JP2004022523A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004022523A
JP2004022523A JP2002180585A JP2002180585A JP2004022523A JP 2004022523 A JP2004022523 A JP 2004022523A JP 2002180585 A JP2002180585 A JP 2002180585A JP 2002180585 A JP2002180585 A JP 2002180585A JP 2004022523 A JP2004022523 A JP 2004022523A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
electrolyte secondary
acetic acid
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002180585A
Other languages
Japanese (ja)
Other versions
JP4167012B2 (en
Inventor
Koyo Watari
亘  幸洋
Tetsuya Murai
村井  哲也
Sumio Mori
森  澄男
Hiroki Ozaki
尾崎  博樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Sanyo GS Soft Energy Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002180585A priority Critical patent/JP4167012B2/en
Publication of JP2004022523A publication Critical patent/JP2004022523A/en
Application granted granted Critical
Publication of JP4167012B2 publication Critical patent/JP4167012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having a long life and excellent thermal stability which does not lower a charging capacity at initial stage with small capacity reduction in charging/discharging cycle. <P>SOLUTION: For the nonaqueous electrolyte secondary battery having a positive electrode, a negative electrode, a separator and a non aqueous electrolyte composed of a nonaqueous solvent and a solute, the nonaqueous electrolyte contains an acetic acid and at least one of cyclic sulfate ester derivatives represented by formulae (1) and (2), and the concentration of the cyclic sulfate ester derivative in the electrolyte is 2 mass% or lower. In the formulae (1) and (2), each of R1-R4 independently represents hydrogen, a halogen atom, or an alkyl group with 1-4 carbons. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池、特に、サイクル寿命性能、および熱安定性が優れた非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、民生用の携帯電話、ポータブル機器や携帯情報端末などの急速な小型軽量化・多様化に伴い、その電源である電池に対して、小型で軽量かつ高エネルギー密度で、さらに長期間繰り返し充放電が実現できる二次電池の開発が強く要求されている。なかでも、水溶液系電解液を使用する鉛電池、ニッケルカドミウム電池、およびニッケル水素電池と比較して、これらの要求を満たす二次電池として、リチウムイオン二次電池などの非水電解質二次電池が最も有望であり、活発な研究がおこなわれている。
【0003】
非水電解質二次電池の正極活物質には、二硫化チタン、五酸化バナジウムおよび三酸化モリブデンをはじめとしてリチウムコバルト複合酸化物、リチウムニッケル複合酸化物およびスピネル型リチウムマンガン酸化物等の一般式LiMO(ただし、Mは一種以上の遷移金属)で表される種々の化合物が検討されている。なかでも、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物およびスピネル型リチウムマンガン酸化物などは、4V(vs Li/Li)以上の極めて貴な電位で充放電をおこなうため、正極として用いることで高い放電電圧を有する電池を実現できる。
【0004】
非水電解質二次電池の負極活物質には、金属リチウム、リチウム合金、リチウムの吸蔵・放出が可能な炭素材料などの種々のものが検討されているが、なかでも炭素材料を使用すると、サイクル寿命の長い電池が得られ、かつ安全性が高いという利点がある。
【0005】
非水電解質二次電池の電解質には、一般にエチレンカーボネートやプロピレンカーボネートなどの高誘電率溶媒とジメチルカーボネートやジエチルカーボネートなどの低粘度溶媒との混合系溶媒にLiPFやLiBF等の支持塩を溶解させた電解質が使用されている。
【0006】
しかしながら、非水電解質二次電池は、充放電サイクルが進むに従い、負極上で非水電解質中の支持塩や溶媒の分解が進行して、電解液の枯渇が生じる、あるいは、負極表面やセパレータの細孔部に溶媒の分解生成物が堆積してリチウムイオンの移動を阻害して、電池の内部抵抗が増加し、放電容量が低下するという問題がある。
【0007】
これらの問題点を改善するために、近年、充放電サイクル時における電解液の分解を抑制するための様々な手法が提案されている。例えば、特開平10−189042号公報では、電解液に環状硫酸エステル化合物を添加することが提案されている。
【0008】
【発明が解決しようとする課題】
電解液に環状硫酸エステル化合物を添加した場合においては、未添加の電解液を用いた場合と比較して、負極上での電解液の分解反応を抑制することができるが、その効果は充分でなく、また、異常加熱時において、充電状態の負極との反応性が高く、電池の熱安定性が低下する問題があった。
【0009】
そこで本発明は、電解液に環状硫酸エステル化合物を添加した場合の問題を解決するためになされたものであり、その目的とするところは、初期の放電容量を低下させることなく、充放電サイクル時の容量低下が小さく、長寿命であり、また、熱安定性に優れた非水電解質二次電池を提供することにある。
【0010】
【課題を解決するための手段】
請求項1の発明は、正極と、負極と、セパレータと、非水溶媒と溶質とからなる非水電解質を備えた非水電解質二次電池において、前記非水電解質が、前記非水電解質が、酢酸と、化学式(1)または化学式(2)で表される環状硫酸エステル誘導体の少なくとも一種を含み、電解質中の前記環状硫酸エステル誘導体の濃度が2質量%以下であることを特徴とする。
【0011】
【化3】

Figure 2004022523
【0012】
【化4】
Figure 2004022523
【0013】
(但し、式(1)において、R1〜R4は、各々独立して水素、ハロゲン元素、または炭素数1〜4のアルキル基を表す)。
【0014】
請求項1の発明によれば、充放電サイクル時の容量低下が小さく、長寿命である非水電解質二次電池が得られる。
【0015】
請求項2の発明は、上記非水電解質二次電池において、酢酸の含有量を0.2質量%以下とすることを特徴とする。
【0016】
請求項2の発明によれば、初期の放電容量を低下させることなく、良好なサイクル寿命性能を有する非水電解質二次電池が得られる。
【0017】
【発明の実施の形態】
以下に、本発明の実施の形態について説明する。
【0018】
本発明は、非水電解質二次電池において、前記非水電解質が、前記非水電解質が、酢酸と、化学式(1)または化学式(2)で表される環状硫酸エステル誘導体の少なくとも一種を含み、電解質中の前記環状硫酸エステル誘導体の濃度が2質量%以下であることを特徴とする。
【0019】
【化5】
Figure 2004022523
【0020】
【化6】
Figure 2004022523
【0021】
なお、化学式(1)および化学式(2)において、R1〜R4は、各々独立して水素、ハロゲン元素、または炭素数1〜4のアルキル基を表すものとする。また、炭素数1〜4のアルキル基は不飽和結合を有するものでもよい。
【0022】
非水電解質中に酢酸を含有させることにより、負極表面上にカルボン酸リチウムを含むSEIが形成される。このSEIは、酢酸を含まない電解液を用いた場合に形成されるSEIよりも溶媒の還元分解が抑制される。また、負極上に形成される皮膜は熱安定性が高く(高温での電解液との反応性が低い)、異常加熱時においても発熱が小さい。
【0023】
さらに、化学式(1)または化学式(2)で表される環状硫酸エステルを含有させることにより、リチウムイオン透過性の高いSEIが形成される。したがって、酢酸と環状エステル誘導体を含有する電解液を用いた場合においては、負極表面上に電解液の分解反応を抑制し、かつリチウムイオン透過性の高いSEIが形成されるために、充放電サイクル時の容量低下が小さく、長寿命であり、また、優れた熱安定性を有する非水電解質二次電池が得られる。
【0024】
ここで、SEI(Solid Electrolyte Interphase)とは、非水電解質中で金属リチウムや炭素材料の初充電をおこなった場合、電解質中の溶媒や、電解質中に含まれる成分が還元されて、金属リチウムや炭素材料の表面に形成される不働態膜をさす。そして、金属リチウムや炭素材料の表面に形成されたSEIが、リチウムイオン透過性の保護膜として働き、その後の金属リチウムや炭素材料と溶媒との反応が抑制されるのである。
【0025】
本発明においては、電解質中の環状硫酸エステル誘導体の濃度を2質量%以下とする。電解質中の環状硫酸エステル誘導体の濃度が2質量%を越えると、負極上に形成される皮膜が厚くなり、皮膜抵抗が増加するために、放電性能が大幅に低下する。したがって、電解液中の環状硫酸エステル誘導体の濃度は2質量%以下とすることが肝要である。
【0026】
また、本発明は、非水電解質中に酢酸の含有量を0.2質量%以下とすることを特徴とする。非水電解質中に酢酸が適度に含まれておれば、負極活物質の表面に良好なSEIが形成されるが、非水電解質中の酢酸の含有量が0.2質量%よりも多い場合には、初期充放電時の不可逆容量が大きくなるために、初期の放電容量が小さくなる。
【0027】
本発明の非水電解質二次電池を作製する場合には、上記の非水電解質を用い、通常の方法により電池を作製すれば良い。
【0028】
正極活物質としては、リチウムを吸蔵放出可能な化合物である、組成式LiMO、またはLi(ただしM は遷移金属、0≦x≦1、0≦y≦2 )で表される複合酸化物、トンネル状の空孔を有する酸化物、層状構造の金属カルコゲン化物を用いることができる。
【0029】
その具体例としては、LiCoO、LiNiO、LiMn、LiMn、MnO、FeO、V、V13、TiO、TiS等がある。また、ポリアニリン等の導電性ポリマー等の有機化合物を用いることもでき、さらに、これらを混合して用いてもよい。また、粒状の活物質を用いる場合には、例えば、活物質粒子と導電助剤と結着剤とからなる合材をアルミニウム等の金属集電体上に形成することで作製できる。
【0030】
また、負極活物質としては、例えば、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe、WO、MoO等の遷移金属酸化物、グラファイト、カーボン等の炭素質材料、Li(LiN)等の窒化リチウム、もしくは金属リチウム箔、または、これらの混合物を用いてもよい。また、粒状の炭素質材料を用いる場合には、例えば、活物質粒子と結着剤とからなる合材を銅等の金属集電体上に形成することで作製できる。
【0031】
非水電解質の溶媒としては、エチレンカーボネート、ビニレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート等の非水溶媒を、単独、またはこれらを混合して使用することができる。また、適宜、ビフェニル、シクロヘキシルベンゼン等の重合剤、および1,3−プロパンスルトン、1,3−プロペンスルトン等の皮膜形成剤などの添加剤を、適量含有したものでも良い。
【0032】
非水電解質は、これらの非水溶媒に支持塩を溶解して使用する。支持塩としては、LiClO、LiPF、LiBF、LiAsF、LiCFCO、LiCFSO、LiCFCFSO、LiCFCFCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF、LiN(COCFCFおよびLiPF(CFCFなどの塩、もしくはこれらの混合物を使用することができる。
【0033】
また、液状の電解質のかわりに固体のイオン導電性ポリマー電解質を用いることもできる。ポリマー電解質膜が、ポリエチレンオキシド、ポリアクリロニトリル、ポリエチレングリコールおよびこれらの変性体などの場合には、軽量で柔軟性があり、巻回して使用する場合に有利である。さらに、イオン導電性ポリマー電解質膜と非水電解質を組み合わせて使用することができる。また、電解質としては、ポリマー電解質以外にも、有機ポリマー電解質と無機固体電解質の混合材料、もしくは有機バインダーによって結着された無機固体粉末など、いずれも公知のものの使用が可能である。
【0034】
本発明の非水電解質二次電池は、通常、その構成として正極、負極およびセパレータと非水電解質との組み合わせからなっているが、セパレータとしては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に、合成樹脂微多孔膜を好適に用いることができる。中でもポリエチレン、およびポリプロピレン製微多孔膜、または、これらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適に用いられる。
【0035】
また、電池の形状は、特に限定されるものではなく、本発明は、角形、円筒形、長円筒形、コイン形、ボタン形、シート形電池等の様々な形状の非水電解質二次電池に適用可能である。
【0036】
【実施例】
以下に好適な実施例を用いて本発明を説明するが、本発明は、本実施例により、何ら限定されるものではなく、その主旨を変更しない範囲において、適宜変更して実施することができる。
【0037】
[実施例1]
正極活物質にLiCoO、負極活物質に炭素材料を使用した、角形非水電解質二次電池を作製した。図1は角形非水電解質二次電池の断面構造を示した図であり、図1において、1は角形非水電解質二次電池、2は扁平状電極群、3は正極、4は負極、5はセパレータ、6は鉄製電池ケース、7は電池蓋、8は安全弁、9は正極端子、10は正極リードである。扁平状電極群2は、正極3と負極4とをセパレータ5を介して巻回したものである。そして、扁平状電極群2は電池ケース6に収納してあり、電池ケース6には安全弁8を設け、電池蓋7と電池ケース6はレーザー溶接で密閉されている。正極端子9は正極リード10と接続され、負極4は電池ケース6の内壁と接触により接続されている。
【0038】
正極合材は、活物質としてLiCoO90質量%と、導電助剤のアセチレンブラック5質量%と、結着剤のポリフッ化ビニリデン(PVdF)5質量%とを混合して正極合材とし、N−メチル−2−ピロリドン(NMP)に分散させることによりペーストを調製した。このペーストを厚さ20μmのアルミニウム集電体に均一に塗布して、乾燥させた後、ロールプレスで圧縮成形することにより正極板を作製した。正極板の寸法は厚さ186μm、幅19mm、長さ650mmとした。
【0039】
負極合材は、リチウムイオンを吸蔵放出する炭素材料90質量%と、結着剤のPVdF10質量%とを混合し、NMPを適宜加えて分散させ、スラリーを調製した。このスラリーを厚さ15μmの銅集電体に均一に塗布、乾燥させた後、100℃で5時間乾燥させた後、ロールプレスで圧縮成形することにより負極板を作製した。負極板の寸法は厚さ182μm、幅20mm、長さ680mmとした。
【0040】
セパレータとしては、厚さ25μmの微多孔性ポリエチレンフィルムを用いた。これらの正・負極、およびセパレータを巻回して扁平状電極群を作製した。電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比3:7混合溶媒にLiPFを1.1M溶解し、この電解質に酢酸を0.05質量%とエタン−1,2−ジオール硫酸エステルを0.25質量%含有させた非水電解質を用いて、角形非水電解質二次電池を作製した。
【0041】
この角形非水電解質二次電池の外形寸法は幅22mm×高さ48mm×厚さ7.8mmとし、公称容量は600mAhとした。
【0042】
[実施例2〜14、および比較例1〜7]
実施例2〜14、および比較例1〜7の20種類の電池については、表1に示すように、非水電解質に含まれる酢酸およびエタン−1,2−ジオール硫酸エステルの量を変化させた以外は、実施例1と全く同様にして非水電解質二次電池を作製した。ここで作製した実施例1〜14および比較例1〜7の、電解液への酢酸およびエタン−1,2−ジオール硫酸エステルの濃度を表1にまとめた。
【0043】
【表1】
Figure 2004022523
【0044】
[比較試験]
充放電サイクル寿命試験はつぎの条件でおこなった。上記の電池を、充電は600mAの電流で4.2Vまで3時間定電流定電圧充電し、その後、600mAの電流で3Vまで放電をおこない、初期放電容量を確認した。その後、同様の条件で、充放電サイクルを500サイクル繰り返し、500サイクル後の容量保持率(%)を求めた。ここで「容量保持率」とは、初期放電容量に対する500サイクル後の放電容量の比率(%)を示すものとする。なお、容量保持率が80%以上の電池を良好とし、80%未満の電池を不良とした。
【0045】
オーブン加熱試験はつぎの条件でおこなった。オーブン中に、600mA電流で3時間、4.2Vの定電流定電圧充電をした電池を設置して、5℃/分の速度で150℃まで昇温して、90分間保持した。この試験において、設定温度から15℃以上上昇したもの、すなわち、電池表面温度が165℃以上になったものを「不良」とし、温度上昇が15℃未満、すなわち、電池表面温度が165℃未満であったものを「良」とした。
【0046】
充放電サイクル寿命試験およびオーブン加熱試験の結果を表2にまとめた。なお、表2における、初期容量および容量保持率の値は、各電池とも10セルの平均値を示した。また、オーブン加熱試験は、各電池とも3セルについて行い、そのうち1セルでも「不良」の場合は×印、3セルとも「良」の場合は○印とした。
【0047】
【表2】
Figure 2004022523
【0048】
表2より、酢酸を含有し、さらにエタン−1,2−ジオール硫酸エステルを2質量%以下の濃度で含有する非水電解質を用いた実施例1〜14の場合は、添加剤を含まない比較例5と比較して、500サイクル後の容量保持率が著しく向上した。また、エタン−1,2−ジオール硫酸エステルのみを添加した比較例7の場合に認められた電池の熱安定性の低下も、酢酸を混合することによって改善できることがわかった。
【0049】
また、酢酸のみを単独で添加した非水電解質を用いた比較例6およびエタン−1,2−ジオール硫酸エステルを単独で添加した非水電解質を用いた比較例7の場合よりも、酢酸を含有し、さらにエタン−1,2−ジオール硫酸エステルを2質量%以下の濃度で含有する非水電解質を用いた実施例1〜14の場合の方が、容量保持率が大きくなっており、非水電解質が酢酸とエタン−1,2−ジオール硫酸エステルを同時に含む場合に優れたサイクル寿命性能を示した。
【0050】
さらに、電解質中にエタン−1,2−ジオール硫酸エステルを4質量%含んだ比較例1〜4の場合は、実施例1〜14と比較して、容量維持率がかなり小さくなった。
【0051】
また、初期の放電容量については、酢酸の含有量が0.2質量%以下である実施例1〜12までは比較例5よりも大きいことがわかった。酢酸の含有量を0.3質量%とした実施例13〜14の場合は、充放電サイクル後の容量保持率は、それぞれ88%、87%と高いものの、初期の放電容量は、比較例5と同等であった。この理由は、酢酸の非水電解質に対する含有量が多い場合、SEI形成に必要な電気量が大きくなったことと、形成されたSEIが負極へのLi挿入反応を阻害することにより充電電気量が減少したことがあげられる。
【0052】
また、上記実施例では、環状硫酸エステルとして、エタン−1,2−ジオール硫酸エステルを用いた場合を例に説明したが、プロパン−1,2−ジオール硫酸エステル等の他の環状硫酸エステルを用いた場合、および式中のR1〜R4をフッ素等のハロゲン元素で置換したものを用いた場合においても、同様に優れたサイクル寿命性能を有する非水電解質二次電池が得られた。
【0053】
[実施例15〜28および比較例8〜14]
実施例1〜14および比較例1〜7で用いたエタン−1,2−ジオール硫酸エステルの代わりに、エテン−1,2−ジオール硫酸エステルを用いた実施例15〜28および比較例8〜14の角形非水電解質二次電池を作製した。
【0054】
正極活物質、負極活物質、電解質、電池の構造、正極合材、負極合材、セパレータなどは、すべて実施例1と同様のものを用いた。
【0055】
ここで作製した実施例15〜28および比較例8〜14の電解液への酢酸およびエテン−1,2−ジオール硫酸エステルの濃度を表3にまとめた。
【0056】
【表3】
Figure 2004022523
【0057】
充放電サイクル寿命試験およびオーブン加熱試験は、実施例1と同じ条件でおこなった。その結果を表4にまとめた。表4の表示方法は、すべて表3と同様である。
【0058】
【表4】
Figure 2004022523
【0059】
表4から、エタン−1,2−ジオール硫酸エステルの代わりにエテン−1,2−ジオール硫酸エステルを用いた場合も、表3の場合と同様の結果が得られることがわかった。
【0060】
また、上記実施例では、不飽和結合を有する環状硫酸エステルとして、エテン−1,2−ジオール硫酸エステルを用いた場合を例に説明したが、プロペン−1,2−ジオール硫酸エステル等の他の不飽和結合を有する環状硫酸エステルを用いた場合、および式中のR1〜R2をフッ素等のハロゲン元素で置換したものを用いた場合においても、同様に優れたサイクル寿命性能を有する非水電解質二次電池が得られた。
【0061】
このように、酢酸と、化学式(1)または化学式(2)で表される環状硫酸エステルとを、同時に非水電解質に含有させることにより、優れた熱安定性を維持したまま、電池のサイクル寿命特性を向上させることが可能となった。その原因については明らかになっていないが、負極活物質の表面に良好なSEI皮膜が形成され、充放電サイクル時に生じる負極上での非水電解質の分解が抑制され、寿命性能が向上し、また、異常加熱時においても、負極と電解液の反応が抑制され、電池の発熱が小さくなったものと考えられる。
【0062】
また、表2および表3の結果から、初期の放電容量の低下を防ぐためには、非水電解質中の酢酸の含有量は、0.2質量%以下であることが好ましく、0.1質量%以下とすることがより好ましいことがわかった。
【0063】
実施例および比較例では電解質溶媒がエチレンーボネート(EC)とエチルメチルカーボネート(EMC)の混合溶媒について記述したが、環状カーボネートと鎖状カーボネートの比率を変化させた場合や、鎖状カーボネートとしてジメチルカーボネート(DMC)やジエチルカーボネート(DEC)を用いた場合にも同様の傾向が見られ、さらに、鎖状カーボネートの代わりにγ―ブチロラクトンを使用した場合にも同様の傾向が見られた。さらに、支持塩の濃度を変化させた場合においても同様の傾向が見られた。
【0064】
また、各種の添加剤(例えば、ビフェニル、シクロヘキシルベンゼン等の重合剤、および1,3−プロパンスルトン、1,3−プロペンスルトン等の皮膜形成剤等)と併用して用いても同様の効果が得られた。
【0065】
【発明の効果】
本発明によれば、非水電解質中に、酢酸と、化学式(1)または化学式(2)で表される環状硫酸エステルとを、同時に含有させることにより、負極活物質の表面に良好なSEIが形成されるため、その後の負極活物質の表面での非水電解質の分解が抑制され、その結果、充放電サイクル時の容量低下が小さく、長寿命である非水電解質二次電池を得ることが可能となった。また、本発明の電解液を用いた場合、負極と電解液との反応性が低いために、異常加熱時においても高い熱安定性を示す電池を得ることが可能となった。
【0066】
また、酢酸の非水電解質中の含有量を0.2質量%以下とすることで、初期の放電容量が大きく、かつ充放電サイクル時の容量低下が小さく長寿命である非水電解質二次電池を得ることが可能となった。
【図面の簡単な説明】
【図1】角形非水電解質二次電池の断面構造を示す図。
【符号の説明】
1 角形非水電解質二次電池
2 扁平形電極群
3 正極
4 負極
5 セパレータ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, particularly to a non-aqueous electrolyte secondary battery having excellent cycle life performance and thermal stability.
[0002]
[Prior art]
In recent years, with the rapid reduction in size and weight and diversification of consumer mobile phones, portable devices, and portable information terminals, the batteries used as power sources are small, lightweight, have high energy densities, and are repeatedly charged over a long period of time. There is a strong demand for the development of a secondary battery that can achieve discharge. Among them, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are more suitable as secondary batteries that meet these requirements than lead batteries, nickel cadmium batteries, and nickel metal hydride batteries that use aqueous electrolytes. The most promising and active research is underway.
[0003]
The positive electrode active material of the nonaqueous electrolyte secondary battery includes general formula Li such as titanium disulfide, vanadium pentoxide, and molybdenum trioxide, as well as lithium cobalt composite oxide, lithium nickel composite oxide, and spinel lithium manganese oxide. x MO 2 (however, M is one or more transition metals) various compounds represented by have been studied. Among them, lithium cobalt composite oxide, lithium nickel composite oxide, spinel type lithium manganese oxide, and the like are charged and discharged at a very noble potential of 4 V (vs Li / Li + ) or more, so that they are used as a positive electrode. A battery having a high discharge voltage can be realized.
[0004]
Various types of negative electrode active materials for non-aqueous electrolyte secondary batteries, such as lithium metal, lithium alloys, and carbon materials capable of inserting and extracting lithium, have been studied. There are advantages that a long-life battery can be obtained and safety is high.
[0005]
For the electrolyte of the non-aqueous electrolyte secondary battery, a supporting salt such as LiPF 6 or LiBF 4 is generally used as a mixed solvent of a high dielectric constant solvent such as ethylene carbonate or propylene carbonate and a low viscosity solvent such as dimethyl carbonate or diethyl carbonate. A dissolved electrolyte is used.
[0006]
However, as the charge / discharge cycle progresses, the decomposition of the supporting salt and the solvent in the nonaqueous electrolyte proceeds on the negative electrode, and the nonaqueous electrolyte secondary battery depletes the electrolytic solution, or the nonaqueous electrolyte or the negative electrode surface There is a problem that decomposition products of the solvent accumulate in the pores to hinder the movement of lithium ions, thereby increasing the internal resistance of the battery and decreasing the discharge capacity.
[0007]
In order to improve these problems, various methods for suppressing the decomposition of the electrolyte during the charge / discharge cycle have been proposed in recent years. For example, Japanese Patent Application Laid-Open No. Hei 10-189042 proposes to add a cyclic sulfate compound to an electrolytic solution.
[0008]
[Problems to be solved by the invention]
When the cyclic sulfate compound is added to the electrolytic solution, the decomposition reaction of the electrolytic solution on the negative electrode can be suppressed as compared with the case where the non-added electrolytic solution is used, but the effect is sufficient. In addition, during abnormal heating, there is a problem that the reactivity with the negative electrode in a charged state is high and the thermal stability of the battery is reduced.
[0009]
Therefore, the present invention has been made to solve the problem when a cyclic sulfate compound is added to an electrolytic solution, and its purpose is to reduce the initial discharge capacity without reducing the charge / discharge cycle. An object of the present invention is to provide a non-aqueous electrolyte secondary battery which has a small capacity reduction, a long service life, and excellent thermal stability.
[0010]
[Means for Solving the Problems]
The invention of claim 1 is a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte comprising a non-aqueous solvent and a solute, wherein the non-aqueous electrolyte, the non-aqueous electrolyte, It contains acetic acid and at least one of the cyclic sulfate derivatives represented by the chemical formula (1) or (2), and the concentration of the cyclic sulfate derivative in the electrolyte is 2% by mass or less.
[0011]
Embedded image
Figure 2004022523
[0012]
Embedded image
Figure 2004022523
[0013]
(However, in the formula (1), R1 to R4 each independently represent hydrogen, a halogen element, or an alkyl group having 1 to 4 carbon atoms).
[0014]
According to the first aspect of the invention, it is possible to obtain a non-aqueous electrolyte secondary battery that has a small capacity reduction during a charge / discharge cycle and a long life.
[0015]
According to a second aspect of the present invention, in the non-aqueous electrolyte secondary battery, the acetic acid content is set to 0.2% by mass or less.
[0016]
According to the second aspect of the present invention, a non-aqueous electrolyte secondary battery having good cycle life performance can be obtained without lowering the initial discharge capacity.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0018]
The present invention provides a non-aqueous electrolyte secondary battery, wherein the non-aqueous electrolyte includes the acetic acid and at least one cyclic sulfate derivative represented by the chemical formula (1) or (2), The concentration of the cyclic sulfate derivative in the electrolyte is 2% by mass or less.
[0019]
Embedded image
Figure 2004022523
[0020]
Embedded image
Figure 2004022523
[0021]
In chemical formulas (1) and (2), R1 to R4 each independently represent hydrogen, a halogen element, or an alkyl group having 1 to 4 carbon atoms. Further, the alkyl group having 1 to 4 carbon atoms may have an unsaturated bond.
[0022]
By including acetic acid in the non-aqueous electrolyte, SEI containing lithium carboxylate is formed on the negative electrode surface. This SEI suppresses the reductive decomposition of the solvent more than the SEI formed when an electrolyte solution containing no acetic acid is used. Further, the film formed on the negative electrode has high thermal stability (low reactivity with the electrolytic solution at a high temperature), and generates little heat even during abnormal heating.
[0023]
Furthermore, by containing the cyclic sulfate represented by the chemical formula (1) or (2), SEI having high lithium ion permeability is formed. Therefore, when an electrolytic solution containing acetic acid and a cyclic ester derivative is used, the decomposition reaction of the electrolytic solution is suppressed on the surface of the negative electrode, and SEI having high lithium ion permeability is formed. Thus, a non-aqueous electrolyte secondary battery having a small capacity reduction, a long service life, and excellent thermal stability can be obtained.
[0024]
Here, SEI (Solid Electrolyte Interphase) means that when a metal lithium or a carbon material is initially charged in a non-aqueous electrolyte, a solvent in the electrolyte or a component contained in the electrolyte is reduced, and the metal lithium or the carbon material is reduced. Passive film formed on the surface of carbon material. Then, the SEI formed on the surface of the lithium metal or carbon material functions as a lithium ion permeable protective film, and the subsequent reaction between the lithium metal or carbon material and the solvent is suppressed.
[0025]
In the present invention, the concentration of the cyclic sulfate derivative in the electrolyte is set to 2% by mass or less. If the concentration of the cyclic sulfate derivative in the electrolyte exceeds 2% by mass, the film formed on the negative electrode becomes thicker and the film resistance increases, so that the discharge performance is greatly reduced. Therefore, it is important that the concentration of the cyclic sulfate derivative in the electrolyte be 2% by mass or less.
[0026]
Further, the present invention is characterized in that the content of acetic acid in the non-aqueous electrolyte is 0.2% by mass or less. If acetic acid is appropriately contained in the non-aqueous electrolyte, good SEI is formed on the surface of the negative electrode active material, but when the acetic acid content in the non-aqueous electrolyte is more than 0.2% by mass, Since the irreversible capacity at the time of initial charge / discharge increases, the initial discharge capacity decreases.
[0027]
When the non-aqueous electrolyte secondary battery of the present invention is manufactured, the battery may be manufactured by a normal method using the above-described non-aqueous electrolyte.
[0028]
As the positive electrode active material, a composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2) which is a compound capable of inserting and extracting lithium. The composite oxide represented, the oxide having tunnel-like vacancies, and the metal chalcogenide having a layered structure can be used.
[0029]
Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , and TiS 2 . Further, an organic compound such as a conductive polymer such as polyaniline can be used, and these may be used as a mixture. When a granular active material is used, it can be produced, for example, by forming a mixture of active material particles, a conductive additive, and a binder on a metal current collector such as aluminum.
[0030]
Examples of the negative electrode active material include alloys of lithium with Al, Si, Pb, Sn, Zn, Cd, and the like, transition metal oxides such as LiFe 2 O 3 , WO 2 , and MoO 2 , graphite, and carbon. A carbonaceous material, lithium nitride such as Li 5 (Li 3 N), or a metallic lithium foil, or a mixture thereof may be used. When a granular carbonaceous material is used, it can be produced, for example, by forming a mixture of active material particles and a binder on a metal current collector such as copper.
[0031]
Examples of the solvent for the non-aqueous electrolyte include ethylene carbonate, vinylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, and 2-hydrofuran. Non-aqueous solvents such as methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl propyl carbonate, etc. , Or a mixture thereof. Further, it may contain a suitable amount of a polymerizing agent such as biphenyl and cyclohexylbenzene and an additive such as a film forming agent such as 1,3-propane sultone and 1,3-propene sultone.
[0032]
The non-aqueous electrolyte is used by dissolving a supporting salt in these non-aqueous solvents. As the supporting salt, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN (SO 2 CF 3 ) 2 , salts such as LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 and LiPF 3 (CF 2 CF 3 ) 3 , or mixtures thereof. Can be.
[0033]
Further, a solid ionic conductive polymer electrolyte can be used instead of the liquid electrolyte. When the polymer electrolyte membrane is made of polyethylene oxide, polyacrylonitrile, polyethylene glycol, or a modified product thereof, it is lightweight and flexible, and is advantageous when used by winding. Furthermore, the ion conductive polymer electrolyte membrane and the non-aqueous electrolyte can be used in combination. As the electrolyte, other than the polymer electrolyte, any known material such as a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, or an inorganic solid powder bound by an organic binder can be used.
[0034]
The non-aqueous electrolyte secondary battery of the present invention is usually composed of a combination of a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte as its configuration.As the separator, a woven fabric, a non-woven fabric, a synthetic resin microporous membrane, or the like is used. In particular, a microporous synthetic resin membrane can be suitably used. Above all, a polyolefin-based microporous membrane such as a polyethylene or polypropylene microporous membrane or a composite microporous membrane thereof is suitably used in terms of thickness, membrane strength, membrane resistance and the like.
[0035]
Further, the shape of the battery is not particularly limited, and the present invention is applicable to non-aqueous electrolyte secondary batteries of various shapes such as a square, a cylinder, a long cylinder, a coin, a button, and a sheet battery. Applicable.
[0036]
【Example】
Hereinafter, the present invention will be described using preferred embodiments. However, the present invention is not limited to the embodiments, and can be implemented by appropriately changing the scope of the present invention. .
[0037]
[Example 1]
A prismatic nonaqueous electrolyte secondary battery using LiCoO 2 as the positive electrode active material and a carbon material as the negative electrode active material was produced. FIG. 1 is a diagram showing a cross-sectional structure of a prismatic nonaqueous electrolyte secondary battery. In FIG. 1, 1 is a prismatic nonaqueous electrolyte secondary battery, 2 is a flat electrode group, 3 is a positive electrode, 4 is a negative electrode, Is a separator, 6 is an iron battery case, 7 is a battery cover, 8 is a safety valve, 9 is a positive electrode terminal, and 10 is a positive electrode lead. The flat electrode group 2 is obtained by winding a positive electrode 3 and a negative electrode 4 with a separator 5 interposed therebetween. The flat electrode group 2 is housed in a battery case 6, a safety valve 8 is provided in the battery case 6, and the battery lid 7 and the battery case 6 are sealed by laser welding. Positive electrode terminal 9 is connected to positive electrode lead 10, and negative electrode 4 is connected to the inner wall of battery case 6 by contact.
[0038]
The positive electrode mixture was prepared by mixing 90% by mass of LiCoO 2 as an active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVdF) as a binder to form a positive electrode mixture. A paste was prepared by dispersing in -methyl-2-pyrrolidone (NMP). This paste was uniformly applied to an aluminum current collector having a thickness of 20 μm, dried, and then compression-molded by a roll press to produce a positive electrode plate. The dimensions of the positive electrode plate were 186 μm in thickness, 19 mm in width, and 650 mm in length.
[0039]
The negative electrode mixture was prepared by mixing 90% by mass of a carbon material capable of inserting and extracting lithium ions and 10% by mass of PVdF as a binder, and appropriately adding NMP for dispersion to prepare a slurry. The slurry was uniformly applied to a 15 μm-thick copper current collector, dried, dried at 100 ° C. for 5 hours, and then compression-molded by a roll press to produce a negative electrode plate. The dimensions of the negative electrode plate were 182 μm in thickness, 20 mm in width, and 680 mm in length.
[0040]
As the separator, a microporous polyethylene film having a thickness of 25 μm was used. These positive and negative electrodes and the separator were wound to form a flat electrode group. The electrolyte, a volume ratio of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) 3: 7 to LiPF 6 was dissolved 1.1M in a mixed solvent, the 0.05 wt% of acetic acid in the electrolyte and ethane-1,2 -A prismatic nonaqueous electrolyte secondary battery was produced using a nonaqueous electrolyte containing 0.25% by mass of diol sulfate.
[0041]
The external dimensions of the prismatic nonaqueous electrolyte secondary battery were 22 mm wide × 48 mm high × 7.8 mm thick, and the nominal capacity was 600 mAh.
[0042]
[Examples 2 to 14, and Comparative Examples 1 to 7]
For the 20 types of batteries of Examples 2 to 14 and Comparative Examples 1 to 7, the amounts of acetic acid and ethane-1,2-diol sulfate contained in the non-aqueous electrolyte were changed as shown in Table 1. Except for the above, a nonaqueous electrolyte secondary battery was manufactured in exactly the same manner as in Example 1. Table 1 summarizes the concentrations of acetic acid and ethane-1,2-diol sulfate in the electrolyte solution of Examples 1 to 14 and Comparative Examples 1 to 7 manufactured here.
[0043]
[Table 1]
Figure 2004022523
[0044]
[Comparative test]
The charge / discharge cycle life test was performed under the following conditions. The above battery was charged at a constant current and a constant voltage of 600 mA to 4.2 V for 3 hours and then discharged at a current of 600 mA to 3 V, and the initial discharge capacity was confirmed. Thereafter, the charge and discharge cycle was repeated 500 times under the same conditions, and the capacity retention (%) after 500 cycles was determined. Here, the “capacity retention rate” indicates the ratio (%) of the discharge capacity after 500 cycles to the initial discharge capacity. A battery having a capacity retention of 80% or more was rated good, and a battery having a capacity retention of less than 80% was rated poor.
[0045]
The oven heating test was performed under the following conditions. A battery charged with a constant current and a constant voltage of 4.2 V at a current of 600 mA for 3 hours was placed in an oven, heated to 150 ° C. at a rate of 5 ° C./min, and held for 90 minutes. In this test, those having a temperature rise of 15 ° C. or more from the set temperature, that is, those having a battery surface temperature of 165 ° C. or more were regarded as “bad”, and the temperature rise was less than 15 ° C., that is, the battery surface temperature was less than 165 ° C. Those that were found were rated "good".
[0046]
Table 2 summarizes the results of the charge / discharge cycle life test and the oven heating test. Note that the values of the initial capacity and the capacity retention in Table 2 were average values of 10 cells for each battery. In addition, the oven heating test was performed for each of the three batteries, and one of the cells was rated "poor" for all cells and "good" for all three cells.
[0047]
[Table 2]
Figure 2004022523
[0048]
From Table 2, in the case of Examples 1 to 14 using non-aqueous electrolytes containing acetic acid and further containing ethane-1,2-diol sulfate at a concentration of 2% by mass or less, comparisons without additives were made. Compared with Example 5, the capacity retention after 500 cycles was significantly improved. In addition, it was found that the decrease in the thermal stability of the battery, which was observed in Comparative Example 7 in which only ethane-1,2-diol sulfate was added, can be improved by mixing acetic acid.
[0049]
Further, acetic acid was contained more than Comparative Example 6 using a non-aqueous electrolyte to which only acetic acid alone was added and Comparative Example 7 using a non-aqueous electrolyte to which only ethane-1,2-diol sulfate was added. Further, in the case of Examples 1 to 14 using the nonaqueous electrolyte containing ethane-1,2-diol sulfate at a concentration of 2% by mass or less, the capacity retention rate was larger, Excellent cycle life performance was exhibited when the electrolyte simultaneously contained acetic acid and ethane-1,2-diol sulfate.
[0050]
Furthermore, in the case of Comparative Examples 1 to 4 in which ethane-1,2-diol sulfate was contained in the electrolyte in an amount of 4% by mass, the capacity retention ratio was considerably smaller than in Examples 1 to 14.
[0051]
In addition, the initial discharge capacity was found to be larger than Comparative Example 5 in Examples 1 to 12 in which the content of acetic acid was 0.2% by mass or less. In the case of Examples 13 and 14 in which the content of acetic acid was 0.3% by mass, the capacity retention after charge / discharge cycles was as high as 88% and 87%, respectively, but the initial discharge capacity was as high as Comparative Example 5. Was equivalent to The reason is that when the content of acetic acid with respect to the nonaqueous electrolyte is large, the amount of electricity required for SEI formation is increased, and the formed SEI inhibits the Li insertion reaction into the negative electrode, thereby reducing the amount of charge electricity. It is said that it decreased.
[0052]
Further, in the above embodiment, an example was described in which ethane-1,2-diol sulfate was used as the cyclic sulfate, but another cyclic sulfate such as propane-1,2-diol sulfate was used. In each case, and in the case where R1 to R4 in the formula were substituted with a halogen element such as fluorine, a nonaqueous electrolyte secondary battery having similarly excellent cycle life performance was obtained.
[0053]
[Examples 15 to 28 and Comparative Examples 8 to 14]
Examples 15 to 28 and Comparative Examples 8 to 14 using ethene-1,2-diol sulfate instead of the ethane-1,2-diol sulfate used in Examples 1 to 14 and Comparative Examples 1 to 7 Of the non-aqueous electrolyte secondary battery was manufactured.
[0054]
A positive electrode active material, a negative electrode active material, an electrolyte, a battery structure, a positive electrode mixture, a negative electrode mixture, a separator, and the like were all the same as those in Example 1.
[0055]
Table 3 summarizes the concentrations of acetic acid and ethene-1,2-diol sulfate in the electrolyte solutions of Examples 15 to 28 and Comparative Examples 8 to 14 manufactured here.
[0056]
[Table 3]
Figure 2004022523
[0057]
The charge / discharge cycle life test and oven heating test were performed under the same conditions as in Example 1. Table 4 summarizes the results. The display methods in Table 4 are all the same as in Table 3.
[0058]
[Table 4]
Figure 2004022523
[0059]
From Table 4, it was found that the same results as in Table 3 were obtained when ethene-1,2-diol sulfate was used instead of ethane-1,2-diol sulfate.
[0060]
Further, in the above example, the case where ethene-1,2-diol sulfate was used as the cyclic sulfate having an unsaturated bond was described as an example. However, other examples such as propene-1,2-diol sulfate were used. Similarly, when a cyclic sulfate having an unsaturated bond is used, and when R1 to R2 in the formula are substituted with a halogen element such as fluorine, a nonaqueous electrolyte having excellent cycle life performance is similarly used. The following battery was obtained.
[0061]
Thus, by simultaneously containing acetic acid and the cyclic sulfate represented by the chemical formula (1) or (2) in the nonaqueous electrolyte, the cycle life of the battery can be maintained while maintaining excellent thermal stability. The characteristics can be improved. Although the cause is not clear, a good SEI film is formed on the surface of the negative electrode active material, the decomposition of the non-aqueous electrolyte on the negative electrode which occurs during a charge / discharge cycle is suppressed, and the life performance is improved. It is considered that even during abnormal heating, the reaction between the negative electrode and the electrolytic solution was suppressed, and the heat generation of the battery was reduced.
[0062]
Also, from the results of Tables 2 and 3, in order to prevent a decrease in the initial discharge capacity, the content of acetic acid in the nonaqueous electrolyte is preferably 0.2% by mass or less, and more preferably 0.1% by mass. It has been found that the following is more preferable.
[0063]
In the examples and comparative examples, a mixed solvent of ethylene-carbonate (EC) and ethyl methyl carbonate (EMC) has been described as an electrolyte solvent. A similar tendency was observed when carbonate (DMC) or diethyl carbonate (DEC) was used, and a similar tendency was observed when γ-butyrolactone was used instead of the linear carbonate. Further, the same tendency was observed when the concentration of the supporting salt was changed.
[0064]
Similar effects can be obtained even when used in combination with various additives (for example, polymerization agents such as biphenyl and cyclohexylbenzene, and film-forming agents such as 1,3-propane sultone and 1,3-propene sultone). Obtained.
[0065]
【The invention's effect】
According to the present invention, by including acetic acid and the cyclic sulfate represented by the chemical formula (1) or (2) in the non-aqueous electrolyte at the same time, good SEI is obtained on the surface of the negative electrode active material. Therefore, the decomposition of the non-aqueous electrolyte on the surface of the negative electrode active material is suppressed, and as a result, it is possible to obtain a non-aqueous electrolyte secondary battery that has a small capacity reduction during a charge / discharge cycle and a long life. It has become possible. Further, when the electrolytic solution of the present invention was used, it was possible to obtain a battery exhibiting high thermal stability even during abnormal heating due to low reactivity between the negative electrode and the electrolytic solution.
[0066]
Further, by setting the content of acetic acid in the non-aqueous electrolyte to 0.2% by mass or less, a non-aqueous electrolyte secondary battery having a large initial discharge capacity, a small capacity decrease during a charge / discharge cycle, and a long life. It became possible to obtain.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional structure of a prismatic nonaqueous electrolyte secondary battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rectangular nonaqueous electrolyte secondary battery 2 Flat electrode group 3 Positive electrode 4 Negative electrode 5 Separator

Claims (2)

正極と、負極と、セパレータと、非水溶媒と溶質とからなる非水電解質を備えた非水電解質二次電池において、前記非水電解質が、酢酸と、化学式(1)または化学式(2)で表される環状硫酸エステル誘導体の少なくとも一種を含み、電解質中の前記環状硫酸エステル誘導体の濃度が2質量%以下であることを特徴とする非水電解質二次電池。
Figure 2004022523
Figure 2004022523
(但し、式(1)、(2)において、R1〜R4は、各々独立して水素、ハロゲン元素、または炭素数1〜4のアルキル基を表す)。
In a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte including a non-aqueous solvent and a solute, the non-aqueous electrolyte includes acetic acid, a compound represented by chemical formula (1) or a chemical formula (2). A nonaqueous electrolyte secondary battery comprising at least one of the cyclic sulfate derivative represented by the formula, wherein the concentration of the cyclic sulfate derivative in the electrolyte is 2% by mass or less.
Figure 2004022523
Figure 2004022523
(However, in the formulas (1) and (2), R1 to R4 each independently represent hydrogen, a halogen element, or an alkyl group having 1 to 4 carbon atoms).
上記酢酸の含有量が0.2質量%以下であることを特徴とする請求項1に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of the acetic acid is 0.2% by mass or less.
JP2002180585A 2002-06-20 2002-06-20 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4167012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002180585A JP4167012B2 (en) 2002-06-20 2002-06-20 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002180585A JP4167012B2 (en) 2002-06-20 2002-06-20 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004022523A true JP2004022523A (en) 2004-01-22
JP4167012B2 JP4167012B2 (en) 2008-10-15

Family

ID=31177663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002180585A Expired - Fee Related JP4167012B2 (en) 2002-06-20 2002-06-20 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4167012B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185931A (en) * 2002-12-02 2004-07-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006140115A (en) * 2004-11-15 2006-06-01 Hitachi Maxell Ltd Non-aqueous electrolytic liquid secondary battery
WO2006088021A1 (en) * 2005-02-15 2006-08-24 Mitsubishi Chemical Corporation Test equipment and its utilization
WO2007020876A1 (en) 2005-08-18 2007-02-22 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2007173014A (en) * 2005-12-21 2007-07-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US7829226B2 (en) 2005-06-07 2010-11-09 Hitachi Maxell, Ltd. Non-aqueous secondary battery
JP2011086632A (en) * 2010-12-21 2011-04-28 Hitachi Maxell Ltd Nonaqueous electrolytic solution secondary battery
KR101099973B1 (en) * 2008-04-08 2011-12-28 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
EP2437340A1 (en) * 2009-05-27 2012-04-04 GS Yuasa International Ltd. Non-aqueous electrolyte secondary battery and method for producing a non-aqueous electrolyte secondary battery
WO2012053644A1 (en) 2010-10-22 2012-04-26 三井化学株式会社 Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
JP2013101968A (en) * 2013-01-28 2013-05-23 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor, nonaqueous electrolyte, and system of nonaqueous electrolyte secondary battery
US8822085B2 (en) 2008-04-08 2014-09-02 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
WO2015060697A1 (en) * 2013-10-25 2015-04-30 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
CN104916867A (en) * 2015-06-10 2015-09-16 宁德时代新能源科技有限公司 Electrolyte and lithium ion battery containing electrolyte
US20180138551A1 (en) * 2015-05-26 2018-05-17 Mitsui Chemicals, Inc. Non-aqueous electrolyte solution for battery and lithium secondary battery
WO2019150901A1 (en) * 2018-01-31 2019-08-08 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery, electrolyte solution and method for producing non-aqueous electrolyte secondary battery
WO2020138317A1 (en) * 2018-12-27 2020-07-02 株式会社村田製作所 Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
CN111769329A (en) * 2015-07-31 2020-10-13 宁德新能源科技有限公司 Lithium ion battery
CN113661589A (en) * 2019-04-10 2021-11-16 株式会社村田制作所 Lithium ion secondary battery
CN116435601A (en) * 2023-06-14 2023-07-14 广州天赐高新材料股份有限公司 Electrolyte and application thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185931A (en) * 2002-12-02 2004-07-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006140115A (en) * 2004-11-15 2006-06-01 Hitachi Maxell Ltd Non-aqueous electrolytic liquid secondary battery
WO2006088021A1 (en) * 2005-02-15 2006-08-24 Mitsubishi Chemical Corporation Test equipment and its utilization
US7829226B2 (en) 2005-06-07 2010-11-09 Hitachi Maxell, Ltd. Non-aqueous secondary battery
US8852818B2 (en) 2005-06-07 2014-10-07 Hitachi Maxell, Ltd. Non-aqueous secondary battery
US8568932B2 (en) 2005-08-18 2013-10-29 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
WO2007020876A1 (en) 2005-08-18 2007-02-22 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
EP1916734A1 (en) * 2005-08-18 2008-04-30 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
EP1916734A4 (en) * 2005-08-18 2011-01-12 Ube Industries Nonaqueous electrolyte solution and lithium secondary battery using same
JP2007173014A (en) * 2005-12-21 2007-07-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US8822085B2 (en) 2008-04-08 2014-09-02 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR101099973B1 (en) * 2008-04-08 2011-12-28 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
EP2437340A4 (en) * 2009-05-27 2015-01-07 Gs Yuasa Int Ltd Non-aqueous electrolyte secondary battery and method for producing a non-aqueous electrolyte secondary battery
EP2437340A1 (en) * 2009-05-27 2012-04-04 GS Yuasa International Ltd. Non-aqueous electrolyte secondary battery and method for producing a non-aqueous electrolyte secondary battery
US9227950B2 (en) 2010-10-22 2016-01-05 Mitsui Chemicals, Inc. Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
WO2012053644A1 (en) 2010-10-22 2012-04-26 三井化学株式会社 Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
JP2011086632A (en) * 2010-12-21 2011-04-28 Hitachi Maxell Ltd Nonaqueous electrolytic solution secondary battery
JP2013101968A (en) * 2013-01-28 2013-05-23 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor, nonaqueous electrolyte, and system of nonaqueous electrolyte secondary battery
WO2015060697A1 (en) * 2013-10-25 2015-04-30 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
CN105409050A (en) * 2013-10-25 2016-03-16 株式会社Lg化学 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
US20180138551A1 (en) * 2015-05-26 2018-05-17 Mitsui Chemicals, Inc. Non-aqueous electrolyte solution for battery and lithium secondary battery
CN104916867A (en) * 2015-06-10 2015-09-16 宁德时代新能源科技有限公司 Electrolyte and lithium ion battery containing electrolyte
CN111769329A (en) * 2015-07-31 2020-10-13 宁德新能源科技有限公司 Lithium ion battery
WO2019150901A1 (en) * 2018-01-31 2019-08-08 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery, electrolyte solution and method for producing non-aqueous electrolyte secondary battery
WO2020138317A1 (en) * 2018-12-27 2020-07-02 株式会社村田製作所 Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
JPWO2020138317A1 (en) * 2018-12-27 2021-09-27 株式会社村田製作所 Non-aqueous electrolyte and non-aqueous electrolyte secondary batteries
CN113661589A (en) * 2019-04-10 2021-11-16 株式会社村田制作所 Lithium ion secondary battery
CN116435601A (en) * 2023-06-14 2023-07-14 广州天赐高新材料股份有限公司 Electrolyte and application thereof
CN116435601B (en) * 2023-06-14 2024-03-22 广州天赐高新材料股份有限公司 Electrolyte and application thereof

Also Published As

Publication number Publication date
JP4167012B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP4072126B2 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
JP4151060B2 (en) Non-aqueous secondary battery
JP4092618B2 (en) Nonaqueous electrolyte secondary battery
JP5084802B2 (en) Lithium ion secondary battery
JP4167012B2 (en) Nonaqueous electrolyte secondary battery
JP4830279B2 (en) Nonaqueous electrolyte secondary battery
WO2010137571A1 (en) Non-aqueous electrolyte secondary battery and method for producing a non-aqueous electrolyte secondary battery
US20030170549A1 (en) Non-aqueous electrolyte battery
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP5357517B2 (en) Lithium ion secondary battery
JP2005135775A (en) Lithium ion secondary battery
JP6565899B2 (en) Nonaqueous electrolyte secondary battery
JPWO2013042503A1 (en) Non-aqueous secondary battery
JP2022150959A (en) Nonaqueous electrolyte solution and nonaqueous secondary battery
JP2009245830A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery containing nonaqueous electrolyte
JP5011742B2 (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2006318839A (en) Nonaqueous secondary battery
JP2006080008A (en) Nonaqueous electrolyte secondary battery
JP2023146966A (en) Nonaqueous secondary battery and production method thereof
JP2008021538A (en) Nonaqueous electrolyte secondary battery
JP7233323B2 (en) Non-aqueous electrolyte and non-aqueous secondary battery
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Ref document number: 4167012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees