JPH0487156A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH0487156A
JPH0487156A JP2199519A JP19951990A JPH0487156A JP H0487156 A JPH0487156 A JP H0487156A JP 2199519 A JP2199519 A JP 2199519A JP 19951990 A JP19951990 A JP 19951990A JP H0487156 A JPH0487156 A JP H0487156A
Authority
JP
Japan
Prior art keywords
battery
solvent
lithium
vinyl
discharge characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2199519A
Other languages
Japanese (ja)
Other versions
JP2962782B2 (en
Inventor
Seiji Yoshimura
精司 吉村
Masatoshi Takahashi
昌利 高橋
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2199519A priority Critical patent/JP2962782B2/en
Publication of JPH0487156A publication Critical patent/JPH0487156A/en
Application granted granted Critical
Publication of JP2962782B2 publication Critical patent/JP2962782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the self-discharge characteristics by providing a negative pole consisting of lithium or lithium-included alloy, a positive pole, and electrolyte consisting of solute and solvent, and using solvent consisting of a specified compound for said solvent. CONSTITUTION:A negative pole comprising lithium or lithium-included allow, a positive pole 7, and electrolyte comprising solute and solvent are provided, and for the solvent, solvent comprising at least one compound selected among a group including vinyl ethylene carbonate, 2-vinyl-1,3-dioxiolane, 1,2-dimetoxy ethylene, divinyl ether, N-vinyl imidazole, vinyl amine, and vinyl cyclohexane which include unsaturated carbon-carbon bond in a chain is used. Reaction of the solvent with the negative pole 1 during storage of a battery is thus restricted. Discharge characteristics after storage can thus be improved as well as the initial discharge characteristics.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、リチウム或るいはリチウムを含む合金からな
る負極と、正極と、溶質、及び溶媒からなる電解液と、
を備えた非水系電解液電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention provides a negative electrode made of lithium or an alloy containing lithium, a positive electrode, an electrolyte solution made of a solute, and a solvent.
The present invention relates to a non-aqueous electrolyte battery comprising:

(ロ)従来の技術 非水系電解液電池は、m位体積当りのエネルギ密度が高
く、且つ自己放電率が低いという利点を有している。
(b) Conventional technology Non-aqueous electrolyte batteries have the advantage of high energy density per m-volume and low self-discharge rate.

ところで電解液を構成する溶質としては一般に過塩素酸
リチウムが用いられているが、この過塩素酸リチウムを
用いた場合には電池の低温放電特性に難があり、また過
塩素酸リチウムは非常に酸化力が大であるため有機溶媒
を酸化してしまうという欠点があった。
By the way, lithium perchlorate is generally used as the solute that makes up the electrolyte, but when this lithium perchlorate is used, the low-temperature discharge characteristics of the battery are difficult, and lithium perchlorate is extremely Since it has a large oxidizing power, it has the disadvantage of oxidizing organic solvents.

これを解決する手段として、例えば特開昭58−662
64号公報や特開昭58−163]76号公報に示され
ているように、フッ素を含むリチウム塩を溶質として用
い、前記低温放電特性を改善するとともに、有機溶媒の
酸化を抑制する技術があった。
As a means to solve this problem, for example, Japanese Patent Laid-Open No. 58-662
As shown in Japanese Patent Laid-open No. 64 and Japanese Patent Application Laid-open No. 58-163/1976, there is a technology that uses a fluorine-containing lithium salt as a solute to improve the low-temperature discharge characteristics and suppress the oxidation of organic solvents. there were.

しかしながらフッ素を含むリチウム塩を溶質に用いた場
合、電池缶材料が腐食し、電解液中に溶解した電池缶材
料が負極表面に析出するので、電圧降下、放電界1の減
少等を引き起こし、電池の保存特性を劣化させるという
間眺点があった。
However, when a fluorine-containing lithium salt is used as a solute, the battery can material corrodes and the battery can material dissolved in the electrolyte is deposited on the negative electrode surface, causing a voltage drop, a decrease in the discharge field 1, etc. There was a point of view that it deteriorated the preservation characteristics of.

これを解決する方法として電解液に硝酸リチウムを添加
させるという技術を本発明者等は先に提案した。
As a method to solve this problem, the present inventors previously proposed a technique of adding lithium nitrate to the electrolytic solution.

(ハ)発明が解決しようとする課題 このように溶質側の改良によって溶媒、及び電池缶の酸
化、腐食を抑制し、放電特性、及び保存特性を向上させ
る技術が従来がら種々提案されてきたが、一方の自己放
電率の低下を目的とした技術改良は余り成されていない
(c) Problems to be Solved by the Invention Various techniques have been proposed in the past to suppress oxidation and corrosion of the solvent and battery can by improving the solute side, and to improve discharge characteristics and storage characteristics. On the other hand, there have not been many technical improvements aimed at reducing the self-discharge rate.

そこで、本発明者等は、自己放電の原因は負極ノチウム
と溶媒との反応に起因することを見出した。
Therefore, the present inventors discovered that the cause of self-discharge is due to the reaction between the negative electrode notium and the solvent.

本発明はかかる原因に鑑み、溶媒としてリチウムと反応
しにくい不飽和の炭素−炭素結合を鎖式に有する化合物
を用いて、自己放電特性を改善することを目的とする。
In view of these causes, the present invention aims to improve the self-discharge characteristics by using a compound having a chain structure of unsaturated carbon-carbon bonds that are difficult to react with lithium as a solvent.

(ニ)課題を解決するための手段 本発明は、リチウム或るいはリチウムを含む合金からな
る負極と、正極と、溶質と溶媒からなる電解液とを備え
、前記溶媒として、不飽和の炭素−炭素結合を鎖式に有
するビニルエチレンカーボネート、2−ビニル−】、3
〜ジオキソラン、1,2−ジメトキシエチレン、ジビニ
ルエーテル、N−ビニルイミダゾール、ビニルアミン、
ビニルシクロヘキサンの群から選ばれた少なくとも一つ
の化合物からなる溶媒を用いたものである。
(d) Means for Solving the Problems The present invention comprises a negative electrode made of lithium or an alloy containing lithium, a positive electrode, and an electrolytic solution made of a solute and a solvent. Vinyl ethylene carbonate having chain carbon bonds, 2-vinyl-], 3
~dioxolane, 1,2-dimethoxyethylene, divinyl ether, N-vinylimidazole, vinylamine,
A solvent consisting of at least one compound selected from the group of vinylcyclohexane is used.

(ホ)作用 一1―記の如く溶媒として不飽和の炭素−炭素結合を鎖
式に有する化合物を用いたことにより、該溶媒と負極リ
チウムとの反応が極めて少なくなった。
(e) Effect 1 As described in 1-1, by using a compound having a chain structure of unsaturated carbon-carbon bonds as a solvent, the reaction between the solvent and the negative electrode lithium was extremely reduced.

(へ)実施例 ○犬産■」 第1図は本発明による舖平型非水系電解液−次電池の断
面図を示し、リチウム金属からなる負極1は負極集電体
2の内面に圧着されており、この負極集電体2はフェラ
イト系ステンレス鋼(SUS43(+)からなる断面略
コ字状の負極缶3の内底面に固着さt″Lでいる。−I
−記負極缶3の周端はポリプロピレン性の絶縁バッキン
グ4の内部に固定されており、絶縁バッキング4の外周
には、ステンレスからなり上記負極缶3とは反対方向に
断面略コ字状を成す正極缶5が固定されている。この正
極缶5の内底面には正極集電体6が固着されており、こ
の正極集電体6の内面には正極7が固定されている。さ
らにこの正極7と前記負極1との間には、電解液が含浸
されたセパレ〜り8が介挿されている。
(F) Example ○ Inu-made ■ Figure 1 shows a cross-sectional view of a flat-shaped non-aqueous electrolyte secondary battery according to the present invention, in which a negative electrode 1 made of lithium metal is crimped onto the inner surface of a negative electrode current collector 2. This negative electrode current collector 2 is fixed to the inner bottom surface of a negative electrode can 3 made of ferritic stainless steel (SUS43(+) and having a substantially U-shaped cross section.
- The peripheral end of the negative electrode can 3 is fixed inside an insulating backing 4 made of polypropylene, and the outer periphery of the insulating backing 4 is made of stainless steel and has a substantially U-shaped cross section in the opposite direction to the negative electrode can 3. A positive electrode can 5 is fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 5, and a positive electrode 7 is fixed to the inner surface of the positive electrode current collector 6. Further, a separator 8 impregnated with an electrolytic solution is inserted between the positive electrode 7 and the negative electrode 1.

ところで、前記正極7は350−43Bの温度範囲で熱
処理した二酸化マンガンを活物質として用い、この二酸
化マンガンと、導電剤としてのカーボン粉末と、結着剤
としてのフッ素樹脂粉末とを8:1゜:5の重量比で混
合し、次にこの混合物を加圧成形した後、250〜35
0℃で熱処理して作製した。
Incidentally, the positive electrode 7 uses manganese dioxide heat-treated in a temperature range of 350-43B as an active material, and mixes this manganese dioxide, carbon powder as a conductive agent, and fluororesin powder as a binder at a ratio of 8:1. :5 weight ratio, and then pressure molding this mixture.
It was produced by heat treatment at 0°C.

また前記負極1は、リチウム圧延板を所定寸法に打ち抜
くことにより作製した。
Further, the negative electrode 1 was produced by punching a lithium rolled plate into a predetermined size.

そして電解液としては、不飽和の炭素−炭素結合を鎖式
に有するビニルエチレンカーボネートと、1.2−ジメ
トキシエタンとの等体積の混合溶媒に、溶質としてのト
リフルオロメタンスルホン酸リチウム([、iCF、S
O,)を1mol/!溶解したものを用いた。
As an electrolytic solution, lithium trifluoromethanesulfonate ([, iCF , S
O,) 1 mol/! The dissolved one was used.

これら正負極7.1 、及び電解液を、セパレータ8を
介して正負極論5,3内に納め、組み立てた電池を、以
下本発明電池Aと称する。尚、組み立てられた電池の電
池径は20 m m 、 を池厚は2.5mm電池容量
は130n+AI(とした。
The positive and negative electrodes 7.1 and the electrolytic solution are housed in the positive and negative electrodes 5 and 3 via the separator 8, and the assembled battery is hereinafter referred to as the battery A of the present invention. The assembled battery had a battery diameter of 20 mm, a cell thickness of 2.5 mm, and a battery capacity of 130 n+AI.

○ル較■ユ 上記ビニルエチレンカーボネートの代)つりに鎖式の炭
素−炭素結合を持たないエチレンカーボネートを用いた
他は上記実施例】と同様にして電池を作製した。このよ
うにして作製した電池を比較電池Xと称する。
A battery was produced in the same manner as in the above Example except that ethylene carbonate, which does not have a chain carbon-carbon bond, was used in place of the above vinyl ethylene carbonate. The battery thus produced is referred to as Comparative Battery X.

○試験1 1−配本発明電池Aと、比較電池Xにおいて、初期の放
電特性を調べた。その結果を第2図、及び第3図に示す
。なお、第2図は電池#1ヶで後、直ちに温度25℃、
負荷3にΩで放電したときの放電特性図であり、第3図
は電池組立て後、温度60℃で3ケ月間保存(室温で4
−5年間保存した場合に相当)した後、温度25℃、負
荷3にΩで放電したときの放電特性図である。
○Test 1 1-Distribution The initial discharge characteristics of the battery A of the present invention and the comparative battery X were investigated. The results are shown in FIGS. 2 and 3. In addition, in Figure 2, after using battery #1, the temperature was immediately changed to 25°C.
This is a discharge characteristic diagram when discharging at Ω into load 3. Figure 3 shows the discharge characteristics when the battery is assembled and stored at a temperature of 60°C for 3 months (at room temperature for 4 months).
This is a discharge characteristic diagram when the battery is discharged at a temperature of 25° C. and a load of 3 to a load of Ω after the battery has been stored for -5 years.

上記第2.3図から明らかなように、本発明電池Aと比
較電池Xとは初期の放電特性では同等の値を示している
。しかしながら、保存後の放電特性を比較すると、本発
明電池Aの方が比較電池Xより長時間(略]Ohの差)
高い放電電圧を示し、長期保存後でも内部インピーダン
スの増加が抑制されていることが分かる。
As is clear from FIG. 2.3 above, the battery A of the present invention and the comparative battery X have the same initial discharge characteristics. However, when comparing the discharge characteristics after storage, the battery A of the present invention lasts longer than the comparative battery X (difference in Oh)
It shows a high discharge voltage, and it can be seen that the increase in internal impedance is suppressed even after long-term storage.

また、長期保存後の前記両電池A、Xを分解したところ
、比較電池Xでは負極リチウム表面が黒く変色していた
のに対し、本発明電池へではそのような現象は見られな
かった。
Further, when both batteries A and X were disassembled after long-term storage, the negative electrode lithium surface of comparative battery X was discolored black, whereas such a phenomenon was not observed in the battery of the present invention.

この結果より、比較電池Xでは保存中にエチレンカーボ
ネートがリチウム負極と反応し、この結果保存後の放電
特性が低下したものと考えられる。
From this result, it is considered that in Comparative Battery X, ethylene carbonate reacted with the lithium negative electrode during storage, and as a result, the discharge characteristics after storage deteriorated.

一方、本発明電池Aのように電解液の溶媒としてビニル
エチレンカーボネートを用いると、電子供す性のビニル
基がエチレンカーボネートと負極Jチウムとの反応を抑
制し、この結果、保存後の放電特性の低下を防止できた
ものと考えられる。
On the other hand, when vinyl ethylene carbonate is used as a solvent for the electrolyte as in the battery A of the present invention, the electron-resistant vinyl group suppresses the reaction between ethylene carbonate and the negative electrode J thium, resulting in poor discharge characteristics after storage. It is thought that the decline could have been prevented.

○炎鼻■1 電解液の溶質としてLiPF、を用い、溶媒として不飽
和の炭素−炭素結合を鎖式に有する2−ビニル−1,3
−ジオキンランとプロピレンカーボネートとの等体積の
混合溶媒を用いた他は、上記実施例Iと同様にして電池
を作製した。
○Flame Nose■1 LiPF is used as the solute of the electrolyte, and 2-vinyl-1,3 having unsaturated carbon-carbon bonds in a chain form is used as the solvent.
- A battery was produced in the same manner as in Example I above, except that a mixed solvent of equal volumes of dioquinrane and propylene carbonate was used.

このようにして作製した電池を、以下本発明電池Bと称
す。
The battery thus produced is hereinafter referred to as the battery B of the present invention.

○埼軟■ユ 次に、2−ビニル−1,3−ジオキソランの代わりに鎖
式の炭素−炭素結合を持たない1.3−ジオキソランを
用いる他は上記実施例2と同様にして電池を作製した。
○ Saisoft ■ Yu Next, a battery was produced in the same manner as in Example 2 above, except that 1,3-dioxolane, which does not have a chain carbon-carbon bond, was used instead of 2-vinyl-1,3-dioxolane. did.

このようにして作製した電池を以F比較電池)′と称す
る。
The battery thus produced is hereinafter referred to as F comparative battery)'.

○試験2 上記本発明電池B、及び比?2電池Yの初期の放電特性
と、保存後の放電特性とを、前記試験1と同様の条件で
調べた。その結果を夫々第4図、及び第5図に示す。こ
れら第4.5図から明らかなように初期の放電特性は両
電池B、Y共に同等であるが、保存後の放電特性は、比
較電池Yより本発明電池Bの方が優れている(略]5h
の差)ことが分かる。
○Test 2 Above invention battery B and ratio? 2 The initial discharge characteristics and discharge characteristics after storage of Battery Y were investigated under the same conditions as Test 1 above. The results are shown in FIGS. 4 and 5, respectively. As is clear from these Figures 4.5, the initial discharge characteristics are the same for both batteries B and Y, but the discharge characteristics after storage are better for the battery B of the present invention than for the comparative battery Y (approximately ]5h
(difference).

○にムA1 前記実施例1、及び実施例2では非水系の一次電池につ
いて本発明電池を説明したが、次に非水系二次電池に適
用した実施例3について説明する。
In Example 1 and Example 2, the battery of the present invention was explained using a non-aqueous primary battery. Next, Example 3 applied to a non-aqueous secondary battery will be described.

この非水系二次電池の構造は前記第1図に示す扁平型−
次電池と同じであるが、正極7の活物質として充電可能
なマンガン酸化物を用いた点が異なっており、また、そ
の電解液としては、不飽和の炭素−炭素結合を鎖式に有
するビニルエチレンカーボネートと、1.2−ジメトキ
シエタンとの等体積の混合溶媒に、溶質としてのトリフ
ルオロメタンスルホン酸リチウムをImol/f溶解し
たものを用いた点が異なっている。
The structure of this non-aqueous secondary battery is a flat type shown in FIG.
It is the same as the next battery, but differs in that rechargeable manganese oxide is used as the active material of the positive electrode 7, and the electrolyte is made of vinyl having unsaturated carbon-carbon bonds in a chain form. The difference is that lithium trifluoromethanesulfonate as a solute was dissolved in Imol/f of a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane in equal volumes.

このようにして作製した電池を本発明電池Cと称する。The battery thus produced is referred to as the battery C of the present invention.

○を枚■ユ 上記実施例3のビニルエチレンカーボネートの代わりに
鎖式の炭素−炭素結合を持たないエチレンカーボネート
を用いた他は本発明電池Cと同様゛にして比較電池Zを
得た。
Comparative battery Z was obtained in the same manner as battery C of the present invention except that ethylene carbonate having no chain carbon-carbon bond was used in place of the vinyl ethylene carbonate of Example 3.

○試験3 前記本発明電池Cと、比較電池Zとの充放電サイクル試
験を行ってその特性を調べた。ここでは、充放S電流を
2mA、充電時間を3時間とし、充放電の繰り返しによ
り端子電圧が2.Ovに達するまでの放電サイクル数を
取った。電池組立て直後にサイクル試験を行った結果を
第6図に示し、60℃で;3ケ月保存後にサイクル試験
を行った結果を第7図に夫々示す。
○Test 3 A charge/discharge cycle test was conducted on the battery C of the present invention and the comparative battery Z to examine their characteristics. Here, the charging/discharging S current is 2 mA, the charging time is 3 hours, and the terminal voltage increases to 2.0 mA by repeating charging and discharging. The number of discharge cycles until reaching Ov was taken. The results of a cycle test conducted immediately after battery assembly are shown in FIG. 6, and the results of a cycle test conducted after storage at 60° C. for 3 months are shown in FIG. 7, respectively.

1−記第6,7図から初期のサイクル特性は両電池C1
Zとも同等であるが、本発明電池Cは保存後のサイクル
特性に関して、比較電池Zよりも優れている(略25回
の差)ことが分かる。
1- From Figures 6 and 7, the initial cycle characteristics are for both batteries C1.
It can be seen that the battery C of the present invention is superior to the comparison battery Z in terms of cycle characteristics after storage (difference of about 25 cycles), although the battery C is also similar to the battery Z.

本発明は上記溶媒材料の他、1.2−ジメトキシエチレ
ン、ジビニルエーテル、N−ビニルイミダゾール、ビニ
ルアミン、ビニルシクロヘキサンも同様の効果を生じる
ことを確認した。
In the present invention, it has been confirmed that, in addition to the above solvent materials, 1,2-dimethoxyethylene, divinyl ether, N-vinylimidazole, vinylamine, and vinylcyclohexane also produce similar effects.

(ト)発明の詳細 な説明したように本発明によれば、電池の保存中に溶媒
が負極と反応することを抑制することができるので、初
期の放電特性のみならず、保存後の放電特性を改善する
ことができる。この結果、非水系電解液電池の性能を飛
躍的に向−トさせることができ、その工業的価値は極め
て大きい。
(g) As described in detail, according to the present invention, it is possible to suppress the solvent from reacting with the negative electrode during storage of the battery, so that it is possible to suppress not only the initial discharge characteristics but also the discharge characteristics after storage. can be improved. As a result, the performance of the non-aqueous electrolyte battery can be dramatically improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の縦断面図、第2図は本発明電池A
及び比較電池Xにおける初期の放電特性を示す図、第3
図は本発明電池A及び比較電池Xにおける保存後の放電
特性を示す図、第4図は本発明電池B及び比較電池Yに
おける初期の放電特性を示す図、第5図は本発明電池B
及び比I2を池)′における保存後の放電特性を示す図
、第6図は本発明電池C及び比較電池Zにおける初期の
サイクル特性を示す図、第7図は本発明電池C及び比V
i主電池における保存後のサイクル特性を示す図である
。 A、B、C・・本発明電池、 x、y、z・・・比較電池、 1  負極、 2・・負極集電体、 3・・・負極缶、 4・・絶縁バッキング、 5  正極缶、 6 ・負極集電体、 7 ・負極、 8・・・セパレータ。
FIG. 1 is a longitudinal cross-sectional view of a battery of the present invention, and FIG. 2 is a battery A of the present invention.
FIG. 3 shows the initial discharge characteristics of comparative battery X.
The figure shows the discharge characteristics after storage of the battery A of the present invention and the comparative battery
FIG. 6 is a diagram showing the initial cycle characteristics of the invention battery C and comparative battery Z. FIG. 7 is a diagram showing the initial cycle characteristics of the invention battery C and the comparison battery Z.
FIG. 3 is a diagram showing the cycle characteristics of the i-main battery after storage. A, B, C...Battery of the present invention, x, y, z...Comparison battery, 1. Negative electrode, 2.. Negative electrode current collector, 3.. Negative electrode can, 4.. Insulating backing, 5. Positive electrode can. 6 - Negative electrode current collector, 7 - Negative electrode, 8... Separator.

Claims (1)

【特許請求の範囲】[Claims] (1)リチウム或るいはリチウムを含む合金からなる負
極と、正極と、溶質と溶媒からなる電解液とを備え、前
記溶媒として、不飽和の炭素−炭素結合を鎖式に有する
ビニルエチレンカーボネート、2−ビニル−1、3−ジ
オキソラン、1、2−ジメトキシエチレン、ジビニルエ
ーテル、N−ビニルイミダゾール、ビニルアミン、ビニ
ルシクロヘキサンの群から選ばれた少なくとも一つの化
合物からなる溶媒を用いたことを特徴とする非水系電解
液電池。
(1) A negative electrode made of lithium or an alloy containing lithium, a positive electrode, and an electrolytic solution made of a solute and a solvent, the solvent being vinyl ethylene carbonate having a chain of unsaturated carbon-carbon bonds; It is characterized by using a solvent consisting of at least one compound selected from the group of 2-vinyl-1,3-dioxolane, 1,2-dimethoxyethylene, divinyl ether, N-vinylimidazole, vinylamine, and vinylcyclohexane. Non-aqueous electrolyte battery.
JP2199519A 1990-07-26 1990-07-26 Non-aqueous electrolyte battery Expired - Fee Related JP2962782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199519A JP2962782B2 (en) 1990-07-26 1990-07-26 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199519A JP2962782B2 (en) 1990-07-26 1990-07-26 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0487156A true JPH0487156A (en) 1992-03-19
JP2962782B2 JP2962782B2 (en) 1999-10-12

Family

ID=16409178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199519A Expired - Fee Related JP2962782B2 (en) 1990-07-26 1990-07-26 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2962782B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040526A (en) * 1998-05-20 2000-02-08 Mitsui Chemicals Inc Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
WO2000079632A1 (en) * 1999-06-18 2000-12-28 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution type secondary battery
EP1276165A1 (en) * 2001-07-12 2003-01-15 Japan Storage Battery Co., Ltd. Nonaqueous secondary cell
JP2004172101A (en) * 2002-10-28 2004-06-17 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using the same
EP2183809A1 (en) * 2007-07-11 2010-05-12 Novolyte Technologies Inc. Non-aqueous electrolytic solutions and electrochemical cells comprising the same
US7816039B2 (en) 2006-12-21 2010-10-19 Panax Etec Co., Ltd Non-aqueous electrolyte for a lithium battery and lithium battery including the same
WO2011142410A1 (en) 2010-05-12 2011-11-17 三菱化学株式会社 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery
WO2011142412A1 (en) 2010-05-12 2011-11-17 三菱化学株式会社 Nonaqueous-electrolyte secondary battery
WO2012035821A1 (en) 2010-09-16 2012-03-22 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
WO2012066878A1 (en) 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
WO2012066879A1 (en) 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
WO2012120597A1 (en) 2011-03-04 2012-09-13 株式会社デンソー Nonaqueous electrolyte solution for batteries, and nonaqueous electrolyte secondary battery using same
WO2013005828A1 (en) 2011-07-07 2013-01-10 住友精化株式会社 Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
WO2013069529A1 (en) 2011-11-10 2013-05-16 株式会社Adeka Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery using said electrolyte solution
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
KR20140116078A (en) 2011-12-28 2014-10-01 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20150039745A (en) 2012-07-26 2015-04-13 가부시키가이샤 아데카 Electricity storage device
US9337511B2 (en) 2011-11-01 2016-05-10 Adeka Corporation Nonaqueous secondary battery
KR20160133410A (en) 2014-03-14 2016-11-22 가부시키가이샤 아데카 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR20160138402A (en) 2014-03-28 2016-12-05 스미또모 세이까 가부시키가이샤 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
KR20170031093A (en) 2014-07-07 2017-03-20 가부시키가이샤 아데카 Nonaqueous electronic capacitor, and capacitor
KR20180050373A (en) 2015-09-09 2018-05-14 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
KR20180054565A (en) 2015-09-17 2018-05-24 가부시키가이샤 아데카 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
WO2019031452A1 (en) 2017-08-08 2019-02-14 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
US10388989B2 (en) 2015-03-17 2019-08-20 Adeka Corporation Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell
CN112186256A (en) * 2019-07-03 2021-01-05 华南师范大学 Electrolyte for lithium metal battery and preparation method and application thereof
WO2023026852A1 (en) 2021-08-24 2023-03-02 信越化学工業株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
KR20230127681A (en) 2022-02-25 2023-09-01 가부시키가이샤 아데카 Nonaqueous electrolyte additive, nonaqueous electrolyte for nonaqueous electrolyte secondary battery that contain the same, and nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697291B2 (en) 2010-10-07 2014-04-15 Uchicago Argonne, Llc Non-aqueous electrolyte for lithium-ion battery

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040526A (en) * 1998-05-20 2000-02-08 Mitsui Chemicals Inc Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
WO2000079632A1 (en) * 1999-06-18 2000-12-28 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution type secondary battery
EP1205996A1 (en) 1999-06-18 2002-05-15 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution type secondary battery
US6919145B1 (en) * 1999-06-18 2005-07-19 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution type secondary battery
EP1205996A4 (en) * 1999-06-18 2006-12-27 Mitsubishi Chem Corp Nonaqueous electrolytic solution type secondary battery
EP1276165A1 (en) * 2001-07-12 2003-01-15 Japan Storage Battery Co., Ltd. Nonaqueous secondary cell
US7097944B2 (en) 2001-07-12 2006-08-29 Gs Yuasa Corporation Nonaqueous secondary cell
JP4608197B2 (en) * 2002-10-28 2011-01-05 三井化学株式会社 Non-aqueous electrolyte and secondary battery using the same
JP2004172101A (en) * 2002-10-28 2004-06-17 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using the same
US7816039B2 (en) 2006-12-21 2010-10-19 Panax Etec Co., Ltd Non-aqueous electrolyte for a lithium battery and lithium battery including the same
US8715865B2 (en) 2007-07-11 2014-05-06 Basf Corporation Non-aqueous electrolytic solutions and electrochemical cells comprising the same
EP2183809A1 (en) * 2007-07-11 2010-05-12 Novolyte Technologies Inc. Non-aqueous electrolytic solutions and electrochemical cells comprising the same
EP2183809A4 (en) * 2007-07-11 2010-10-06 Novolyte Technologies Inc Non-aqueous electrolytic solutions and electrochemical cells comprising the same
US8764853B2 (en) 2007-07-11 2014-07-01 Basf Corporation Non-aqueous electrolytic solutions and electrochemical cells comprising the same
WO2011142410A1 (en) 2010-05-12 2011-11-17 三菱化学株式会社 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery
WO2011142412A1 (en) 2010-05-12 2011-11-17 三菱化学株式会社 Nonaqueous-electrolyte secondary battery
WO2012035821A1 (en) 2010-09-16 2012-03-22 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
US9553333B2 (en) 2010-09-16 2017-01-24 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery
KR20130143559A (en) 2010-11-16 2013-12-31 가부시키가이샤 아데카 Non-aqueous electrolyte secondary battery
KR20130143557A (en) 2010-11-16 2013-12-31 가부시키가이샤 아데카 Non-aqueous electrolyte secondary battery
WO2012066879A1 (en) 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
WO2012066878A1 (en) 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
US9017866B2 (en) 2010-11-16 2015-04-28 Adeka Corporation Non-aqueous electrolyte secondary battery
US9023536B2 (en) 2010-11-16 2015-05-05 Adeka Corporation Non-aqueous electrolyte secondary battery
WO2012120597A1 (en) 2011-03-04 2012-09-13 株式会社デンソー Nonaqueous electrolyte solution for batteries, and nonaqueous electrolyte secondary battery using same
US10186732B2 (en) 2011-03-04 2019-01-22 Denso Corporation Nonaqueous electrolyte solution for batteries, and nonaqueous electrolyte secondary battery using same
WO2013005828A1 (en) 2011-07-07 2013-01-10 住友精化株式会社 Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
US10050304B2 (en) 2011-07-07 2018-08-14 Sumitomo Seika & Chemicals Co., Ltd. Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
US9337511B2 (en) 2011-11-01 2016-05-10 Adeka Corporation Nonaqueous secondary battery
KR20140096263A (en) 2011-11-10 2014-08-05 가부시키가이샤 아데카 Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery using said electrolyte solution
US9419306B2 (en) 2011-11-10 2016-08-16 Adeka Corporation Nonaqueous electrolyte and nonaqueous secondary battery using same
WO2013069529A1 (en) 2011-11-10 2013-05-16 株式会社Adeka Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery using said electrolyte solution
KR20140116078A (en) 2011-12-28 2014-10-01 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20200113013A (en) 2011-12-28 2020-10-05 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20200029625A (en) 2011-12-28 2020-03-18 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20190058708A (en) 2011-12-28 2019-05-29 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
US9583280B2 (en) 2012-07-26 2017-02-28 Adeka Corporation Electricity storage device
KR20150039745A (en) 2012-07-26 2015-04-13 가부시키가이샤 아데카 Electricity storage device
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
US9923240B2 (en) 2012-09-28 2018-03-20 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium battery, and module
US10096858B2 (en) 2014-03-14 2018-10-09 Adeka Corporation Nonaqueous electrolyte and nonaqueous secondary battery
KR20160133410A (en) 2014-03-14 2016-11-22 가부시키가이샤 아데카 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR20160138402A (en) 2014-03-28 2016-12-05 스미또모 세이까 가부시키가이샤 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
KR20170031093A (en) 2014-07-07 2017-03-20 가부시키가이샤 아데카 Nonaqueous electronic capacitor, and capacitor
US10388989B2 (en) 2015-03-17 2019-08-20 Adeka Corporation Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell
KR20180050373A (en) 2015-09-09 2018-05-14 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
US10734684B2 (en) 2015-09-17 2020-08-04 Adeka Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20180054565A (en) 2015-09-17 2018-05-24 가부시키가이샤 아데카 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR20200039691A (en) 2017-08-08 2020-04-16 스미토모 세이카 가부시키가이샤 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
WO2019031452A1 (en) 2017-08-08 2019-02-14 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
CN112186256A (en) * 2019-07-03 2021-01-05 华南师范大学 Electrolyte for lithium metal battery and preparation method and application thereof
WO2023026852A1 (en) 2021-08-24 2023-03-02 信越化学工業株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
KR20240045236A (en) 2021-08-24 2024-04-05 신에쓰 가가꾸 고교 가부시끼가이샤 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR20230127681A (en) 2022-02-25 2023-09-01 가부시키가이샤 아데카 Nonaqueous electrolyte additive, nonaqueous electrolyte for nonaqueous electrolyte secondary battery that contain the same, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2962782B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JPH0487156A (en) Nonaqueous electrolyte battery
JP3066126B2 (en) Non-aqueous electrolyte battery
JP3167513B2 (en) Non-aqueous electrolyte battery
EP1022797B1 (en) Polymer electrolyte battery and polymer electrolyte
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP3419119B2 (en) Non-aqueous electrolyte secondary battery
JPH10255796A (en) Nonaqueous electrolyte secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP3451781B2 (en) Organic electrolyte secondary battery
JP4034940B2 (en) Lithium secondary battery using non-aqueous electrolyte
JP3185273B2 (en) Non-aqueous electrolyte secondary battery
JP2600214B2 (en) Non-aqueous electrolyte secondary battery
JP2950924B2 (en) Non-aqueous electrolyte battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP3115256B2 (en) Non-aqueous electrolyte secondary battery
JP4753690B2 (en) Organic electrolyte battery
JP3418715B2 (en) Organic electrolyte secondary battery
JP2000090970A (en) Lithium secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JP4097337B2 (en) Non-aqueous electrolyte battery
JPH05101827A (en) Non-aqueous secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JP2528183B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees