添加量が多い場合は、サイクル後の容量保持率が低下する傾向があり、また、厚み増分が若干増加する。化学式(1)の化合物の添加量が少ない場合には、負極上に形成される被膜が薄く、サイクルに伴い電解液の分解が生じやすくなるために容量が低下し、また分解時にガスが発生するので膨れも大きくなる。化学式(1)の化合物の添加量が多い場合には、電解液の粘度が上昇し、リチウムイオンの拡散が阻害されるために、充放電効率が低下し、サイクル時の容量低下が大きくなる。また、負極上に形成される被膜が厚くなるために、低温充電時のリチウム受け入れ性が低下し、膨れも大きくなる。 As shown in Tables 7 to 9 below, Examples 46 to 101 in which the compound of the chemical formula (6) was added were compared with Comparative Examples 32 to 59 in which the compound was not added, and the capacity retention after 500 cycles. And the increase in thickness after the low-temperature cycle is suppressed. However, when the addition amount of the compound of the chemical formula (1) is small and when the addition amount is large, the capacity retention after the cycle tends to decrease, and the thickness increment slightly increases. When the amount of the compound represented by the chemical formula (1) is small, the coating film formed on the negative electrode is thin, the electrolytic solution is easily decomposed with the cycle, the capacity is reduced, and gas is generated during decomposition. So the bulge also increases. When the amount of the compound represented by the chemical formula (1) is large, the viscosity of the electrolytic solution is increased and the diffusion of lithium ions is hindered, so that the charge / discharge efficiency is lowered and the capacity is reduced during the cycle. In addition, since the coating formed on the negative electrode is thick, the lithium acceptability during low-temperature charging is reduced and swelling is increased.
下記の表10に示すように、化学式(2)〜(5)の化合物の種類に関わらず、この化合物を添加した場合(実施例102〜110)は、添加していない場合(比較例31)と比べて、サイクル後の容量保持率が向上し、低温サイクル後の厚み増分が抑制されている。この環状硫酸エステルは、初期充電時に良好な被膜を形成すると考えられる。PRSのように、不飽和結合を含む場合も、負極と安定な被膜が形成されるので、負極表面での非水電解質の分解が抑制され、サイクル後の容量保持率が良好である。
この化合物の添加量を0.1〜2質量%と変えた場合、種類に関わらず、添加量が0.5〜1質量%であるとき、より良好な結果が得られていることが分かる。
As shown in Table 10 below, when this compound was added (Examples 102 to 110), regardless of the type of the compounds of the chemical formulas (2) to (5), when not added (Comparative Example 31) As compared with, the capacity retention after the cycle is improved, and the increase in thickness after the low temperature cycle is suppressed. This cyclic sulfate ester is considered to form a good film during initial charging. Even when an unsaturated bond is included as in PRS, since a stable coating film is formed with the negative electrode, the decomposition of the nonaqueous electrolyte on the negative electrode surface is suppressed, and the capacity retention after cycling is good.
When the addition amount of this compound is changed to 0.1 to 2% by mass, it can be seen that better results are obtained when the addition amount is 0.5 to 1% by mass, regardless of the type.
下記の表11及び12に示すように、化学式(6)の化合物の種類に関わらず、この化合物を添加した場合(実施例111〜146)は、添加していない場合(比較例7及び22)と比較して、サイクル後の容量保持率が向上し、低温サイクル後の厚み増分が抑制されている。
この化合物の添加量を0.05〜1質量%と変えた場合、化合物の種類に関わらず、添加量が0.1〜0.5質量%であるとき、より良好な結果が得られていることが分かる。
As shown in the following Tables 11 and 12, regardless of the type of the compound of the chemical formula (6), when this compound was added (Examples 111 to 146), when it was not added (Comparative Examples 7 and 22) As compared with, the capacity retention after the cycle is improved, and the increase in thickness after the low temperature cycle is suppressed.
When the addition amount of this compound is changed to 0.05 to 1% by mass, better results are obtained when the addition amount is 0.1 to 0.5% by mass, regardless of the type of the compound. I understand that.
なお、上記実施例では、電解質溶媒がECとEMCの混合溶媒について記述したが、環状カーボネートと鎖状カーボネートの比率を変化させた場合や、環状カーボネートとしてPCを用いた場合、鎖状カーボネートとしてDMC又はDECを用いた場合にも同様の傾向が見られ、さらに、鎖状カーボネートの代わりにγ―ブチロラクトンを使用した場合にも同様の傾向が見られた。支持塩の濃度を変化させた場合においても同様の傾向が見られた。また、各種の添加剤(例えば、ビフェニル、シクロヘキシルベンゼン等の重合剤等)と併用して用いても同様の効果が得られた。 In the above examples, the electrolyte solvent is described as a mixed solvent of EC and EMC. However, when the ratio of cyclic carbonate and chain carbonate is changed, or when PC is used as the cyclic carbonate, DMC is used as the chain carbonate. Alternatively, the same tendency was observed when DEC was used, and the same tendency was observed when γ-butyrolactone was used instead of the chain carbonate. A similar tendency was observed when the concentration of the supporting salt was changed. Moreover, the same effect was acquired even if it used together with various additives (For example, polymeric agents, such as biphenyl and cyclohexylbenzene, etc.).
また、化学式(1)に係る化合物、及び化学式(2)〜(5)に係る化合物に係る化合物は、上述した実施例における化合物に限定されない。
化学式(2)〜(5)に係る化合物のR2〜R10がとりうるアルキル基は、好ましくは炭素数1〜4のアルキル基であり、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基等を用いることが可能である。アルキル基の置換基となるアリール基としては、フェニル基、ナフチル基、アントラニル基等を用いることが可能であるが、フェニル基が好ましい。また、アルキル基の置換基となるハロゲン原子としては、フッ素原子、塩素原子、臭素原子を用いることが可能である。これらの置換基はアルキル基に複数個置換してもよく、また、アリール基とハロゲン原子がともに置換しても良い。
Moreover, the compound which concerns on the compound which concerns on Chemical formula (1), and the compound which concerns on Chemical formula (2)-(5) is not limited to the compound in the Example mentioned above.
The alkyl group that can be taken by R2 to R10 of the compounds according to the chemical formulas (2) to (5) is preferably an alkyl group having 1 to 4 carbon atoms, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group. Etc. can be used. As the aryl group serving as a substituent for the alkyl group, a phenyl group, a naphthyl group, an anthranyl group, and the like can be used, and a phenyl group is preferable. Moreover, as a halogen atom which becomes a substituent of an alkyl group, it is possible to use a fluorine atom, a chlorine atom, or a bromine atom. A plurality of these substituents may be substituted with an alkyl group, or both an aryl group and a halogen atom may be substituted.
化学式(6)の化合物は、硫酸ジメチル、硫酸ジエチル、硫酸エチルメチルに限定されず、硫酸メチルプロピル、硫酸エチルプロピル、硫酸メチルフェニル、硫酸エチルフェニル、硫酸フェニルプロピル、硫酸ベンジルメチル、硫酸ベンジルエチル等を用いても良い。但し、R11及びR12の炭素数が1又は2である硫酸ジメチル、硫酸ジエチル、硫酸エチルメチルを用いる方が、低温で充放電した後においても電池の厚みの増加をさらに良好に抑制出来るので、好ましい。 The compound of the chemical formula (6) is not limited to dimethyl sulfate, diethyl sulfate, ethyl methyl sulfate, but methyl propyl sulfate, ethyl propyl sulfate, methyl phenyl sulfate, ethyl phenyl sulfate, phenyl propyl sulfate, benzyl methyl sulfate, benzyl ethyl sulfate, etc. May be used. However, it is preferable to use dimethyl sulfate, diethyl sulfate, or ethyl methyl sulfate in which R11 and R12 have 1 or 2 carbon atoms because the increase in the thickness of the battery can be further suppressed even after charging and discharging at a low temperature. .
各群の化合物は、各々1種類だけを選択して使用しても良いし、2種類以上を組合わせて用いても良い。 Only one type of each group of compounds may be selected and used, or two or more types may be used in combination.
1 電池(非水電解質二次電池)
2 扁平巻状電極群
3 負極
4 正極
5 セパレータ
6 電池ケース
7 電池蓋
8 安全弁
9 負極端子
10 負極リード
1 battery (non-aqueous electrolyte secondary battery)
2 Flat
Claims (2)
前記電解質は、下記化学式(1);
HO−R1−A (1)
(式中、R1は不飽和結合を含んでいてもよい炭化水素基、又は、不飽和結合を含んでいてもよくその一部若しくは全部がハロゲン元素で置換されている炭化水素基であり、Aは下記A1、A2又はA3で表される構造を有する。)で表される化合物と、
下記化学式(3);
下記化学式(4);
下記化学式(5);
下記化学式(6);
R11−SO4 −R12 (6)
(式中、R11及びR12は、各々独立して、同一種又は異種のアルキル基を表す。)で表される鎖状の硫酸エステル化合物と
を含んでなることを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and an electrolyte,
The electrolyte has the following chemical formula (1);
HO-R1-A (1)
(Wherein R1 is a hydrocarbon group that may contain an unsaturated bond, or a hydrocarbon group that may contain an unsaturated bond, part or all of which is substituted with a halogen element, and Has a structure represented by the following A1, A2 or A3):
The following chemical formula (3);
The following chemical formula (4);
The following chemical formula (6);
R11-SO 4 -R12 (6)
(Wherein R11 and R12 each independently represent the same or different alkyl group) and a chain sulfate ester compound represented by the nonaqueous electrolyte secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005368666A JP2007173014A (en) | 2005-12-21 | 2005-12-21 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005368666A JP2007173014A (en) | 2005-12-21 | 2005-12-21 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007173014A true JP2007173014A (en) | 2007-07-05 |
Family
ID=38299293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005368666A Pending JP2007173014A (en) | 2005-12-21 | 2005-12-21 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007173014A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012009370A (en) * | 2010-06-28 | 2012-01-12 | Gs Yuasa Corp | Nonaqueous electrolyte secondary battery, nonaqueous electrolyte and method for manufacturing nonaqueous electrolyte secondary battery |
JP2013089390A (en) * | 2011-10-14 | 2013-05-13 | Ube Ind Ltd | Nonaqueous electrolyte and power storage device using the same |
WO2013137418A1 (en) * | 2012-03-15 | 2013-09-19 | 株式会社 東芝 | Non-aqueous electrolyte secondary battery and battery pack |
JP2014027196A (en) * | 2012-07-30 | 2014-02-06 | Jm Energy Corp | Power storage device |
KR20150034499A (en) * | 2013-09-26 | 2015-04-03 | 주식회사 엘지화학 | Lithium secondary battery with improved output performance |
KR20150109732A (en) * | 2014-03-20 | 2015-10-02 | 파낙스 이텍(주) | Electrolyte for high capacity secondary battery and secondary battery containing the same |
CN103718373B (en) * | 2012-03-15 | 2016-11-30 | 株式会社东芝 | Rechargeable nonaqueous electrolytic battery and set of cells |
US9806376B2 (en) | 2014-08-28 | 2017-10-31 | Gs Yuasa International Ltd. | Energy storage device |
KR101797272B1 (en) * | 2014-11-26 | 2017-11-13 | 주식회사 엘지화학 | Electrolyte for lithium secondary battery and lithium secondary battery including the same |
CN108963337A (en) * | 2017-05-26 | 2018-12-07 | 宁德时代新能源科技股份有限公司 | Lithium ion battery and electrolyte thereof |
CN117219870A (en) * | 2023-11-09 | 2023-12-12 | 宁德时代新能源科技股份有限公司 | Electrolyte, sodium secondary battery and electricity utilization device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10189042A (en) * | 1996-12-25 | 1998-07-21 | Mitsubishi Chem Corp | Lithium secondary battery electrolyte |
WO1999016144A1 (en) * | 1997-09-19 | 1999-04-01 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte cell |
JP2001052738A (en) * | 1999-06-01 | 2001-02-23 | Ube Ind Ltd | Nonaqueous electrolytic solution and lithium secondary battery using the same |
JP2003308876A (en) * | 2002-04-16 | 2003-10-31 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2004022523A (en) * | 2002-06-20 | 2004-01-22 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2004055502A (en) * | 2001-09-21 | 2004-02-19 | Tdk Corp | Lithium secondary battery |
JP2004087437A (en) * | 2002-08-29 | 2004-03-18 | Mitsui Chemicals Inc | Lithium secondary battery |
JP2005050671A (en) * | 2003-07-28 | 2005-02-24 | Tdk Corp | Lithium ion secondary battery |
JP2005293920A (en) * | 2004-03-31 | 2005-10-20 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
JP2005317389A (en) * | 2004-04-28 | 2005-11-10 | Sanyo Electric Co Ltd | Non-aqueous electrolyte secondary battery |
-
2005
- 2005-12-21 JP JP2005368666A patent/JP2007173014A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10189042A (en) * | 1996-12-25 | 1998-07-21 | Mitsubishi Chem Corp | Lithium secondary battery electrolyte |
WO1999016144A1 (en) * | 1997-09-19 | 1999-04-01 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte cell |
JP2001052738A (en) * | 1999-06-01 | 2001-02-23 | Ube Ind Ltd | Nonaqueous electrolytic solution and lithium secondary battery using the same |
JP2004055502A (en) * | 2001-09-21 | 2004-02-19 | Tdk Corp | Lithium secondary battery |
JP2003308876A (en) * | 2002-04-16 | 2003-10-31 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2004022523A (en) * | 2002-06-20 | 2004-01-22 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2004087437A (en) * | 2002-08-29 | 2004-03-18 | Mitsui Chemicals Inc | Lithium secondary battery |
JP2005050671A (en) * | 2003-07-28 | 2005-02-24 | Tdk Corp | Lithium ion secondary battery |
JP2005293920A (en) * | 2004-03-31 | 2005-10-20 | Sanyo Electric Co Ltd | Nonaqueous electrolyte battery |
JP2005317389A (en) * | 2004-04-28 | 2005-11-10 | Sanyo Electric Co Ltd | Non-aqueous electrolyte secondary battery |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012009370A (en) * | 2010-06-28 | 2012-01-12 | Gs Yuasa Corp | Nonaqueous electrolyte secondary battery, nonaqueous electrolyte and method for manufacturing nonaqueous electrolyte secondary battery |
JP2013089390A (en) * | 2011-10-14 | 2013-05-13 | Ube Ind Ltd | Nonaqueous electrolyte and power storage device using the same |
US9825330B2 (en) | 2012-03-15 | 2017-11-21 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery and battery pack |
WO2013137418A1 (en) * | 2012-03-15 | 2013-09-19 | 株式会社 東芝 | Non-aqueous electrolyte secondary battery and battery pack |
CN103718373A (en) * | 2012-03-15 | 2014-04-09 | 株式会社东芝 | Non-aqueous electrolyte secondary battery and battery pack |
US20140134477A1 (en) * | 2012-03-15 | 2014-05-15 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery and battery pack |
CN103718373B (en) * | 2012-03-15 | 2016-11-30 | 株式会社东芝 | Rechargeable nonaqueous electrolytic battery and set of cells |
JPWO2013137418A1 (en) * | 2012-03-15 | 2015-08-03 | 株式会社東芝 | Nonaqueous electrolyte secondary battery and battery pack |
EP2827432A4 (en) * | 2012-03-15 | 2015-11-04 | Toshiba Kk | Non-aqueous electrolyte secondary battery and battery pack |
JP2014027196A (en) * | 2012-07-30 | 2014-02-06 | Jm Energy Corp | Power storage device |
KR101640288B1 (en) * | 2013-09-26 | 2016-07-15 | 주식회사 엘지화학 | Lithium secondary battery with improved output performance |
KR20150034499A (en) * | 2013-09-26 | 2015-04-03 | 주식회사 엘지화학 | Lithium secondary battery with improved output performance |
KR20150109732A (en) * | 2014-03-20 | 2015-10-02 | 파낙스 이텍(주) | Electrolyte for high capacity secondary battery and secondary battery containing the same |
KR101581782B1 (en) | 2014-03-20 | 2015-12-31 | 파낙스 이텍(주) | Electrolyte for high capacity secondary battery and secondary battery containing the same |
US9806376B2 (en) | 2014-08-28 | 2017-10-31 | Gs Yuasa International Ltd. | Energy storage device |
KR101797272B1 (en) * | 2014-11-26 | 2017-11-13 | 주식회사 엘지화학 | Electrolyte for lithium secondary battery and lithium secondary battery including the same |
CN108963337A (en) * | 2017-05-26 | 2018-12-07 | 宁德时代新能源科技股份有限公司 | Lithium ion battery and electrolyte thereof |
CN108963337B (en) * | 2017-05-26 | 2020-05-05 | 宁德时代新能源科技股份有限公司 | Lithium ion battery and electrolyte thereof |
US10826120B2 (en) | 2017-05-26 | 2020-11-03 | Contemporary Amperex Technology Co., Limited | Lithium-ion battery and its electrolyte |
CN117219870A (en) * | 2023-11-09 | 2023-12-12 | 宁德时代新能源科技股份有限公司 | Electrolyte, sodium secondary battery and electricity utilization device |
CN117219870B (en) * | 2023-11-09 | 2024-04-16 | 宁德时代新能源科技股份有限公司 | Electrolyte, sodium secondary battery and electricity utilization device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5258353B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4779651B2 (en) | Non-aqueous electrolyte and lithium secondary battery | |
US7745057B2 (en) | Nonaqueous electrolyte secondary battery | |
KR102276985B1 (en) | Nonaqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising the same | |
JP6068789B2 (en) | ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME | |
US20040013944A1 (en) | Lithium secondary battery and a method for preparing the same | |
US20030170549A1 (en) | Non-aqueous electrolyte battery | |
JP2007173014A (en) | Nonaqueous electrolyte secondary battery | |
US20100028783A1 (en) | Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same | |
JP4819409B2 (en) | Non-aqueous electrolyte secondary battery charge / discharge method | |
JP2005135895A (en) | Lithium cell having efficient performance | |
KR100816208B1 (en) | Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery comprising the same | |
JP2009105069A (en) | Electrolyte for lithium secondary battery, and lithium secondary battery containing same | |
JP4433163B2 (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using the same | |
KR100984134B1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
JP2005285491A (en) | Nonaqueous electrolyte solution and lithium secondary battery using it | |
JP4968614B2 (en) | Secondary battery electrolyte and secondary battery using the same | |
US20070190412A1 (en) | Non-aqueous electrolyte solution for secondary battery and non-aqueous electrolyte secondary battery | |
JP2005093414A (en) | Lithium cell | |
US7794885B2 (en) | Non-aqueous electrolytic solution and lithium secondary battery | |
US20170317383A1 (en) | Lithium-ion secondary battery | |
JP5421220B2 (en) | Secondary battery electrolyte and secondary battery | |
US20080311481A1 (en) | Nonaqueous electrolyte for lithium secondary battery and lithium secondary batter using the same | |
JP4701601B2 (en) | Electrolytic solution for lithium secondary battery and lithium secondary battery using the same | |
JP2009245830A (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery containing nonaqueous electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080514 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110120 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110520 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110920 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120131 |