JPH0821431B2 - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH0821431B2
JPH0821431B2 JP61257479A JP25747986A JPH0821431B2 JP H0821431 B2 JPH0821431 B2 JP H0821431B2 JP 61257479 A JP61257479 A JP 61257479A JP 25747986 A JP25747986 A JP 25747986A JP H0821431 B2 JPH0821431 B2 JP H0821431B2
Authority
JP
Japan
Prior art keywords
secondary battery
organic electrolyte
electrolyte secondary
discharge
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61257479A
Other languages
Japanese (ja)
Other versions
JPS63114065A (en
Inventor
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61257479A priority Critical patent/JPH0821431B2/en
Priority to GB8724998A priority patent/GB2196785B/en
Priority to DE3736366A priority patent/DE3736366C2/en
Priority to CA000550431A priority patent/CA1290805C/en
Priority to FR8715017A priority patent/FR2606219B1/en
Priority to KR1019870012003A priority patent/KR960006425B1/en
Priority to US07/114,282 priority patent/US4828834A/en
Publication of JPS63114065A publication Critical patent/JPS63114065A/en
Publication of JPH0821431B2 publication Critical patent/JPH0821431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種小型電子機器の電源として使用が期待
される充放電可能な有機電解質二次電池に関するもので
ある。
The present invention relates to a chargeable / dischargeable organic electrolyte secondary battery expected to be used as a power source for various small electronic devices.

〔発明の概要〕[Outline of Invention]

本発明は、リチウム含有物を陰極材とする有機電解質
二次電池の陽極材としてLiMn2O4を用いることにより、 充放電サイクルに伴う電池容量の劣化が少なく、サイ
クル寿命特性に優れた有機電解質二次電池を提供しよう
とするものである。
The present invention uses LiMn 2 O 4 as an anode material for an organic electrolyte secondary battery that uses a lithium-containing material as a cathode material, so that the battery capacity is less deteriorated with charge / discharge cycles, and the organic electrolyte has excellent cycle life characteristics. It aims to provide a secondary battery.

〔従来の技術〕[Conventional technology]

陰極材としてリチウムを使用し電解液に有機電解液を
使用した,いわゆる有機電解質電池は、自己放電が少な
く,高圧が高く,保存性が極めて優れており、特に5〜
10年という長期信頼性を有した電池として、電子時計や
種々のメモリーバックアップ用電源等として広く使用さ
れている。
A so-called organic electrolyte battery using lithium as a cathode material and an organic electrolyte as an electrolyte has a low self-discharge, a high voltage, and an extremely excellent storability.
As a battery with long-term reliability of 10 years, it is widely used as an electronic timepiece and various memory backup power supplies.

ところが、これら現在使用されている有機電解質電池
は、一時電池であり一度の使用でその寿命が終ってしま
い経済性の点で改善すべき点を残している。
However, these currently used organic electrolyte batteries are temporary batteries, and their lifespan ends with a single use, leaving a point to be improved in terms of economic efficiency.

そこで、近年種々の電子機器の飛躍的進歩とともに、
長時間便利に且つ経済的に使用できる電源として再充電
可能な有機電解質二次電池の出現が強く要望されてお
り、多くの研究が進められている。
In recent years, with the dramatic progress of various electronic devices,
There is a strong demand for the advent of a rechargeable organic electrolyte secondary battery as a power source that can be used conveniently and economically for a long time, and many studies have been conducted.

一般に、有機電解質二次電池の陰極材としては、金属
リチウム,リチウム合金(例えばLi−Al合金),リチウ
ムイオンをドーピングした導電性高分子(例えばポリア
セチレンやポリピロール等)さらにはリチウムイオンを
結晶中に混入した層間化合物等が用いられており、電解
液としては有機電解液が用いられている。
Generally, as a cathode material of an organic electrolyte secondary battery, metallic lithium, a lithium alloy (for example, Li-Al alloy), a conductive polymer doped with lithium ions (for example, polyacetylene, polypyrrole, etc.), and lithium ions in a crystal are used. A mixed intercalation compound or the like is used, and an organic electrolytic solution is used as the electrolytic solution.

一方、陽極活物質としては各種の材料が研究提案され
ており、代表的なものとしては例えば特開昭50−54836
号公報に記載されるようにTiS2,MoS2,NbSe2,V2O5等が挙
げられる。
On the other hand, various materials have been researched and proposed as an anode active material.
As described in the publication, TiS 2 , MoS 2 , NbSe 2 , V 2 O 5 and the like can be mentioned.

これらの材料を用いた電池の放電反応は陰極のリチウ
ムイオンが陽極活物質であるこれら材料の層間にインタ
ーカーレーションすることによって進行し、逆に充電す
る場合には上記材料の層間からリチウムイオンが陰極へ
デインターカーレーションする。すなわち、陰極のリチ
ウムイオンが陽極活物質の層間に出入りする反応を繰り
返すことによって充放電を繰り返すことができる。例え
ば、陽極活物質としてTiS2を使用した場合には、充電及
び放電反応は次式のようにして表される。
The discharge reaction of the battery using these materials proceeds by intercalation of the lithium ions of the cathode between the layers of these materials that are the anode active material, and in the case of charging on the contrary, lithium ions from the layers of the materials are Deintercalate to the cathode. That is, charging and discharging can be repeated by repeating the reaction in which lithium ions of the cathode enter and leave the layers of the anode active material. For example, when TiS 2 is used as the anode active material, the charge and discharge reactions are expressed by the following equations.

従来の陽極材料は上述のような反応によって充放電は
進行するが、二次電池として充放電反応を繰り返してい
くと、しだいに放電容量が減少していってしまう欠点が
あった。これは放電によって陽極活物質中に進入したリ
チウムイオンが次第に外に出にくくなり、充電反応によ
っても陰極側に戻るものが少なくなることによる。すな
わち陽極においてLiXTiS2という形のまま残ってしまう
ため、次の放電反応に関与するリチウムイオンの量が減
少するためである。したがって充電を行っても放電容量
が減少しサイクル寿命特性が良好でない二次電池となっ
てしまっていた。
The conventional anode material is charged and discharged by the above-described reaction, but has a drawback that the discharge capacity is gradually reduced when the charge and discharge reaction is repeated as a secondary battery. This is because the lithium ions that have entered the anode active material due to discharge gradually become less likely to come out, and less of them return to the cathode side due to the charging reaction. That is, the Li X TiS 2 remains in the form in the anode, and the amount of lithium ions involved in the next discharge reaction is reduced. Therefore, even if the battery is charged, the discharge capacity is reduced, and the secondary battery has poor cycle life characteristics.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述のように、従来の二次電池の陽極活物質として使
用されていた材料では、充電反応が思うように進行せ
ず、充放電を繰り返し行うに従い放電容量が減少し、サ
イクル寿命特性が優れず、長期に亘る使用が不可能な二
次電池であった。
As described above, in the material used as the anode active material of the conventional secondary battery, the charging reaction does not proceed as expected, the discharge capacity decreases as the charging and discharging are repeated, and the cycle life characteristics are not excellent. The secondary battery cannot be used for a long period of time.

そこで、本発明は上述の従来の実情に鑑みて提案され
たものであって、従来の陽極活物質にみられるリチウム
イオンのデインターカーレーションの劣化の少ない材料
を使用し、充放電サイクルに伴う放電容量の劣化が少な
く、サイクル寿命特性に優れた有機電解質二次電池を提
供することを目的とする。
Therefore, the present invention has been proposed in view of the above-mentioned conventional circumstances, and uses a material with less deterioration of deintercalation of lithium ions found in conventional anode active materials, and is associated with charge / discharge cycles. It is an object of the present invention to provide an organic electrolyte secondary battery that has little deterioration in discharge capacity and has excellent cycle life characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、上述の目的を達成するために陽極活物質
としてリチウムイオンのデインターカーレーションの劣
化の少ない材料をみつけるべく種々検討を重ねた結果、
スピネル型構造のLiMn2O4が極めて良好な結果を示すと
の知見を得るに至った。本発明は、かかる知見に基づい
て完成されたもので、リチウムを含む陰極と、LiMn2O4
をを陽極活物質として含む陽極と、有機電解液からなる
ことを特徴とするものである。
The present inventor, as a result of various studies to find a material having less deterioration of deintercalation of lithium ions as an anode active material in order to achieve the above-mentioned object, as a result,
We have come to the finding that LiMn 2 O 4 having a spinel structure shows extremely good results. The present invention has been completed based on such findings, and a cathode containing lithium and LiMn 2 O 4
And an organic electrolyte solution.

本発明の有機電解質二次電池の陽極活物質として用い
られるLiMn2O4は、炭酸リチウム(Li2Co3)と二酸化マ
ンガン(MnO2)を窒素雰囲気中で400℃に加熱し反応さ
せるか、またはヨウ化リチウム(LiI)と二酸化マンガ
ン(MnO2)を窒素雰囲気中で300℃に加熱し反応させる
ことによって容易に得ることができるものである。
LiMn 2 O 4 used as the positive electrode active material of the organic electrolyte secondary battery of the present invention is lithium carbonate (Li 2 Co 3 ) and manganese dioxide (MnO 2 ) heated to 400 ° C. in a nitrogen atmosphere to react with each other. Alternatively, it can be easily obtained by heating lithium iodide (LiI) and manganese dioxide (MnO 2 ) at 300 ° C. in a nitrogen atmosphere to cause a reaction.

一方、陰極材料として使用されるリチウムを含有する
物質としては、金属リチウム,リチウム合金(例えば、
LiAl,LiPb,LiSn,LiBi,LiCd等),リチウムイオンをドー
ピングした導電性高分子(例えば、ポリアセチレンやポ
リピロール等),リチウムイオンを結晶中に混入した層
間化合物(例えば、TiS2,MoS2等の層間にリチウムを含
んだもの)が使用可能である。
On the other hand, as the substance containing lithium used as the cathode material, metallic lithium, lithium alloy (for example,
LiAl, LiPb, LiSn, LiBi, LiCd, etc.), conductive polymer doped with lithium ions (eg, polyacetylene, polypyrrole, etc.), intercalation compounds with lithium ions mixed in (eg, TiS 2 , MoS 2 etc.) A material containing lithium between layers) can be used.

また、電解液にはリチウム塩を電解質とし、これを有
機溶剤に溶解した非水系の有機電解質が使用される。
In addition, a non-aqueous organic electrolyte in which a lithium salt is used as an electrolyte and which is dissolved in an organic solvent is used as the electrolytic solution.

ここで、有機溶剤としては、1,2−ジメトキシエタン,
1,2−ジエトキシエタン,γ−ブチロラクトン,テトラ
ヒドロフラン、2−メチルテトラヒドロフラン,1,3−ジ
オキソラン,4−メチル−1,3−ジオキソラン等の単独ま
たは2種以上の混合溶媒が使用できる。
Here, as the organic solvent, 1,2-dimethoxyethane,
A single solvent such as 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane or a mixed solvent of two or more thereof can be used.

電解質としては、LiClO4,LiAsF6,LiPF6,LiBF4,LiB(C
6H54,の1種または2種以上を混合したものが使用可
能である。
As the electrolyte, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C
One or a mixture of two or more of 6 H 5 ) 4 can be used.

〔作用〕[Action]

有機電解質二次電池の陽極活物質としてLiMn2O4を使
用することによって、放電反応により陽極に移動した陰
極材のリチウムイオンが充電による反応において良好に
デインターカーレーションすることが可能になった。
By using LiMn 2 O 4 as the anode active material of the organic electrolyte secondary battery, it became possible to satisfactorily deintercalate the lithium ions of the cathode material that moved to the anode by the discharge reaction in the reaction by charging. .

〔実施例〕〔Example〕

以下、本発明を具体的な実験例に基づいて説明する
が、本発明がこれら実験例に限定されるものではないこ
とはいうまでもない。
Hereinafter, the present invention will be described based on specific experimental examples, but it goes without saying that the present invention is not limited to these experimental examples.

比較例 先ず、陽極活物質としてTiS2もしくはMoS2を使用した
Li/TiS2もしくはLi/MoS2有機電解質二次電池のサイクル
特性を調べた。その結果を第1図に示す。第1図による
と陽極活物質としてTiS2もしくはMoS2を使用した有機電
解質二次電池は、約10回程度の充放電サイクルを繰り返
しただけで電池の放電容量が急激に減少し、有機電解質
二次電池が初期に有していた放電容量の半分程度の容量
しかなくなってしまった。さらにその後、充放電サイク
ルを繰り返すに従い放電容量は減少していくことがわか
った。
Comparative Example First, TiS 2 or MoS 2 was used as the anode active material.
The cycle characteristics of Li / TiS 2 or Li / MoS 2 organic electrolyte secondary batteries were investigated. The results are shown in FIG. According to Fig. 1, in the organic electrolyte secondary battery using TiS 2 or MoS 2 as the anode active material, the discharge capacity of the battery suddenly decreased after only about 10 charge / discharge cycles, and the organic electrolyte secondary battery The secondary battery has only about half the discharge capacity it had initially. After that, it was found that the discharge capacity decreased as the charge / discharge cycle was repeated.

実施例1 以下に示す手順に従って第2図に示すボタン型電池を
作製した。
Example 1 A button type battery shown in FIG. 2 was produced according to the procedure shown below.

市販の電解二酸化マンガン87gと炭酸リチウム26gを乳
鉢にて充分混合した後、この混合物をアルミナボード上
で窒素ガス中,400℃で10時間の熱処理を行った。冷却
後、得られた生成物をX線分析したところ、第3図に示
すようなX線回折チャートを得た。これをASTMカードに
おいて化学式LiMn2O4で示される物質と比較したとこ
ろ、LiMn2O4の示すX線回折チャートと完全に一致し
た。したがって上記操作によって生成された物質はLiMn
2O4である。
After 87 g of commercially available electrolytic manganese dioxide and 26 g of lithium carbonate were thoroughly mixed in a mortar, the mixture was heat-treated on an alumina board in nitrogen gas at 400 ° C. for 10 hours. After cooling, the obtained product was subjected to X-ray analysis to obtain an X-ray diffraction chart as shown in FIG. When this was compared with the substance represented by the chemical formula LiMn 2 O 4 on the ASTM card, it completely agreed with the X-ray diffraction chart of LiMn 2 O 4 . Therefore, the substance produced by the above operation is LiMn
2 O 4 .

次に、上述のようにして得られたLiMn2O488.9重量部
に9.3重量部のグラファイトを加え、さらにバインダー
として1.8重量部のポリテトラフルオロエチレンを加え
3トン/cm2の圧力で直径15.5mm,厚さ0.3mmのペレットを
成形した。これをさらに300℃で5時間真空乾燥して陽
極ペレット(5)とした。
Next, 9.3 parts by weight of graphite was added to 88.9 parts by weight of LiMn 2 O 4 obtained as described above, 1.8 parts by weight of polytetrafluoroethylene was further added as a binder, and a diameter of 15.5 mm was obtained at a pressure of 3 ton / cm 2. Pellets with a thickness of 0.3 mm and a thickness of 0.3 mm were molded. This was further vacuum dried at 300 ° C. for 5 hours to obtain an anode pellet (5).

一方、厚さ0.3mmのアルミ箔を直径15.5mmに打ち抜
き、陰極罐(2)にスポット溶接し、その上に厚さ0.3m
mのリチウム箔を直径15mmに打ち抜いたものを圧着し陰
極ペレット(1)として陰極を作製した。
On the other hand, 0.3 mm thick aluminum foil was punched out to a diameter of 15.5 mm, spot-welded to the cathode can (2), and 0.3 m thick on top of it.
A m-thick lithium foil punched into a diameter of 15 mm was pressure-bonded to prepare a cathode as a cathode pellet (1).

次に、上記陰極上にプロピレンの不織布をセパレータ
(3)として重ね、1モル/のLiClO4を溶解したプロ
ピレンカーボネートを溶解液として加えるとともにプラ
スチック製のガスケット(4)をはめこみ、既に作製し
てある陽極ペレット(5)を上記セパレータ(3)上に
重ね、陽極罐(6)を被せた後、開口部を密封するよう
にカシメてシールし外径20,0mm,厚み1.6mmの有機電解質
二次電池を作製した。この電池をサンプル電池Aとし
た。
Next, a non-woven fabric of propylene was stacked on the cathode as a separator (3), propylene carbonate in which 1 mol / LiClO 4 was dissolved was added as a solution, and a gasket (4) made of plastic was fitted and already prepared. After stacking the anode pellets (5) on the separator (3) and covering the anode can (6), the opening is sealed by caulking to seal the organic electrolyte secondary with an outer diameter of 20,0 mm and a thickness of 1.6 mm. A battery was made. This battery was designated as sample battery A.

実施例2 市販の電解二酸化マンガン50gとヨウ化リチウム39g及
びグラファイト5.2gを乳鉢にて充分混合した後、この混
合物を3トン/cm2の圧力でペレット状に加圧形成した
後、アルミナボード上で窒素ガス中,300℃で6時間の熱
処理を行った。冷却後、エチレングリコールジメチルエ
ーテル(DME)で洗浄した。得られた生成物をX線分析
したところ、第4図に示すようなX線回折チャートを得
た。これをASTMカードにおいて化学式LiMn2O4で示され
る物質と比較したところLiMn2O4の示すX線回折チャー
トとほぼ一致した。したがって上記操作によって生成さ
れた物質はLiMn2O4である。また、第4図中にはグラフ
ァイトのピークとわずかではあるがLi2MnO3の生成ピー
クもみられた。
Example 2 Commercially available electrolytic manganese dioxide (50 g), lithium iodide (39 g) and graphite (5.2 g) were thoroughly mixed in a mortar, and the mixture was pressure-formed into pellets at a pressure of 3 ton / cm 2 and then placed on an alumina board. Then, heat treatment was performed at 300 ° C. for 6 hours in nitrogen gas. After cooling, it was washed with ethylene glycol dimethyl ether (DME). The product thus obtained was subjected to X-ray analysis to obtain an X-ray diffraction chart as shown in FIG. When this was compared with the substance represented by the chemical formula LiMn 2 O 4 on the ASTM card, it almost agreed with the X-ray diffraction chart shown by LiMn 2 O 4 . Therefore, the substance produced by the above operation is LiMn 2 O 4 . In addition, in FIG. 4, a peak of Li 2 MnO 3 was also observed, though it was a slight peak of graphite.

次に、上述のようにして得られたLiMn2O4を用いて実
施例1と同様な手順によりサンプル電池Bを作製した。
Next, using the LiMn 2 O 4 obtained as described above, a sample battery B was prepared by the same procedure as in Example 1.

以上のようにして作製したサンプル電池A及びサンプ
ル電池Bを1kΩの抵抗を介して放電試験を行ったとこ
ろ、第5図に示す放電極線が得られた。
When the sample batteries A and B prepared as described above were subjected to a discharge test through a resistance of 1 kΩ, the electrode wire shown in FIG. 5 was obtained.

この放電によって得られた容量は、下記の反応式でえ
られる容量と極めて良く一致した。
The capacity obtained by this discharge was in very good agreement with the capacity obtained by the following reaction formula.

Li++LiMn2O4−→2LiMn2O4 続いて、放電が終了したサンプル電池A及びサンプル
電池Bを2mAの電流で上限電圧を3.1Vに設定し充電を行
った。その結果を第6図に示す。この第6図によると充
電電圧が極めて平坦であることがわかるが、これは次式
で示される充電反応におけるリチウムイオンのデインタ
ーカーレーションが極めてスムーズに進行したことを意
味するものと考えられる。
Li + + LiMn 2 O 4 − → 2LiMn 2 O 4 Subsequently, the discharged sample batteries A and B were charged at a current of 2 mA with the upper limit voltage set to 3.1 V. The result is shown in FIG. It can be seen from FIG. 6 that the charging voltage is extremely flat, which is considered to mean that the deintercalation of lithium ions in the charging reaction represented by the following equation proceeded extremely smoothly.

2LiMn2O4−→LiMn2O4+Li+ 上述に示すような充放電特性を示すサンプル電池A及
びサンプル電池Bを用いて充放電を繰り返し行い、サン
プル電池の充放電のサイクル特性を調べたところ、第7
図に示すように、充放電のサイクルによる放電容量の劣
化は全く見られず、非常に二次電池が得られたことがわ
かった。
2LiMn 2 O 4 − → LiMn 2 O 4 + Li + The charge and discharge cycle characteristics of the sample battery were examined by repeating charge and discharge using the sample battery A and the sample battery B exhibiting the charge and discharge characteristics as described above. , 7th
As shown in the figure, no deterioration of discharge capacity due to charge / discharge cycles was observed, and it was found that a secondary battery was obtained.

〔発明の効果〕〔The invention's effect〕

上述の説明から明らかなように、有機電解質二次電池
の陽極活物質としてLiMn2O4を用いることによって、放
電反応により陽極を移動したリチウムイオンを充電によ
る反応において良好にデインターカーレーションさせる
ことが可能となり、該有機電解質二次電池の充放電のサ
イクル寿命特性を大幅に向上することが可能である。
As is clear from the above description, by using LiMn 2 O 4 as the anode active material of the organic electrolyte secondary battery, it is possible to favorably deintercalate the lithium ions that have moved the anode by the discharge reaction in the reaction by charging. It is possible to significantly improve the cycle life characteristics of charge and discharge of the organic electrolyte secondary battery.

したがって、充放電サイクルに伴う電池容量の劣化が
少なく、サイクル寿命特性に優れた有機電解質二次電池
を提供することができる。
Therefore, it is possible to provide an organic electrolyte secondary battery that has little deterioration in battery capacity due to charge / discharge cycles and has excellent cycle life characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は陽極剤としてTiS2,MoS2を用いた有機電解質二
次電池の充放電サイクル特性を示す特性図である。 第2図は有機電解質二次電池の構成例を示す概略断面
図である。 第3図は電解二酸化マンガンと炭酸リチウムとから合
成されたLiMn2O4のX線回折結果を示す特性図、第4図
は電解二酸化マンガンとヨウ化リチウムとから合成され
たLiMn2O4のX線回折結果を示す特性図である。 第5図は本発明を適用した有機電解質二次電池の放電
特性を示す特性図である。 第6図は本発明を適用した有機電解質二次電池の充電
特性を示す特性図である。 第7図は本発明を適用した有機電解質二次電池の充放
電サイクル特性を示す特性図である。 1……陰極ペレット 2……陰極罐 3……セパレータ 4……ガスケット 5……陽極ペレット 6……陽極罐
FIG. 1 is a characteristic diagram showing charge / discharge cycle characteristics of an organic electrolyte secondary battery using TiS 2 and MoS 2 as an anode agent. FIG. 2 is a schematic cross-sectional view showing a structural example of an organic electrolyte secondary battery. FIG. 3 is a characteristic diagram showing X-ray diffraction results of LiMn 2 O 4 synthesized from electrolytic manganese dioxide and lithium carbonate, and FIG. 4 is a characteristic diagram showing LiMn 2 O 4 synthesized from electrolytic manganese dioxide and lithium iodide. It is a characteristic view which shows a X-ray-diffraction result. FIG. 5 is a characteristic diagram showing discharge characteristics of the organic electrolyte secondary battery to which the present invention is applied. FIG. 6 is a characteristic diagram showing the charging characteristics of the organic electrolyte secondary battery to which the present invention is applied. FIG. 7 is a characteristic diagram showing charge / discharge cycle characteristics of the organic electrolyte secondary battery to which the present invention is applied. 1 …… Cathode pellet 2 …… Cathode can 3 …… Separator 4 …… Gasket 5 …… Anode pellet 6 …… Anode can

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウムを含む陰極と、 LiMn2O4を陽極活物質として含む陽極と、 有機電解液からなる有機電解質二次電池。1. An organic electrolyte secondary battery comprising a cathode containing lithium, an anode containing LiMn 2 O 4 as an anode active material, and an organic electrolyte solution.
JP61257479A 1986-10-29 1986-10-29 Organic electrolyte secondary battery Expired - Lifetime JPH0821431B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61257479A JPH0821431B2 (en) 1986-10-29 1986-10-29 Organic electrolyte secondary battery
GB8724998A GB2196785B (en) 1986-10-29 1987-10-26 Organic electrolyte secondary cell
DE3736366A DE3736366C2 (en) 1986-10-29 1987-10-27 Rechargeable galvanic element with organic electrolyte
CA000550431A CA1290805C (en) 1986-10-29 1987-10-28 Rechargeable organic electrolyte cell
FR8715017A FR2606219B1 (en) 1986-10-29 1987-10-29 RECHARGEABLE ORGANIC ELECTROLYTE CELL
KR1019870012003A KR960006425B1 (en) 1986-10-29 1987-10-29 Rechargeable organic electrolyte cell
US07/114,282 US4828834A (en) 1986-10-29 1987-10-29 Rechargeable organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61257479A JPH0821431B2 (en) 1986-10-29 1986-10-29 Organic electrolyte secondary battery

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP13560897A Division JP3173425B2 (en) 1997-05-26 1997-05-26 Organic electrolyte secondary battery
JP9135609A Division JP2853708B2 (en) 1997-05-26 1997-05-26 Organic electrolyte secondary battery
JP9135607A Division JP2853707B2 (en) 1997-05-26 1997-05-26 Button type organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS63114065A JPS63114065A (en) 1988-05-18
JPH0821431B2 true JPH0821431B2 (en) 1996-03-04

Family

ID=17306871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61257479A Expired - Lifetime JPH0821431B2 (en) 1986-10-29 1986-10-29 Organic electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JPH0821431B2 (en)
CA (1) CA1290805C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2627314B2 (en) * 1988-08-25 1997-07-02 三洋電機株式会社 Non-aqueous secondary battery and method for producing its positive electrode active material
JPH0834101B2 (en) * 1989-05-12 1996-03-29 富士電気化学株式会社 Non-aqueous electrolyte secondary battery
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
JPH09320603A (en) * 1996-03-28 1997-12-12 Aichi Steel Works Ltd Manufacture of pulverized active material for lithium secondary battery
FR2997795B1 (en) * 2012-11-02 2014-11-21 Renault Sa LITHIUM BATTERY

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257479A (en) * 1985-05-10 1986-11-14 Agency Of Ind Science & Technol Method for plating inorganic powder by electroless plating

Also Published As

Publication number Publication date
JPS63114065A (en) 1988-05-18
CA1290805C (en) 1991-10-15

Similar Documents

Publication Publication Date Title
US5620812A (en) Non-aqueous electrolyte secondary battery
JP2997741B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
KR960006425B1 (en) Rechargeable organic electrolyte cell
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3008228B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP3873717B2 (en) Positive electrode material and battery using the same
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP3036674B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith
JP2000348722A (en) Nonaqueous electrolyte battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JPH0821431B2 (en) Organic electrolyte secondary battery
JP2550990B2 (en) Non-aqueous electrolyte battery
JPH10302766A (en) Lithium ion secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
JP3670895B2 (en) Lithium secondary battery
JP2611265B2 (en) Non-aqueous electrolyte secondary battery
JP3173425B2 (en) Organic electrolyte secondary battery
JP2853708B2 (en) Organic electrolyte secondary battery
JP2853707B2 (en) Button type organic electrolyte secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JP2002063904A (en) Positive electrode active material and nonaqueous electrolyte battery as well as their manufacturing method
JPH0212768A (en) Lithium secondary battery
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same