JP3451601B2 - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP3451601B2
JP3451601B2 JP03307494A JP3307494A JP3451601B2 JP 3451601 B2 JP3451601 B2 JP 3451601B2 JP 03307494 A JP03307494 A JP 03307494A JP 3307494 A JP3307494 A JP 3307494A JP 3451601 B2 JP3451601 B2 JP 3451601B2
Authority
JP
Japan
Prior art keywords
lithium
battery
fluoride
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03307494A
Other languages
Japanese (ja)
Other versions
JPH07220758A (en
Inventor
吉田  浩明
亮 柴田
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP03307494A priority Critical patent/JP3451601B2/en
Publication of JPH07220758A publication Critical patent/JPH07220758A/en
Application granted granted Critical
Publication of JP3451601B2 publication Critical patent/JP3451601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくはメモリ保持電源としての高エネルギー密度でか
つ高い信頼性を有するリチウム電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery having high energy density and high reliability as a power source for driving electronic equipment or a memory holding power source.

【0002】[0002]

【従来の技術とその課題】電子機器の急激なる小形軽量
化に伴い、その電源である電池に対して小形で軽量かつ
高エネルギー密度で、更に繰り返し充放電が可能な二次
電池の開発への要求が高まっている。これら要求を満た
す二次電池として、非水電解質二次電池が最も有望であ
る。
2. Description of the Related Art With the rapid miniaturization and weight reduction of electronic equipment, the development of a secondary battery that is smaller, lighter in weight and high in energy density, and that can be repeatedly charged and discharged with respect to the power source battery The demand is increasing. Non-aqueous electrolyte secondary batteries are the most promising secondary batteries that meet these requirements.

【0003】非水電解質二次電池の正極活物質には、二
硫化チタンをはじめとしてリチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。なかでも、リチウムコバルト複合酸化物(Li
xCoO2 )およびスピネル型リチウムマンガン酸化物( Li
x Mn2 O4 ) は、4V(Li/Li+ ) 以上のきわめて貴な電
位で充放電を行うため、正極として用いることで高い放
電電圧を有する電池が実現できる。
Various positive electrode active materials for non-aqueous electrolyte secondary batteries such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been investigated. ing. Among them, lithium cobalt composite oxide (Li
xCoO 2 ) and spinel type lithium manganese oxide (Li
Since x Mn 2 O 4 ) charges and discharges at an extremely noble potential of 4 V (Li / Li + ) or more, a battery having a high discharge voltage can be realized by using it as a positive electrode.

【0004】非水電解質二次電池の負極活物質は、金属
リチウムをはじめとしてリチウムの吸蔵・放出が可能な
Li−Al合金や炭素材料など種々のものが検討されて
いるが、なかでも炭素材料は、安全性が高くかつサイク
ル寿命の長い電池が得られるという利点がある。
As a negative electrode active material for a non-aqueous electrolyte secondary battery, various materials such as metallic lithium, Li-Al alloys capable of inserting and extracting lithium, and carbon materials have been studied. Among them, carbon materials are particularly preferable. Has the advantage that a battery with high safety and long cycle life can be obtained.

【0005】リチウム塩には、過塩素酸リチウム、三フ
ッ化トリメタンスルフォン酸リチウム、六フッ化燐酸リ
チウムなどが一般に用いられている。なかでも六フッ化
燐酸リチウムは、安全性が高くかつ溶解させた電解液の
イオン導電率が高いという理由から近年盛んに用いられ
るようになってきた。
As the lithium salt, lithium perchlorate, lithium trifluorotrimethanesulfonate, lithium hexafluorophosphate, etc. are generally used. Among them, lithium hexafluorophosphate has been widely used in recent years because of its high safety and high ionic conductivity of the dissolved electrolyte.

【0006】しかし正極に、貴な電位で作動するリチウ
ムコバルト複合酸化物(Lix CoO2) ,スピネル型リチ
ウムマンガン酸化物(LixMn2 O4 ) などを用い、電解質
に六フッ化燐酸リチウムなどのフッ素を含むリチウム塩
を用いた電池は、電池の保存性能が劣るという問題があ
った。
However, a lithium cobalt composite oxide (Li x CoO 2 ), a spinel type lithium manganese oxide (LixMn 2 O 4 ) or the like which operates at a noble potential is used for the positive electrode, and lithium hexafluorophosphate or the like is used as an electrolyte. A battery using a lithium salt containing fluorine has a problem that the storage performance of the battery is poor.

【0007】[0007]

【課題を解決するための手段】本発明は、リチウムイオ
ンを吸蔵放出する物質からなる負極と、正極と、フッ素
を含むリチウム塩を含有する非水電解質とを備えるリチ
ウム電池において、電池内にリチウム以外のアルカリ金
属のフッ化物を共存させること、または、負極炭素材料
リチウムのフッ化物を添加混合したものを除き、電池
内にリチウムのフッ化物を共存させることで上記問題点
を解決しようとするものである。
The present invention provides a lithium battery comprising a negative electrode made of a substance which absorbs and releases lithium ions, a positive electrode, and a non-aqueous electrolyte containing a lithium salt containing fluorine. In order to solve the above problems by coexisting an alkali metal fluoride other than the above, or by coexisting a lithium fluoride in the battery, except for the one obtained by adding and mixing the lithium fluoride to the negative electrode carbon material. It is a thing.

【0008】[0008]

【作用】溶質としてフッ素を含むリチウム塩を用いたリ
チウム電池を高温中で長期間保存すると放電容量が低下
する。この原因を調査した結果、電池系内に含まれる水
分とリチウム塩との分解反応により生成したHFが負極
活物質と反応し活物質であるリチウムが消費されたため
に放電容量が低下したことがわかった。そこで、電池内
にリチウム以外のアルカリ金属のフッ化物を共存させた
結果、または、負極炭素材料にリチウムのフッ化物を
加混合したものを除き、電池内にリチウムのフッ化物を
共存させた結果、電池の貯蔵にともなう充放電容量の低
下を効果的に抑制することができた。これは、アルカリ
金属のフッ化物がHFを有効に捕捉したためと考えられ
る。
When the lithium battery using the lithium salt containing fluorine as the solute is stored at high temperature for a long time, the discharge capacity is reduced. As a result of investigating the cause of this, it was found that the HF produced by the decomposition reaction of the water contained in the battery system and the lithium salt reacted with the negative electrode active material and consumed lithium as the active material, resulting in a decrease in the discharge capacity. It was Therefore, except for the result of allowing a fluoride of an alkali metal other than lithium to coexist in the battery, or a mixture of the negative electrode carbon material and the fluoride of lithium added and mixed, the fluoride of lithium is added to the battery. As a result of coexistence, it was possible to effectively suppress a decrease in charge / discharge capacity due to storage of the battery. It is considered that this is because the fluoride of the alkali metal effectively captured HF.

【0009】[0009]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
EXAMPLES The present invention will be described below with reference to preferred examples.

【0010】正極は、炭酸リチウムと四三酸化コバルト
とをリチウム:コバルト原子比で1:1になるように混
合し、温度700℃で16時間空気中で熱分解して合成
したリチウムコバルト複合酸化物(LixCoO2 )と導電剤
としてのカーボン粉末および結着剤としてのフッ素樹脂
粉末とを90:3:7の重量比で混合し、この混合物を
加圧成形したのち温度250℃で真空乾燥処理したもの
である。
The positive electrode was a lithium-cobalt composite oxide prepared by mixing lithium carbonate and cobalt trioxide in an atomic ratio of lithium: cobalt of 1: 1 and pyrolyzing in air at a temperature of 700 ° C. for 16 hours. (LixCoO 2 ) and carbon powder as a conductive agent and fluororesin powder as a binder were mixed at a weight ratio of 90: 3: 7, and the mixture was pressure-molded and then vacuum dried at a temperature of 250 ° C. It was done.

【0011】負極は、黒鉛と結着剤としてのフッ素樹脂
粉末とを91:9の重量比で混合し、この混合物を加圧
成形した後、のち温度250℃で真空乾燥処理したもの
である。
The negative electrode is prepared by mixing graphite and fluororesin powder as a binder in a weight ratio of 91: 9, press-molding the mixture, and then vacuum drying at 250 ° C.

【0012】図1は、電池の縦断面図である。この図に
おいて、1はステンレス(SUS316)鋼板を打ち抜き加工し
た正極端子を兼ねるケース、2はステンレス(SUSU316)
鋼板を打ち抜き加工した負極端子を兼ねる封口板であ
り、その内壁には負極3が当接されている。5は有機電
解液を含浸したポリプロピレンからなるセパレーター、
6は正極であり正極端子を兼ねるケース1の開口端部を
内方へかしめ、ガスケット4を介して負極端子を兼ねる
封口板2の内周を締め付けることにより密閉封口してい
る。
FIG. 1 is a vertical sectional view of a battery. In this figure, 1 is a case that also functions as a positive electrode terminal made by stamping a stainless steel (SUS316) steel plate, and 2 is stainless steel (SUSU316)
It is a sealing plate that also functions as a negative electrode terminal made by punching a steel plate, and the negative electrode 3 is in contact with its inner wall. 5 is a separator made of polypropylene impregnated with an organic electrolyte,
Reference numeral 6 denotes a positive electrode, and the opening end of the case 1 which also functions as a positive electrode terminal is caulked inward, and the inner periphery of the sealing plate 2 which also functions as a negative electrode terminal is tightened via a gasket 4 for hermetically sealing.

【0013】有機電解液にはエチレンカーボネート(E
C)とジメチルカーボネート(DMC )とジエチルカーボ
ネート(DEC )とを体積比2:2:1で混合した溶媒
に、6フッ化燐酸リチウムを1モル/リットルの濃度で
溶解させたものを用いた。さらに電解液の1wt%に相
当するフッ化カリウム(KF)粉末を電解液に添加し、該
懸濁液を約150μl注液した。
Ethylene carbonate (E
C), dimethyl carbonate (DMC) and diethyl carbonate (DEC) were mixed in a volume ratio of 2: 2: 1, and lithium hexafluorophosphate was dissolved at a concentration of 1 mol / liter. Further, potassium fluoride (KF) powder corresponding to 1 wt% of the electrolytic solution was added to the electrolytic solution, and about 150 μl of the suspension was injected.

【0014】上記の正極板,負極板,電解液および正極
缶を用いた本発明の有機電解液二次電池を(A)と呼
ぶ。
The organic electrolyte secondary battery of the present invention using the above positive electrode plate, negative electrode plate, electrolytic solution and positive electrode can is referred to as (A).

【0015】本実施例において、フッ化カリウムの代わ
りにフッ化ナトリウム(NaF )を用いたことの他は、同
様の構成とした本発明の電池を(B)と呼ぶ。さらに、
比較のために電池内にアルカリ金属のフッ化物を添加し
ないことの他は、本発明の電池と同様の構成とした比較
電池を(ア)と呼ぶ。
In this embodiment, a battery of the present invention having the same structure except that sodium fluoride (NaF) is used instead of potassium fluoride is referred to as (B). further,
For comparison, a comparative battery having the same structure as the battery of the present invention except that no alkali metal fluoride is added to the battery is referred to as (A).

【0016】次に、これらの電池を2.0mAの定電流
で、端子電圧が4.2Vに至るまで充電して、つづい
て、同じく2.0mAの定電流で、端子電圧が3Vに達す
るまで放電する充放電サイクル寿命試験を室温下で10
サイクルおこなった。充電状態で停止した後、60℃恒
温槽中にて30日間貯蔵した。貯蔵後、貯蔵前と同様の
条件で充放電を5サイクルおこない電池容量の確認をお
こなった。各電池の貯蔵前(10サイクル目)および貯
蔵後(5サイクル目)の放電容量を表1に示す。
Next, these batteries are charged at a constant current of 2.0 mA until the terminal voltage reaches 4.2 V, and then at the same constant current of 2.0 mA until the terminal voltage reaches 3 V. Charge and discharge cycle life test to discharge 10 at room temperature
I went through a cycle. After stopping in a charged state, it was stored in a constant temperature bath at 60 ° C. for 30 days. After storage, the battery capacity was confirmed by carrying out 5 cycles of charge and discharge under the same conditions as before storage. Table 1 shows the discharge capacities of each battery before storage (10th cycle) and after storage (5th cycle).

【0017】[0017]

【表1】 表1の結果から明かなように、比較電池(ア)では、貯
蔵後の電池容量が約20%低下しているのに対し、本発
明電池(A)および(B)では電池容量の低下が少な
い。
[Table 1] As is clear from the results of Table 1, the comparative battery (a) has a decreased battery capacity after storage of about 20%, while the batteries of the present invention (A) and (B) have a decreased battery capacity. Few.

【0018】なお、上記実施例ではアルカリ金属のフッ
化物を電解液に添加して用いる場合を説明したが、添加
方法は特に限定されず、電池内にリチウム以外のアルカ
リ金属のフッ化物を共存させる場合には、セパレータや
電極内あるいは電池の空隙など電池内に共存させればよ
く、また、電池内にリチウムのフッ化物を共存させる場
合には、負極炭素材料にリチウムのフッ化物を添加混合
したものを除き、セパレータや電極内あるいは、電池の
空隙など電池内に共存させれば同様の効果が得られる。
また、添加量も特に限定されずリチウム塩に対して0.
1%以上の濃度で添加すれば同様の効果が得られる。ア
ルカリ金属のフッ化物は電池性能に悪影響を与えないた
め、例えば、コイン形、円筒形、角形電池のケースと電
極エレメントとの空隙に充填する方法も考えられる。こ
の場合は、電池の貯蔵性能の向上の他に、振動、衝撃に
対する電池の信頼性も向上する。また、上記実施例で
は、アルカリ金属としてKおよびNaを用いる場合を説
明したが、その他のアルカリ金属でも同様な効果が得ら
れ、1種以上のアルカリ金属を混合して用いても良い。
In the above embodiments, the case where the alkali metal fluoride is added to the electrolytic solution is used, but the addition method is not particularly limited, and the alkali metal fluoride other than lithium is allowed to coexist in the battery. In this case, it may be allowed to coexist in the battery such as in the separator or the electrode or in the void of the battery. When the lithium fluoride is allowed to coexist in the battery, the negative electrode carbon material is mixed with the lithium fluoride . Other than the above, the same effect can be obtained if they coexist in the battery such as in the separator or the electrode, or in the void of the battery.
Further, the addition amount is also not particularly limited and is 0.
Similar effects can be obtained by adding at a concentration of 1% or more. Since the alkali metal fluoride does not adversely affect the battery performance, for example, a method of filling the gap between the case and the electrode element of a coin-shaped, cylindrical or prismatic battery can be considered. In this case, in addition to improving the storage performance of the battery, the reliability of the battery against vibration and shock is also improved. Further, in the above embodiment, the case where K and Na are used as the alkali metal has been described, but similar effects can be obtained with other alkali metals, and one or more kinds of alkali metals may be mixed and used.

【0019】上記実施例では正極活物質としてリチウム
コバルト複合酸化物を用いる場合を説明したが、二酸化
チタンをはじめとして二酸化マンガン、スピネル型リチ
ウムマンガン酸化物(LiMn)、五酸化バナ
ジウムおよび三酸化モリブデンなど種々のものを用いる
ことができる。また、負極活物質としては、従来のリチ
ウム電池に用いられているリチウム合金や炭素材料など
の、リチウムイオンを吸蔵放出する物質を用いることが
できる。
In the above embodiments, the case where the lithium cobalt composite oxide is used as the positive electrode active material has been described. However, titanium dioxide, manganese dioxide, spinel type lithium manganese oxide (Li x Mn 2 O 4 ), vanadium pentoxide are used. Various materials such as and molybdenum trioxide can be used. In addition, as the negative electrode active material, a material that absorbs and releases lithium ions, such as a lithium alloy and a carbon material used in conventional lithium batteries, can be used.

【0020】さらに、リチウムイオン伝導性物質である
電解液や固体のイオン導電体も基本的に限定されず、従
来のリチウム電池に用いられているものを用いることが
出来る。たとえば、有機溶媒としては非プロトン溶媒で
あるエチレンカーボネイトなどの環状エステル類および
テトラハイドロフラン,ジオキソランなどのエーテル類
があげられ、これら単独もしくは2種以上を混合した溶
媒を用いることが出来る。固体のイオン導電体として
は、リチウムイオン導電性を有するものであれば用いる
ことが出来る。その代表的なものとして、ポリエチレン
オキサイドなどがあげられる。
Further, the electrolytic solution which is a lithium ion conductive substance and the solid ionic conductor are not basically limited, and those used in conventional lithium batteries can be used. Examples of the organic solvent include cyclic esters such as ethylene carbonate which is an aprotic solvent and ethers such as tetrahydrofuran and dioxolane. These can be used alone or in a mixture of two or more kinds. As the solid ionic conductor, any substance having lithium ion conductivity can be used. A typical example thereof is polyethylene oxide.

【0021】また、このような非水溶媒あるいは固体の
イオン導電体に溶解される支持電解質も基本的に限定さ
れるものではない。たとえば、 LiAsF6 ,LiPF6 ,LiBF
4 ,LiCF3 SO3 などの1種以上を用いることができる。
Also, the supporting electrolyte dissolved in such a non-aqueous solvent or solid ionic conductor is not basically limited. For example, LiAsF 6 , LiPF 6 , LiBF
4 , one or more of LiCF 3 SO 3 and the like can be used.

【0022】なお、前記の実施例に係る電池はいずれも
コイン形電池であるが、円筒形、角形またはペーパー形
電池に本発明を適用しても同様の効果が得られる。
Although the batteries according to the above-mentioned embodiments are all coin type batteries, the same effect can be obtained by applying the present invention to cylindrical, prismatic or paper type batteries.

【0023】[0023]

【発明の効果】上述したごとく、非水電解質を構成する
溶質として、フッ素を含むリチウム塩を用いるリチウム
電池において、電池内にリチウム以外のアルカリ金属の
フッ化物を共存させること、または、負極炭素材料に
チウムのフッ化物を添加混合したものを除き、電池内に
リチウムのフッ化物を共存させることにより、この種電
池特有の問題である貯蔵性能の低下を有効に抑制できる
ものであり、その工業的価値は極めて大である。
INDUSTRIAL APPLICABILITY As described above, in a lithium battery using a lithium salt containing fluorine as a solute constituting the non-aqueous electrolyte, a fluoride of an alkali metal other than lithium coexists in the battery, or a negative electrode carbon material. Li to
Coexistence of fluoride of lithium in the battery, except for addition and mixing of fluoride of thium, can effectively suppress deterioration of storage performance, which is a problem peculiar to this kind of battery, and its industrial value. Is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】非水電解質二次電池の一例であるボタン電池の
内部構造を示した図。
FIG. 1 is a diagram showing an internal structure of a button battery which is an example of a non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極 1 battery case 2 Seal plate 3 Negative electrode 4 gasket 5 separator 6 Positive electrode

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 6/16 Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 10/40 H01M 6/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムイオンを吸蔵放出する物質からな
る負極と、正極と、フッ素を含むリチウム塩を含有する
非水電解質とを備えるリチウム電池において、電池内に
リチウム以外のアルカリ金属のフッ化物を共存させたこ
とを特徴とするリチウム電池。
1. A lithium battery comprising a negative electrode made of a substance capable of occluding and releasing lithium ions, a positive electrode, and a non-aqueous electrolyte containing a lithium salt containing fluorine.
A lithium battery characterized in that an alkali metal fluoride other than lithium coexists.
【請求項2】リチウムイオンを吸蔵放出する物質からな
る負極と、正極と、フッ素を含むリチウム塩を含有する
非水電解質とを備えるリチウム電池において、電池内に
リチウムのフッ化物を共存させたことを特徴とするリチ
ウム電池。ただし、負極炭素材料にリチウムのフッ化物
添加混合したものを除く。
2. A lithium battery comprising a negative electrode made of a substance capable of occluding and releasing lithium ions, a positive electrode, and a non-aqueous electrolyte containing a lithium salt containing fluorine, wherein lithium fluoride is allowed to coexist in the battery. A lithium battery characterized by. However, the negative electrode carbon material contains lithium fluoride.
Excluding those added and mixed.
JP03307494A 1994-02-03 1994-02-03 Lithium battery Expired - Lifetime JP3451601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03307494A JP3451601B2 (en) 1994-02-03 1994-02-03 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03307494A JP3451601B2 (en) 1994-02-03 1994-02-03 Lithium battery

Publications (2)

Publication Number Publication Date
JPH07220758A JPH07220758A (en) 1995-08-18
JP3451601B2 true JP3451601B2 (en) 2003-09-29

Family

ID=12376581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03307494A Expired - Lifetime JP3451601B2 (en) 1994-02-03 1994-02-03 Lithium battery

Country Status (1)

Country Link
JP (1) JP3451601B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321326A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Lithium secondary battery
JP5408112B2 (en) * 2003-04-18 2014-02-05 三菱化学株式会社 Method for producing difluorophosphate, non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery
EP2647599B1 (en) 2005-06-20 2018-05-23 Mitsubishi Chemical Corporation Non-aqueous electrolyte comprising a hexafluorophosphate and a difluorophosphate
WO2008035638A1 (en) 2006-09-19 2008-03-27 Daihatsu Motor Co., Ltd. Electrochemical capacitor
JP4916263B2 (en) * 2006-09-19 2012-04-11 ダイハツ工業株式会社 Power storage device

Also Published As

Publication number Publication date
JPH07220758A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
JP3249305B2 (en) Non-aqueous electrolyte battery
JPH1027626A (en) Lithium secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH07335261A (en) Lithium secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP3419119B2 (en) Non-aqueous electrolyte secondary battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JP3451601B2 (en) Lithium battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JPH0745304A (en) Organic electrolyte secondary battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JPH09120837A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2002260728A (en) Lithium secondary battery using nonaqueous electrolyte solution
JPH08241731A (en) Organic electrolytic secondary battery
JP3348175B2 (en) Organic electrolyte secondary battery
JP2001297768A (en) Positive electrode and nonaqueous secondary cell, and manufacturing method of the same
JP3158981B2 (en) Manufacturing method of non-aqueous lithium battery
JPH07226206A (en) Nonaqueous electrolyte secondary battery
JPH11250933A (en) Nonaqueous electrolyte secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP3418715B2 (en) Organic electrolyte secondary battery
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
JP3423168B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

EXPY Cancellation because of completion of term