JPH07296849A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH07296849A
JPH07296849A JP6114208A JP11420894A JPH07296849A JP H07296849 A JPH07296849 A JP H07296849A JP 6114208 A JP6114208 A JP 6114208A JP 11420894 A JP11420894 A JP 11420894A JP H07296849 A JPH07296849 A JP H07296849A
Authority
JP
Japan
Prior art keywords
electrolyte
positive electrode
lithium
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6114208A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshida
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP6114208A priority Critical patent/JPH07296849A/en
Publication of JPH07296849A publication Critical patent/JPH07296849A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To efficiently restrain a discharge capacity from decreasing as a cycle of charge and discharge proceeds by providing a negative electrode composed chiefly of a carbonaceous material storing and releasing Li, a positive electrode, and a nonaqueous electrolyte, and containing fluorosulfuric acid Li in the electrolyte. CONSTITUTION:A positive electrode 6 is formed when a complex oxide of Li and Co (LiCoO2), carbon powder serving as a conducting agent, and fluororesin powder serving as a binding agent are mixed sufficiently in a weight ratio of 90:3:7 and pressure molded. A negative electrode 3 is formed when graphite and fluororesin powder serving as a binding agent are mixed sufficiently in a weight ratio of 91:9 and pressure molded. The negative electrode 3 is made to abut the sealing plate 2 of a case 1 made of a stainless steel plate. A separator 5 is made from a polypropylene impregnated with an organic electrolyte. The positive electrode 6 is sealed by inwardly calking the open end of the case 1 serving also as a positive element, and clamping the outer periphery of the sealing plate 2 via a gasket 4. An organic solvent formed by the mixing of sulfolane and dimethyl carbonate in a volume ratio of 1:1 with fluorosulfuric acid Li dissolved therein at a concentration of 1mol/l is used as the organic solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくはメモリ保持電源としての高エネルギー密度でか
つ高い信頼性を有するリチウム電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery having high energy density and high reliability as a power source for driving electronic equipment or a memory holding power source.

【0002】[0002]

【従来の技術とその課題】電子機器の急激なる小形軽量
化に伴い、その電源である電池に対して小形で軽量かつ
高エネルギー密度で、更に繰り返し充放電が可能な二次
電池の開発への要求が高まっている。これら要求を満た
す二次電池として、非水電解質二次電池が最も有望であ
る。
2. Description of the Related Art With the rapid miniaturization and weight reduction of electronic equipment, the development of a secondary battery that is smaller, lighter in weight and high in energy density, and that can be repeatedly charged and discharged with respect to the power source battery The demand is increasing. Non-aqueous electrolyte secondary batteries are the most promising secondary batteries that meet these requirements.

【0003】非水電解質二次電池の正極活物質には、二
硫化チタンをはじめとしてリチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。なかでも、リチウムコバルト複合酸化物およ
びスピネル型リチウムマンガン酸化物は、4V(Li/Li+)
以上のきわめて貴な電位で充放電を行うため、正極と
して用いることで高い放電電圧を有する電池が実現でき
る。
Various positive electrode active materials for non-aqueous electrolyte secondary batteries such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been investigated. ing. Among them, the lithium cobalt composite oxide and the spinel type lithium manganese oxide are 4 V (Li / Li + )
Since charging / discharging is performed at the above extremely noble potential, a battery having a high discharge voltage can be realized by using it as a positive electrode.

【0004】非水電解質二次電池の負極活物質は、金属
リチウムをはじめとしてリチウムの吸蔵・放出が可能な
Li−Al合金や炭素材料など種々のものが検討されて
いるが、なかでも炭素材料は、安全性が高くかつサイク
ル寿命の長い電池が得られるという利点がある。
As a negative electrode active material for a non-aqueous electrolyte secondary battery, various materials such as metallic lithium, Li-Al alloys capable of inserting and extracting lithium, and carbon materials have been studied. Among them, carbon materials are particularly preferable. Has the advantage that a battery with high safety and long cycle life can be obtained.

【0005】しかし、この種二次電池における充放電反
応において、電解質が電気化学的に分解されやすい状況
にある。従って、電解液の選択においてこれらの点を考
慮した構成とすることが必要不可欠であり、種々の電解
液を用いることが提案されてきた。それらの大部分は、
溶媒としてプロピレンカーボネート、エチレンカーボネ
ート、γ−ブチロラクトン、スルホランなどの高誘電率
溶媒に1,2−ジメトキシエタン、ジメチルカーボネー
ト、エチルメチルカーボネート、ジエチルカーボネー
ト、エチルメチルスルホンなどの低粘度溶媒を混合した
ものである。
However, the electrolyte is liable to be electrochemically decomposed in the charge / discharge reaction in this type of secondary battery. Therefore, in selecting an electrolytic solution, it is indispensable to have a configuration in consideration of these points, and it has been proposed to use various electrolytic solutions. Most of them are
As a solvent, a mixture of propylene carbonate, ethylene carbonate, γ-butyrolactone, a high dielectric constant solvent such as sulfolane and a low viscosity solvent such as 1,2-dimethoxyethane, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl methyl sulfone is used. is there.

【0006】一方、溶質としては、過塩素酸リチウム、
トリフルオロメタンスルホン酸リチウム、四フッ化ホウ
酸リチウム、六フッ化燐酸リチウムなどが一般に用いら
れている。なかでも六フッ化燐酸リチウムは、安全性お
よび電気化学的安定性が高くかつ溶解させた電解液のイ
オン導電率が高いという理由から近年盛んに用いられる
ようになってきている。
On the other hand, as the solute, lithium perchlorate,
Lithium trifluoromethanesulfonate, lithium tetrafluoroborate, lithium hexafluorophosphate and the like are generally used. Among them, lithium hexafluorophosphate has been actively used in recent years because of its high safety and electrochemical stability and the high ionic conductivity of the dissolved electrolyte.

【0007】しかしながら上述したような電解液を用い
ても、充放電サイクルの進行にともない電池の放電容量
が低下するという問題があった。
However, even when the above-mentioned electrolytic solution is used, there is a problem that the discharge capacity of the battery decreases as the charging / discharging cycle progresses.

【0008】[0008]

【課題を解決するための手段】本発明は、リチウムを吸
蔵放出する炭素材料を主材とする負極と、正極と、非水
電解質とを備える二次電池において、前記電解質がフル
オロ硫酸リチウムを含有することで上記問題を解決する
ものである。
The present invention relates to a secondary battery comprising a negative electrode containing a carbon material which absorbs and releases lithium as a main component, a positive electrode and a non-aqueous electrolyte, wherein the electrolyte contains lithium fluorosulfate. By doing so, the above problem is solved.

【0009】[0009]

【作用】前述した如く、この種電池では電解液の分解反
応が生じやすく、これが電池性能を劣化させる主因とな
っている。発明者は、上記分解反応を詳細に検討したと
ころ下記の知見が得られた。電解質に過塩素酸リチウム
を用いた場合、正極活物質の貴な電位により過塩素リチ
ウムが分解し活性酸素が生成する。この活性酸素が溶媒
を攻撃して溶媒の分解反応を促進させることがわかっ
た。電解質にトリフルオロメタンスルホン酸リチウム、
四フッ化ホウ酸リチウムおよび六フッ化燐酸リチウムを
用いた場合は、正極活物質の貴な電位による電解質の分
解が進行しフッ素が生成する。このフッ素が溶媒を攻撃
して溶媒の分解反応を促進させることがわかった。しか
しながら、電解質にフルオロ硫酸リチウム用いると保存
特性にすぐれ、サイクル特性も良好な電池が得られるこ
とを見出し、本発明を完成するに至った。すなわち電解
質にフルオロ硫酸リチウムを用いると、それ自体化学的
および電気化学的に安定であるため電解液の分解反応が
起こりにくくなると考えられる。
As described above, in this type of battery, decomposition reaction of the electrolytic solution is likely to occur, which is the main cause of deterioration of battery performance. The inventor has obtained the following findings when the above decomposition reaction was examined in detail. When lithium perchlorate is used as the electrolyte, lithium perchlorate is decomposed and active oxygen is generated due to the noble potential of the positive electrode active material. It was found that this active oxygen attacks the solvent and accelerates the decomposition reaction of the solvent. Lithium trifluoromethanesulfonate as electrolyte
When lithium tetrafluoroborate and lithium hexafluorophosphate are used, decomposition of the electrolyte proceeds due to the noble potential of the positive electrode active material and fluorine is produced. It was found that this fluorine attacks the solvent and accelerates the decomposition reaction of the solvent. However, they have found that the use of lithium fluorosulfate as the electrolyte provides a battery having excellent storage characteristics and excellent cycle characteristics, and has completed the present invention. That is, when lithium fluorosulfate is used as the electrolyte, it is considered that the decomposition reaction of the electrolytic solution is difficult to occur because it is chemically and electrochemically stable in itself.

【0010】[0010]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
EXAMPLES The present invention will be described below with reference to preferred examples.

【0011】正極は、リチウムコバルト複合酸化物( L
iCoO2 )と導電剤としてのカーボ粉末および結着剤とし
てのフッ素樹脂粉末とを90:3:7の重量比で十分混
合したのち、加圧成型したものである。負極は、黒鉛と
結着剤としてのフッ素樹脂粉末とを91:9の重量比で
十分混合したのち、加圧成型したものである。
The positive electrode is a lithium cobalt composite oxide (L
iCoO 2 ), a carb powder as a conductive agent and a fluororesin powder as a binder were sufficiently mixed in a weight ratio of 90: 3: 7, and then pressure-molded. The negative electrode was obtained by sufficiently mixing graphite and fluororesin powder as a binder in a weight ratio of 91: 9, and then pressure-molding the mixture.

【0012】図1は、電池の縦断面図である。この図に
おいて1は、ステンレス(SUS316)鋼板を打ち抜き加工し
た正極端子を兼ねるケース、2はステンレス(SUS316)鋼
板を打ち抜き加工した負極端子を兼ねる封口板であり、
その内壁には負極3が当接されている。5は有機電解液
を含浸したポリプロピレンからなるセパレーター、6は
正極であり正極端子を兼ねるケース1の開口端部を内方
へかしめ、ガスケット4を介して負極端子を兼ねる封口
板2の外周を締め付けることにより密閉封口している。
FIG. 1 is a vertical sectional view of a battery. In this figure, 1 is a case that also serves as a positive electrode terminal made by punching a stainless steel (SUS316) steel plate, and 2 is a sealing plate that also serves as a negative electrode terminal made by punching a stainless steel (SUS316) steel plate,
The negative electrode 3 is in contact with the inner wall thereof. Reference numeral 5 is a separator made of polypropylene impregnated with an organic electrolyte, 6 is a positive electrode, and the opening end of the case 1 also serving as a positive electrode terminal is caulked inward, and the outer periphery of the sealing plate 2 also serving as a negative electrode terminal is tightened through a gasket 4. It is hermetically sealed.

【0013】有機電解液にはスルホランとジメチルカー
ボネートとを体積比1:1で混合した有機溶媒に、フル
オロ硫酸リチウムを1モル/リットルの濃度で溶解させ
たものを用いた。電池には、上記電解液を約150μl
注液した。
The organic electrolyte used was an organic solvent prepared by mixing sulfolane and dimethyl carbonate in a volume ratio of 1: 1 and dissolving lithium fluorosulfate at a concentration of 1 mol / liter. Approximately 150 μl of the above electrolyte is used in the battery
It was injected.

【0014】この電池寸法は直径20mm、高さ2mm
である。そして、このように作成した電池を本発明電池
(A)とした。
This battery has a diameter of 20 mm and a height of 2 mm.
Is. The battery thus prepared was used as the battery (A) of the present invention.

【0015】有機溶媒としてエチレンカーボネートとエ
チルメチルスルホンとの混合物(体積比1:1)、スル
ホランとエチルメチルスルホンとの混合物(体積比1:
1)を用いたことの他は本実施例と同様の構成とした本
発明の電池をそれぞれ(B)および(C)とした。
As the organic solvent, a mixture of ethylene carbonate and ethyl methyl sulfone (volume ratio 1: 1) and a mixture of sulfolane and ethyl methyl sulfone (volume ratio 1:
Batteries of the present invention having the same configuration as that of this example except that (1) was used were designated as (B) and (C), respectively.

【0016】さらに比較のために、電解質としてそれぞ
れ過塩素酸リチウム、トリフルオロメタンスルホン酸リ
チウム、四フッ化ほう酸リチウムおよび六フッ化燐酸リ
チウムを用いたこと他は、本発明の電池と同様の構成と
した比較電池をそれぞれ(ア)、(イ)、(ウ)および
(エ)と呼ぶ。
Further, for comparison, the same constitution as that of the battery of the present invention is used except that lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetrafluoroborate and lithium hexafluorophosphate are used as electrolytes, respectively. The prepared comparative batteries are referred to as (A), (B), (C) and (D), respectively.

【0017】次に、これらの電池を2.0mAの定電流
で、端子電圧が4.2Vに至るまで充電して、同じく
2.0mAの定電流で、端子電圧が3Vに達するまで放電
する充放電サイクル寿命試験を温度60℃でおこなっ
た。各電池の充放電サイクルの進行にともなう放電容量
の変化を図2に示す。
Next, these batteries are charged with a constant current of 2.0 mA until the terminal voltage reaches 4.2 V, and are also charged with a constant current of 2.0 mA until the terminal voltage reaches 3 V. A discharge cycle life test was conducted at a temperature of 60 ° C. FIG. 2 shows a change in discharge capacity with the progress of charge / discharge cycles of each battery.

【0018】図2の結果から明かなように、本発明電池
(A)、(B)および(C)は比較電池(ア)、
(イ)、(ウ)および(エ)に比べ充放電サイクルの進
行にともなう放電容量の低下が小さい。
As is clear from the results shown in FIG. 2, the batteries (A), (B) and (C) of the present invention are comparative batteries (A),
Compared to (a), (c) and (d), the decrease in discharge capacity with the progress of the charge and discharge cycle is small.

【0019】なお、上記実施例では正極活物質としてリ
チウムコバルト複合酸化物を用いる場合を説明したが、
リチウムニッケル複合酸化物(LiNiO2 )、二硫化チタ
ンをはじめとして二酸化マンガン、スピネル型リチウム
マンガン酸化物(LiMn 2 O4 )、五酸化バナジウム
および三酸化モリブデンなどの種々のものを用いること
ができる。また、負極としての炭素材料も特に限定され
ない。天然黒鉛、人造黒鉛の他に球状、繊維状などの黒
鉛や低結晶性の炭素材料などを用いることができる。さ
らに、溶媒も基本的に限定されず、従来の非水電解質二
次電池に用いられているものを用いることが出来る。た
とえば、有機溶媒としては非プロトン溶媒であるエチレ
ンカーボネートなどの環状エステル類およびテトラハイ
ドロフラン,ジオキソランなどのエーテル類があげら
れ、これら単独もしくは2種以上を混合した溶媒を用い
ることができ、固体電解質としてはポリエチレンオキサ
イドなどを用いることができる。また、上記実施例では
フルオロ硫酸リチウムを単体で用いる場合を説明した
が、過塩素酸リチウム、トリフルオロメタンスルホン酸
リチウム、四フッ化ホウ酸リチウム、六フッ化燐酸リチ
ウムなどの1種以上と混合して用いることができる。
In the above embodiment, the case where the lithium cobalt composite oxide is used as the positive electrode active material has been described.
Various materials such as lithium nickel composite oxide (LiNiO 2), titanium disulfide, manganese dioxide, spinel type lithium manganese oxide (LiMn 2 O 4), vanadium pentoxide and molybdenum trioxide can be used. The carbon material for the negative electrode is also not particularly limited. In addition to natural graphite and artificial graphite, spherical or fibrous graphite or a low crystalline carbon material can be used. Further, the solvent is basically not limited, and the solvent used in the conventional non-aqueous electrolyte secondary battery can be used. Examples of the organic solvent include cyclic esters such as ethylene carbonate, which is an aprotic solvent, and ethers such as tetrahydrofuran, dioxolane, and the like. These can be used alone or in a mixture of two or more thereof. For example, polyethylene oxide or the like can be used. In addition, although the case where lithium fluorosulfate is used alone has been described in the above examples, it is mixed with at least one of lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetrafluoroborate, and lithium hexafluorophosphate. Can be used.

【0020】なお、前記の実施例に係る電池はいずれも
コイン形電池であるが、円筒形、角形またはペーパー形
電池に本発明を適用しても同様の効果が得られる。
Although the batteries according to the above-mentioned embodiments are all coin type batteries, the same effect can be obtained by applying the present invention to cylindrical, prismatic or paper type batteries.

【0021】[0021]

【発明の効果】上述したごとく、リチウムを吸蔵放出す
る炭素材料を主材とする負極と、正極と、非水電解質と
を備える二次電池において、前記電解質がフルオロ硫酸
リチウムを含有することで、この種電池の問題である充
放電サイクルの進行にともなう放電容量の低下を有効に
抑制できるものであり、その工業的価値は極めて大であ
る。
As described above, in a secondary battery including a negative electrode containing a carbon material that absorbs and releases lithium as a main material, a positive electrode, and a non-aqueous electrolyte, the electrolyte contains lithium fluorosulfate, It is possible to effectively suppress the decrease in discharge capacity that accompanies the progress of charge and discharge cycles, which is a problem of this type of battery, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】非水電解質二次電池の一例であるボタン電池の
内部構造を示した図。
FIG. 1 is a diagram showing an internal structure of a button battery which is an example of a non-aqueous electrolyte secondary battery.

【図2】試験電池の充放電サイクルの進行にともなう放
電容量の変化を示した図。
FIG. 2 is a diagram showing a change in discharge capacity as a charge / discharge cycle of a test battery progresses.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極 1 Battery Case 2 Sealing Plate 3 Negative Electrode 4 Gasket 5 Separator 6 Positive Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵放出する炭素材料を主材と
する負極と、正極と、非水電解質とを備え、前記電解質
はフルオロ硫酸リチウムを含有しているものであること
を特徴とする非水電解質二次電池。
1. A negative electrode comprising a carbon material which absorbs and releases lithium as a main material, a positive electrode, and a non-aqueous electrolyte, wherein the electrolyte contains lithium fluorosulfate. Water electrolyte secondary battery.
JP6114208A 1994-04-28 1994-04-28 Nonaqueous electrolyte secondary battery Pending JPH07296849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6114208A JPH07296849A (en) 1994-04-28 1994-04-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6114208A JPH07296849A (en) 1994-04-28 1994-04-28 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH07296849A true JPH07296849A (en) 1995-11-10

Family

ID=14631921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6114208A Pending JPH07296849A (en) 1994-04-28 1994-04-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07296849A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522376A (en) * 2004-12-02 2008-06-26 オクシス・エナジー・リミテッド Lithium / sulfur battery electrolyte and lithium / sulfur battery using the same
WO2011099585A1 (en) 2010-02-12 2011-08-18 三菱化学株式会社 Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
WO2012141180A1 (en) 2011-04-11 2012-10-18 三菱化学株式会社 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
JP2012230897A (en) * 2011-04-13 2012-11-22 Mitsubishi Chemicals Corp Lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolyte secondary battery
CN103762381A (en) * 2011-02-10 2014-04-30 三菱化学株式会社 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using the same
JP2015125858A (en) * 2013-12-26 2015-07-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2015125857A (en) * 2013-12-26 2015-07-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2015195202A (en) * 2014-03-26 2015-11-05 三菱化学株式会社 Nonaqueous electrolyte secondary battery
CN106558733A (en) * 2015-09-30 2017-04-05 松下电器产业株式会社 Rechargeable nonaqueous electrolytic battery
JP2017079193A (en) * 2015-10-22 2017-04-27 国立研究開発法人産業技術総合研究所 Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same
WO2019059365A1 (en) 2017-09-22 2019-03-28 三菱ケミカル株式会社 Nonaqueous electrolyte, nonaqueous electrolyte secondary battery, and energy device
WO2019106947A1 (en) 2017-12-01 2019-06-06 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
JP2022051886A (en) * 2018-05-01 2022-04-01 トヨタ自動車株式会社 Battery assembly and manufacturing method for nonaqueous electrolyte secondary battery

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522376A (en) * 2004-12-02 2008-06-26 オクシス・エナジー・リミテッド Lithium / sulfur battery electrolyte and lithium / sulfur battery using the same
WO2011099585A1 (en) 2010-02-12 2011-08-18 三菱化学株式会社 Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
JP2011187440A (en) * 2010-02-12 2011-09-22 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
US9515348B2 (en) 2010-02-12 2016-12-06 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte secondary battery
KR20160043149A (en) 2010-02-12 2016-04-20 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
US8673489B2 (en) 2010-02-12 2014-03-18 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqeuous-electrolyte secondary battery
JP2016029668A (en) * 2010-02-12 2016-03-03 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
EP2958181A1 (en) 2010-02-12 2015-12-23 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery
CN103762381A (en) * 2011-02-10 2014-04-30 三菱化学株式会社 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using the same
US10476106B2 (en) 2011-02-10 2019-11-12 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
US11205802B2 (en) 2011-02-10 2021-12-21 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
US11791499B2 (en) 2011-02-10 2023-10-17 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
KR20190018543A (en) 2011-04-11 2019-02-22 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
WO2012141180A1 (en) 2011-04-11 2012-10-18 三菱化学株式会社 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
US11387484B2 (en) 2011-04-11 2022-07-12 Mitsubishi Chemical Corporation Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolytic solution secondary battery
CN105129825A (en) * 2011-04-11 2015-12-09 三菱化学株式会社 Method for producing lithium fluorosulfonate, and lithium fluorosulfonate
KR20200144581A (en) 2011-04-11 2020-12-29 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
KR20210129241A (en) 2011-04-11 2021-10-27 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
EP3782958A1 (en) 2011-04-11 2021-02-24 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution secondary battery
EP4219400A2 (en) 2011-04-11 2023-08-02 Mitsubishi Chemical Corporation Method for producing lithium fluorosulfonate, lithium fluorosulfonate, use of lithium fluorosulfonate in a nonaqueous electrolytic solution, and nonaqueous electrolytic solution
US10530008B2 (en) 2011-04-11 2020-01-07 Mitsubishi Chemical Corporation Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolytic solution secondary battery
KR20200011598A (en) 2011-04-11 2020-02-03 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
KR20200011596A (en) 2011-04-11 2020-02-03 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
JP2012230897A (en) * 2011-04-13 2012-11-22 Mitsubishi Chemicals Corp Lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolyte secondary battery
JP2016106369A (en) * 2011-04-13 2016-06-16 三菱化学株式会社 Lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolyte secondary battery
JP2015125857A (en) * 2013-12-26 2015-07-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2015125858A (en) * 2013-12-26 2015-07-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2015195202A (en) * 2014-03-26 2015-11-05 三菱化学株式会社 Nonaqueous electrolyte secondary battery
CN106558733B (en) * 2015-09-30 2021-10-01 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
CN106558733A (en) * 2015-09-30 2017-04-05 松下电器产业株式会社 Rechargeable nonaqueous electrolytic battery
JP2017079193A (en) * 2015-10-22 2017-04-27 国立研究開発法人産業技術総合研究所 Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same
WO2019059365A1 (en) 2017-09-22 2019-03-28 三菱ケミカル株式会社 Nonaqueous electrolyte, nonaqueous electrolyte secondary battery, and energy device
WO2019106947A1 (en) 2017-12-01 2019-06-06 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
JP2022051886A (en) * 2018-05-01 2022-04-01 トヨタ自動車株式会社 Battery assembly and manufacturing method for nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US20090053594A1 (en) Rechargeable air battery and manufacturing method
JPH1027626A (en) Lithium secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JPH07335261A (en) Lithium secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH11283667A (en) Lithium ion battery
JP2705529B2 (en) Organic electrolyte secondary battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP2778065B2 (en) Non-aqueous electrolyte secondary battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JPH08138745A (en) Nonaqueous electrolyte secondary battery
JPH10116632A (en) Non-aqueous electrolyte secondary battery
JP2003229112A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JPH09120837A (en) Nonaqueous electrolyte secondary battery
JPH1027627A (en) Lithium secondary battery
JP3348175B2 (en) Organic electrolyte secondary battery
JPH1197062A (en) Organic electrolyte secondary battery
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JP2730641B2 (en) Lithium secondary battery
JPH08138741A (en) Organic electrolyte secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP2845069B2 (en) Organic electrolyte secondary battery
JPH07220758A (en) Lithium battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030128