JPH07220758A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH07220758A
JPH07220758A JP6033074A JP3307494A JPH07220758A JP H07220758 A JPH07220758 A JP H07220758A JP 6033074 A JP6033074 A JP 6033074A JP 3307494 A JP3307494 A JP 3307494A JP H07220758 A JPH07220758 A JP H07220758A
Authority
JP
Japan
Prior art keywords
lithium
battery
positive electrode
negative electrode
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6033074A
Other languages
Japanese (ja)
Other versions
JP3451601B2 (en
Inventor
Hiroaki Yoshida
吉田  浩明
Akira Shibata
亮 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP03307494A priority Critical patent/JP3451601B2/en
Publication of JPH07220758A publication Critical patent/JPH07220758A/en
Application granted granted Critical
Publication of JP3451601B2 publication Critical patent/JP3451601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To effectively suppress decreasing storage performance by making alkaline metal fluoride coexist in a lithium battery using lithium salt containing fluorine as a solute. CONSTITUTION:A battery is prepared in such a manner that a positive electrode 6 and a polypropylene-made separator 5 impregnated with an organic electrolyte are arranged in a stainless steel-made case 1 serving concurrently as a positive electrode terminal, to seal an opening part through a gasket 4 by a seal plate 2 concurrently serving as a stainless steel-made negative electrode terminal with a negative pole 3 brought into contact with an internal wall. The positive electrode 6, by adding carbon powder as a conductive agent to a lithium cobalt compound oxide, and the negative electrode 3, by adding fluororesin powder respectively as a binding agent to graphite, are prepared by pressure molding heat treatment. In the electrolyte, lithium phosphate hexafluoride is fused in a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate, to add kalium fluoride used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくはメモリ保持電源としての高エネルギー密度でか
つ高い信頼性を有するリチウム電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery having high energy density and high reliability as a power source for driving electronic equipment or a memory holding power source.

【0002】[0002]

【従来の技術とその課題】電子機器の急激なる小形軽量
化に伴い、その電源である電池に対して小形で軽量かつ
高エネルギー密度で、更に繰り返し充放電が可能な二次
電池の開発への要求が高まっている。これら要求を満た
す二次電池として、非水電解質二次電池が最も有望であ
る。
2. Description of the Related Art With the rapid miniaturization and weight reduction of electronic equipment, the development of a secondary battery that is smaller, lighter in weight and high in energy density, and that can be repeatedly charged and discharged with respect to the power source battery The demand is increasing. Non-aqueous electrolyte secondary batteries are the most promising secondary batteries that meet these requirements.

【0003】非水電解質二次電池の正極活物質には、二
硫化チタンをはじめとしてリチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。なかでも、リチウムコバルト複合酸化物(Li
xCoO2 )およびスピネル型リチウムマンガン酸化物( Li
x Mn2 O4 ) は、4V(Li/Li+ ) 以上のきわめて貴な電
位で充放電を行うため、正極として用いることで高い放
電電圧を有する電池が実現できる。
Various positive electrode active materials for non-aqueous electrolyte secondary batteries such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been investigated. ing. Among them, lithium cobalt composite oxide (Li
xCoO 2 ) and spinel type lithium manganese oxide (Li
Since x Mn 2 O 4 ) charges and discharges at an extremely noble potential of 4 V (Li / Li + ) or more, a battery having a high discharge voltage can be realized by using it as a positive electrode.

【0004】非水電解質二次電池の負極活物質は、金属
リチウムをはじめとしてリチウムの吸蔵・放出が可能な
Li−Al合金や炭素材料など種々のものが検討されて
いるが、なかでも炭素材料は、安全性が高くかつサイク
ル寿命の長い電池が得られるという利点がある。
As a negative electrode active material for a non-aqueous electrolyte secondary battery, various materials such as metallic lithium, Li-Al alloys capable of inserting and extracting lithium, and carbon materials have been studied. Among them, carbon materials are particularly preferable. Has the advantage that a battery with high safety and long cycle life can be obtained.

【0005】リチウム塩には、過塩素酸リチウム、三フ
ッ化トリメタンスルフォン酸リチウム、六フッ化燐酸リ
チウムなどが一般に用いられている。なかでも六フッ化
燐酸リチウムは、安全性が高くかつ溶解させた電解液の
イオン導電率が高いという理由から近年盛んに用いられ
るようになってきた。
As the lithium salt, lithium perchlorate, lithium trifluorotrimethanesulfonate, lithium hexafluorophosphate, etc. are generally used. Among them, lithium hexafluorophosphate has been widely used in recent years because of its high safety and high ionic conductivity of the dissolved electrolyte.

【0006】しかし正極に、貴な電位で作動するリチウ
ムコバルト複合酸化物(Lix CoO2) ,スピネル型リチ
ウムマンガン酸化物(LixMn2 O4 ) などを用い、電解質
に六フッ化燐酸リチウムなどのフッ素を含むリチウム塩
を用いた電池は、電池の保存性能が劣るという問題があ
った。
However, a lithium cobalt composite oxide (Li x CoO 2 ), a spinel type lithium manganese oxide (LixMn 2 O 4 ) or the like which operates at a noble potential is used for the positive electrode, and lithium hexafluorophosphate or the like is used as an electrolyte. A battery using a lithium salt containing fluorine has a problem that the storage performance of the battery is poor.

【0007】[0007]

【課題を解決するための手段】本発明は、リチウム、リ
チウム合金あるいはリチウムイオンを吸蔵放出する物質
からなる負極と、正極と、フッ素を含むリチウム塩を含
有する非水電解質とを備えるリチウム電池において、電
池内にアルカリ金属のフッ化物を共存させることで上記
問題点を解決しようとするものである。
The present invention provides a lithium battery comprising a negative electrode made of lithium, a lithium alloy or a substance which absorbs and releases lithium ions, a positive electrode, and a non-aqueous electrolyte containing a lithium salt containing fluorine. The present invention aims to solve the above-mentioned problems by allowing a fluoride of an alkali metal to coexist in the battery.

【0008】[0008]

【作用】溶質としてフッ素を含むリチウム塩を用いたリ
チウム電池を高温中で長期間保存すると放電容量が低下
する。この原因を調査した結果、電池系内に含まれる水
分とリチウム塩との分解反応により生成したHFが負極
活物質と反応し活物質であるリチウムが消費されたため
に放電容量が低下したことがわかった。そこで、アルカ
リ金属のフッ化物を電池内に添加した結果、電池の貯蔵
にともなう充放電容量の低下を効果的に抑制することが
できた。これは、アルカリ金属のフッ化物がHFを有効
に補足したためと考えられる。
When the lithium battery using the lithium salt containing fluorine as the solute is stored at high temperature for a long time, the discharge capacity is reduced. As a result of investigating the cause of this, it was found that the HF produced by the decomposition reaction of the water contained in the battery system and the lithium salt reacted with the negative electrode active material and consumed lithium as the active material, resulting in a decrease in the discharge capacity. It was Therefore, as a result of adding a fluoride of an alkali metal into the battery, it was possible to effectively suppress a decrease in charge / discharge capacity due to storage of the battery. It is considered that this is because the fluoride of the alkali metal effectively captured HF.

【0009】[0009]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
EXAMPLES The present invention will be described below with reference to preferred examples.

【0010】正極は、炭酸リチウムと四三酸化コバルト
とをリチウム:コバルト原子比で1:1になるように混
合し、温度700℃で16時間空気中で熱分解して合成
したリチウムコバルト複合酸化物(LixCoO2 )と導電剤
としてのカーボン粉末および結着剤としてのフッ素樹脂
粉末とを90:3:7の重量比で混合し、この混合物を
加圧成形したのち温度250℃で真空乾燥処理したもの
である。
The positive electrode was a lithium-cobalt composite oxide prepared by mixing lithium carbonate and cobalt trioxide in an atomic ratio of lithium: cobalt of 1: 1 and pyrolyzing in air at a temperature of 700 ° C. for 16 hours. (LixCoO 2 ) and carbon powder as a conductive agent and fluororesin powder as a binder were mixed at a weight ratio of 90: 3: 7, and the mixture was pressure-molded and then vacuum dried at a temperature of 250 ° C. It was done.

【0011】負極は、黒鉛と結着剤としてのフッ素樹脂
粉末とを91:9の重量比で混合し、この混合物を加圧
成形した後、のち温度250℃で真空乾燥処理したもの
である。
The negative electrode is prepared by mixing graphite and fluororesin powder as a binder in a weight ratio of 91: 9, press-molding the mixture, and then vacuum drying at 250 ° C.

【0012】図1は、電池の縦断面図である。この図に
おいて、1はステンレス(SUS316)鋼板を打ち抜き加工し
た正極端子を兼ねるケース、2はステンレス(SUSU316)
鋼板を打ち抜き加工した負極端子を兼ねる封口板であ
り、その内壁には負極3が当接されている。5は有機電
解液を含浸したポリプロピレンからなるセパレーター、
6は正極であり正極端子を兼ねるケース1の開口端部を
内方へかしめ、ガスケット4を介して負極端子を兼ねる
封口板2の内周を締め付けることにより密閉封口してい
る。
FIG. 1 is a vertical sectional view of a battery. In this figure, 1 is a case that also functions as a positive electrode terminal made by stamping a stainless steel (SUS316) steel plate, and 2 is stainless steel (SUSU316)
It is a sealing plate that also functions as a negative electrode terminal made by punching a steel plate, and the negative electrode 3 is in contact with its inner wall. 5 is a separator made of polypropylene impregnated with an organic electrolyte,
Reference numeral 6 denotes a positive electrode, and the opening end of the case 1 which also functions as a positive electrode terminal is caulked inward, and the inner periphery of the sealing plate 2 which also functions as a negative electrode terminal is tightened via a gasket 4 to hermetically seal.

【0013】有機電解液にはエチレンカーボネート(E
C)とジメチルカーボネート(DMC )とジエチルカーボ
ネート(DEC )とを体積比2:2:1で混合した溶媒
に、6フッ化燐酸リチウムを1モル/リットルの濃度で
溶解させたものを用いた。さらに電解液の1wt%に相
当するフッ化カリウム(KF)粉末を電解液に添加し、該
懸濁液を約150μl注液した。
Ethylene carbonate (E
C), dimethyl carbonate (DMC) and diethyl carbonate (DEC) were mixed in a volume ratio of 2: 2: 1, and lithium hexafluorophosphate was dissolved at a concentration of 1 mol / liter. Further, potassium fluoride (KF) powder corresponding to 1 wt% of the electrolytic solution was added to the electrolytic solution, and about 150 μl of the suspension was injected.

【0014】上記の正極板,負極板,電解液および正極
缶を用いた本発明の有機電解液二次電池を(A)と呼
ぶ。
The organic electrolyte secondary battery of the present invention using the above positive electrode plate, negative electrode plate, electrolytic solution and positive electrode can is referred to as (A).

【0015】本実施例において、フッ化カリウムの代わ
りにフッ化ナトリウム(NaF )を用いたことの他は、同
様の構成とした本発明の電池を(B)と呼ぶ。さらに、
比較のために電池内にアルカリ金属のフッ化物を添加し
ないことの他は、本発明の電池と同様の構成とした比較
電池を(ア)と呼ぶ。
In this embodiment, a battery of the present invention having the same structure except that sodium fluoride (NaF) is used instead of potassium fluoride is referred to as (B). further,
For comparison, a comparative battery having the same structure as the battery of the present invention except that no alkali metal fluoride is added to the battery is referred to as (A).

【0016】次に、これらの電池を2.0mAの定電流
で、端子電圧が4.2Vに至るまで充電して、つづい
て、同じく2.0mAの定電流で、端子電圧が3Vに達す
るまで放電する充放電サイクル寿命試験を室温下で10
サイクルおこなった。充電状態で停止した後、60℃恒
温槽中にて30日間貯蔵した。貯蔵後、貯蔵前と同様の
条件で充放電を5サイクルおこない電池容量の確認をお
こなった。各電池の貯蔵前(10サイクル目)および貯
蔵後(5サイクル目)の放電容量を表1に示す。
Next, these batteries are charged at a constant current of 2.0 mA until the terminal voltage reaches 4.2 V, and then at the same constant current of 2.0 mA until the terminal voltage reaches 3 V. Charge and discharge cycle life test to discharge 10 at room temperature
I went through a cycle. After stopping in a charged state, it was stored in a constant temperature bath at 60 ° C. for 30 days. After storage, the battery capacity was confirmed by carrying out 5 cycles of charge and discharge under the same conditions as before storage. Table 1 shows the discharge capacities of each battery before storage (10th cycle) and after storage (5th cycle).

【0017】[0017]

【表1】 表1の結果から明かなように、比較電池(ア)では、貯
蔵後の電池容量が約20%低下しているのに対し、本発
明電池(A)および(B)では電池容量の低下が少な
い。
[Table 1] As is clear from the results of Table 1, the comparative battery (a) has a decreased battery capacity after storage of about 20%, while the batteries of the present invention (A) and (B) have a decreased battery capacity. Few.

【0018】なお、上記実施例ではアルカリ金属のフッ
化物を電解液に添加して用いる場合を説明したが、添加
方法は特に限定されずセパレータや電極内あるいは、電
池の空隙など電池内に共存させれば同様の効果が得られ
る。また、添加量も特に限定されずリチウム塩に対して
0.1%以上の濃度で添加すれば同様の効果が得られ
る。アルカリ金属のフッ化物は電池性能に悪影響を与え
ないため、例えば、コイン形、円筒形、角形電池のケー
スと電極エレメントとの空隙に充填する方法も考えられ
る。この場合は、電池の貯蔵性能の向上の他に振動,衝
撃に対する電池の信頼性も向上する。また、上記実施例
では、アルカリ金属としてKおよびNaを用いる場合を
説明したが、その他のアルカリ金属でも同様な効果が得
られ、1種以上のアルカリ金属を混合して用いても良
い。
In the above examples, the case where the alkali metal fluoride is added to the electrolytic solution is used, but the addition method is not particularly limited, and it is allowed to coexist in the separator, the electrode, or the battery such as the void of the battery. Then, the same effect can be obtained. Further, the addition amount is not particularly limited, and the same effect can be obtained by adding the lithium salt at a concentration of 0.1% or more. Since the alkali metal fluoride does not adversely affect the battery performance, for example, a method of filling the gap between the case and the electrode element of a coin-shaped, cylindrical or prismatic battery can be considered. In this case, in addition to improving the storage performance of the battery, the reliability of the battery against vibration and shock is also improved. Further, in the above embodiment, the case where K and Na are used as the alkali metal has been described, but similar effects can be obtained with other alkali metals, and one or more kinds of alkali metals may be mixed and used.

【0019】上記実施例では正極活物質としてリチウム
コバルト複合酸化物を用いる場合を説明したが、二硫化
チタンをはじめとして二酸化マンガン、スピネル型リチ
ウムマンガン酸化物(LixMn2 O4 ) 、五酸化バナジウム
および三酸化モリブデンなど種々のものを用いることが
できる。また、負極として炭素材料を用いたが、本発明
の正極を使用するにあたり、負極活物質は基本的に限定
されず従来のリチウム電池に用いられている負極活物
質、たとえば純リチウム、リチウム合金などを用いるこ
とができる。また上記実施例では、二次電池への適用例
を説明したが一次電池においても同様な効果が得られ
る。
In the above examples, the case where the lithium cobalt composite oxide is used as the positive electrode active material has been described. However, titanium disulfide, manganese dioxide, spinel type lithium manganese oxide (LixMn 2 O 4 ), vanadium pentoxide and Various materials such as molybdenum trioxide can be used. Although a carbon material was used as the negative electrode, the negative electrode active material is basically not limited when the positive electrode of the present invention is used, and the negative electrode active material used in the conventional lithium battery, for example, pure lithium, lithium alloy, etc. Can be used. Further, in the above-mentioned embodiment, the application example to the secondary battery has been described, but the same effect can be obtained in the primary battery.

【0020】さらに、リチウムイオン伝導性物質である
電解液や固体のイオン導電体も基本的に限定されず、従
来のリチウム電池に用いられているものを用いることが
出来る。たとえば、有機溶媒としては非プロトン溶媒で
あるエチレンカーボネイトなどの環状エステル類および
テトラハイドロフラン,ジオキソランなどのエーテル類
があげられ、これら単独もしくは2種以上を混合した溶
媒を用いることが出来る。固体のイオン導電体として
は、リチウムイオン導電性を有するものであれば用いる
ことが出来る。その代表的なものとして、ポリエチレン
オキサイドなどがあげられる。
Further, the electrolytic solution which is a lithium ion conductive substance and the solid ionic conductor are not basically limited, and those used in conventional lithium batteries can be used. Examples of the organic solvent include cyclic esters such as ethylene carbonate which is an aprotic solvent and ethers such as tetrahydrofuran and dioxolane. These can be used alone or in a mixture of two or more kinds. As the solid ionic conductor, any substance having lithium ion conductivity can be used. A typical example thereof is polyethylene oxide.

【0021】また、このような非水溶媒あるいは固体の
イオン導電体に溶解される支持電解質も基本的に限定さ
れるものではない。たとえば、 LiAsF6 ,LiPF6 ,LiBF
4 ,LiCF3 SO3 などの1種以上を用いることができる。
Also, the supporting electrolyte dissolved in such a non-aqueous solvent or solid ionic conductor is not basically limited. For example, LiAsF 6 , LiPF 6 , LiBF
4 , one or more of LiCF 3 SO 3 and the like can be used.

【0022】なお、前記の実施例に係る電池はいずれも
コイン形電池であるが、円筒形、角形またはペーパー形
電池に本発明を適用しても同様の効果が得られる。
Although the batteries according to the above-mentioned embodiments are all coin type batteries, the same effect can be obtained by applying the present invention to cylindrical, prismatic or paper type batteries.

【0023】[0023]

【発明の効果】上述したごとく、非水電解質を構成する
溶質として、フッ素を含むリチウム塩を用いるリチウム
電池において、電池内にアルカリ金属のフッ化物を共存
させることにより、この種電池特有の問題である貯蔵性
能の低下を有効に抑制できるものであり、その工業的価
値は極めて大である。
As described above, in a lithium battery using a lithium salt containing fluorine as a solute constituting a non-aqueous electrolyte, the coexistence of an alkali metal fluoride in the battery causes problems specific to this type of battery. It is possible to effectively suppress a decrease in storage performance, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】非水電解質二次電池の一例であるボタン電池の
内部構造を示した図。
FIG. 1 is a diagram showing an internal structure of a button battery which is an example of a non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極 1 Battery Case 2 Sealing Plate 3 Negative Electrode 4 Gasket 5 Separator 6 Positive Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウム、リチウム合金あるいはリチウム
イオンを吸蔵放出する物質からなる負極と、正極と、フ
ッ素を含むリチウム塩を含有する非水電解質とを備える
リチウム電池において、 電池内にアルカリ金属のフッ化物を共存させたことを特
徴とするリチウム電池。
1. A lithium battery comprising a negative electrode made of lithium, a lithium alloy or a substance which absorbs and releases lithium ions, a positive electrode and a non-aqueous electrolyte containing a lithium salt containing fluorine. Lithium battery characterized by the coexistence of compounds.
JP03307494A 1994-02-03 1994-02-03 Lithium battery Expired - Lifetime JP3451601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03307494A JP3451601B2 (en) 1994-02-03 1994-02-03 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03307494A JP3451601B2 (en) 1994-02-03 1994-02-03 Lithium battery

Publications (2)

Publication Number Publication Date
JPH07220758A true JPH07220758A (en) 1995-08-18
JP3451601B2 JP3451601B2 (en) 2003-09-29

Family

ID=12376581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03307494A Expired - Lifetime JP3451601B2 (en) 1994-02-03 1994-02-03 Lithium battery

Country Status (1)

Country Link
JP (1) JP3451601B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321326A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Lithium secondary battery
JP2008078199A (en) * 2006-09-19 2008-04-03 Daihatsu Motor Co Ltd Power storage device
JP2011082182A (en) * 2003-04-18 2011-04-21 Mitsubishi Chemicals Corp Method for producing difluorophosphate, nonaqueous electrolyte solution for secondary battery, and nonaqueous electrolyte secondary battery
US8159815B2 (en) 2006-09-19 2012-04-17 Daihatsu Motor Co., Ltd. Electrochemical capacitor
US8980214B2 (en) 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321326A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Lithium secondary battery
JP2011082182A (en) * 2003-04-18 2011-04-21 Mitsubishi Chemicals Corp Method for producing difluorophosphate, nonaqueous electrolyte solution for secondary battery, and nonaqueous electrolyte secondary battery
US8980214B2 (en) 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
US9593016B2 (en) 2005-06-20 2017-03-14 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell
JP2008078199A (en) * 2006-09-19 2008-04-03 Daihatsu Motor Co Ltd Power storage device
US8159815B2 (en) 2006-09-19 2012-04-17 Daihatsu Motor Co., Ltd. Electrochemical capacitor

Also Published As

Publication number Publication date
JP3451601B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
EP1867001B1 (en) Non-aqueous primary electrochemical cells
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
KR100379979B1 (en) Nonaqueous electrolyte secondary battery
JPH07335261A (en) Lithium secondary battery
JP2002203609A (en) Charging method for nonaqueous electrolyte secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JP3396990B2 (en) Organic electrolyte secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JP3451601B2 (en) Lithium battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH09120837A (en) Nonaqueous electrolyte secondary battery
JPH08241731A (en) Organic electrolytic secondary battery
JP3348175B2 (en) Organic electrolyte secondary battery
JP3158981B2 (en) Manufacturing method of non-aqueous lithium battery
JP2001297768A (en) Positive electrode and nonaqueous secondary cell, and manufacturing method of the same
JPH07226206A (en) Nonaqueous electrolyte secondary battery
JPH11250933A (en) Nonaqueous electrolyte secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
JPH0945328A (en) Lithium secondary battery
JPH07220720A (en) Nonaqueous electrolyte secondary battery
JP4147448B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

EXPY Cancellation because of completion of term