JPH09120837A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09120837A
JPH09120837A JP7280679A JP28067995A JPH09120837A JP H09120837 A JPH09120837 A JP H09120837A JP 7280679 A JP7280679 A JP 7280679A JP 28067995 A JP28067995 A JP 28067995A JP H09120837 A JPH09120837 A JP H09120837A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
electrolyte secondary
aqueous
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7280679A
Other languages
Japanese (ja)
Other versions
JP3546566B2 (en
Inventor
Yoshiaki Naruse
義明 成瀬
Shigeru Fujita
茂 藤田
Tokuo Komaru
篤雄 小丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP28067995A priority Critical patent/JP3546566B2/en
Publication of JPH09120837A publication Critical patent/JPH09120837A/en
Application granted granted Critical
Publication of JP3546566B2 publication Critical patent/JP3546566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the initial capacity and cyclic characteristics of a secondary battery by using a certain quantity of specific sulfite and a requisite carbonate as a non-aqueous solvent to form a non-aqueous electrolyte. SOLUTION: A secondary battery concerned with a non-aqueous electrolyte is composed of a negative electrode prepared through lithium doping/dedoping from a carbonic material having a plane spacing of 0.340nm or less, a positive electrode consisting of composite oxides containing lithium and one or more transfer metals, and a non-aqueous electrolyte. The solvent of this non-aqueous electrolyte is prepared as a mixture of ethylene carbonate and 0.05-10vol.% glycol sulfite of structure according to the given expression, and thereby a non-aqueous electrolyte secondary battery equipped with an enhanced initial capacity and cyclic characteristics is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、非水電解液二次電
池に関し、より詳しくは、特定の非水溶媒を使用するこ
とによりサイクル特性を向上させた非水電解液二次電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having improved cycle characteristics by using a specific non-aqueous solvent.

【0002】[0002]

【従来の技術】近年のカメラー体型VTR、電話、ラッ
プトップコンピューター等の電子機器の小型軽量化、ポ
ータブル化に伴い、これら電子機器の供給電源となる二
次電池に対しても軽量、かつ高容量であることがますま
す求められるようになっている。
2. Description of the Related Art With the recent miniaturization and portability of electronic devices such as camera body type VTRs, telephones, and laptop computers, the secondary batteries serving as the power supply for these electronic devices are lightweight and have a high capacity. Is becoming more and more demanding.

【0003】二次電池としては、従来より用いられてい
る鉛二次電池やニッケル・カドミウム二次電池、最近提
案された非水電解液二次電池(リチウムイオン二次電
池)が挙げられるが、なかでも非水電解液二次電池は、
軽量で高エネルギー密度が得られる、高電圧が発生でき
る、安全性が高い、無公害である等の利点を有し、さら
なる特性の改善を図るべく、活発に研究開発が進められ
ている。
Examples of the secondary battery include a lead secondary battery conventionally used, a nickel-cadmium secondary battery, and a recently proposed non-aqueous electrolyte secondary battery (lithium ion secondary battery). Among them, the non-aqueous electrolyte secondary battery is
It has advantages such as light weight, high energy density, high voltage generation, high safety, and no pollution, and active research and development is underway to further improve its characteristics.

【0004】上記非水電解液二次電池は、基本的には、
リチウムをドープ・脱ドープすることが可能な負極と、
正極、及び非水溶媒に電解質としてリチウム塩が溶解さ
れてなる非水電解液とを備えて構成される。
Basically, the above non-aqueous electrolyte secondary battery is
A negative electrode capable of doping and dedoping lithium,
It comprises a positive electrode and a non-aqueous electrolytic solution in which a lithium salt is dissolved as an electrolyte in a non-aqueous solvent.

【0005】このうち、正極活物質としては、例えばリ
チウム遷移金属複合酸化物が挙げられる。
Among these, examples of the positive electrode active material include a lithium transition metal composite oxide.

【0006】また、負極活物質としては、リチウムをド
ープ・脱ドープすることが可能な炭素材料が挙げられ
る。炭素材料は、電池のサイクル特性を改善させられる
負極材料として期待されており、なかでも特に黒鉛材料
は、単位体積当たりのエネルギー密度を向上させられる
材料として期待されている。
Further, as the negative electrode active material, a carbon material capable of doping / dedoping lithium can be mentioned. Carbon materials are expected as negative electrode materials capable of improving the cycle characteristics of batteries, and graphite materials in particular are expected as materials capable of improving the energy density per unit volume.

【0007】[0007]

【発明が解決しようとする課題】ところで、以上のよう
な非水電解液二次電池では、正極、負極の特性も勿論重
要であるが、良好な特性を得るためには、リチウムイオ
ンの移送を担う非水電解液の特性も重要である。
In the non-aqueous electrolyte secondary battery as described above, the characteristics of the positive electrode and the negative electrode are of course important, but in order to obtain good characteristics, it is necessary to transfer lithium ions. The properties of the non-aqueous electrolyte that it bears are also important.

【0008】この非水電解液を構成する非水溶媒として
は、通常、電解質の溶解能力の高い高誘電率溶媒と、電
解質イオンの移送能力の高い低粘度溶媒が組み合わせて
用いられる。例えぱ高誘電率溶媒となるプロピレンカー
ボネート(PC)と、低粘度溶媒となる1,2−ジメト
キシメタン(DME)、2−メチルテトラヒドロフラン
(2−MeTHF)、ジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)、ジエチル
カーボネート(DEC)等を混合してなるPC系電解液
は、高い導電率が得られ、電池のサイクル特性を向上で
きる点から、従来より汎用されている。
As the non-aqueous solvent constituting this non-aqueous electrolytic solution, a high dielectric constant solvent having a high electrolyte dissolving ability and a low viscosity solvent having a high electrolyte ion transferring ability are usually used in combination. For example, propylene carbonate (PC) which is a high dielectric constant solvent, 1,2-dimethoxymethane (DME) which is a low viscosity solvent, 2-methyltetrahydrofuran (2-MeTHF), dimethyl carbonate (DM).
C), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), and other PC-based electrolytic solutions have been widely used since they have high conductivity and can improve battery cycle characteristics. .

【0009】しかしながら、PC系電解液は、これまで
に提案されている他の溶媒よりは優れているものの、近
年要求されている特性を非水電解液に付与するという観
点から見ると、十分満足のいくものとは言えない。
However, although the PC-based electrolytic solution is superior to the other solvents proposed so far, it is sufficiently satisfactory from the viewpoint of imparting the properties required in recent years to the non-aqueous electrolytic solution. It's not cheap.

【0010】また、黒鉛材料を負極として使用した非水
電解液二次電池の場合は、プロピレンカーボネートを多
く含む電解液を用いると、溶媒として使用しているプロ
ピレンカーボネートが分解してしまうため、特性が悪化
するという問題がある。
Further, in the case of a non-aqueous electrolyte secondary battery using a graphite material as a negative electrode, if an electrolyte solution containing a large amount of propylene carbonate is used, propylene carbonate used as a solvent is decomposed, so There is a problem that is worse.

【0011】この点に関しては、プロピレンカーボネー
トの代わりにエチレンカーボネート(EC)等の分解し
にくい溶媒を用いることによって、電解液の分解が抑制
され、非水電解液二次電池として使用可能となること
が、我々のこれまでの検討でもわかっている。
With respect to this point, the use of a solvent that does not decompose easily, such as ethylene carbonate (EC), in place of propylene carbonate suppresses the decomposition of the electrolytic solution and enables the battery to be used as a non-aqueous electrolytic solution secondary battery. But we know from our previous studies.

【0012】しかしながら、エチレンカーボネートを電
解液用の溶媒として使用した非水電解液二次電池は、詳
細な原因は不明であるが、サイクル特性が悪くなるとい
う問題がある。
However, although the detailed cause of the non-aqueous electrolyte secondary battery using ethylene carbonate as a solvent for the electrolyte solution is unknown, there is a problem that the cycle characteristics deteriorate.

【0013】本発明は、このような従来技術の課題を解
決しようとするものであり、エネルギー密度が高く、サ
イクル特性に優れた非水電解液二次電池を提供すること
を目的とする。
The present invention is intended to solve the problems of the prior art, and an object thereof is to provide a non-aqueous electrolyte secondary battery having a high energy density and excellent cycle characteristics.

【0014】[0014]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために種々の検討を重ねた結果、電解液用非
水溶媒として、エチレンカーボネート(EC)とグリコ
ールサルファイト(GS)を含み、特にGSを0.05
〜10容量%の割合で含む溶媒を使用することで、初期
容量を向上し、サイクル特性をも向上させることができ
ることを見いだし、この発明を完成させるに至った。
The inventors of the present invention have conducted various studies to achieve the above object, and as a result, ethylene carbonate (EC) and glycol sulfite (GS) have been used as nonaqueous solvents for electrolytes. , Especially GS 0.05
It was found that the use of a solvent containing 10 to 10% by volume can improve the initial capacity and the cycle characteristics, and have completed the present invention.

【0015】本発明は、このような知見に基づいて完成
されたものであり、リチウムをドープ・脱ドープするこ
とが可能な炭素材料からなる負極と、正極と、非水溶媒
に電解質が溶解されてなる非水電解液とを備える非水電
解液二次電池において、上記非水溶媒が、エチレンカー
ボネートと下記の化2で示されるグリコールサルファイ
トを含み、且つグリコールサルファイトの割合が0.0
5容量%〜10容量%であることを特徴とするものであ
る。
The present invention has been completed on the basis of such findings, and a negative electrode made of a carbon material capable of doping and dedoping lithium, a positive electrode, and an electrolyte dissolved in a non-aqueous solvent. In a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte solution, the non-aqueous solvent contains ethylene carbonate and glycol sulfite represented by the following chemical formula 2, and the ratio of glycol sulfite is 0.0
It is characterized by being 5% by volume to 10% by volume.

【0016】[0016]

【化2】 Embedded image

【0017】本発明は、リチウムをドープ・脱ドープ可
能な炭素材料よりなる負極と、正極と、非水溶媒に電解
質が溶解されてなる非水電解液とを備える非水電解液二
次電池に適用される。
The present invention provides a non-aqueous electrolyte secondary battery comprising a negative electrode made of a carbon material capable of being doped and dedoped with lithium, a positive electrode, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent. Applied.

【0018】本発明では、このような非水電解液二次電
池においてよく使用されるエチレンカーボネート(以
下、単にECという。)に、グリコールサルファイト
(以下、単にGSという。)を混合して使用することと
する。
In the present invention, ethylene carbonate (hereinafter simply referred to as EC) often used in such a non-aqueous electrolyte secondary battery is mixed with glycol sulfite (hereinafter simply referred to as GS) and used. I decided to.

【0019】ここで、GSについては、非水電解液二次
電池の電解液溶媒に用いることが提案されている(特開
平6−302336号)が、我々の検討では、この例に
あるようにGSを多量に含む溶媒を用いると、逆に特性
が悪化することがわかっている。
Here, it has been proposed to use GS as an electrolyte solvent for a non-aqueous electrolyte secondary battery (Japanese Patent Laid-Open No. 6-302336), but in our study, as shown in this example. On the contrary, it has been known that the characteristics deteriorate when a solvent containing a large amount of GS is used.

【0020】本発明者らの検討では、GSの混合比を適
正な範囲(0.05〜10容量%)とすることにより、
混合しない場合と比較して初期容量を向上させられ、且
つサイクル特性をも向上させられるようになることがわ
かった。
According to the studies by the present inventors, by setting the mixing ratio of GS within an appropriate range (0.05 to 10% by volume),
It was found that the initial capacity and the cycle characteristics can be improved as compared with the case where no mixing is performed.

【0021】なお、非水溶媒としては、ECとGSを混
合して使用していればよく、ECとGSのみで用いても
よいが、例えば低粘度溶媒である1,2−ジメトキシメ
タン(DME)、2−メチルテトラヒドロフラン(2−
MeTHF)、ジメチルカーボネート(DMC)、メチ
ルエチルカーボネート(MEC)、ジエチルカーボネー
ト(DEC)、プロピオン酸メチル、プロピオン酸エチ
ル、酪酸メチル等の鎖状エステルと混合して用いること
ができる。なかでも、DMC、MEC、DEC等の鎖状
炭酸エステルとの混合がより好ましい。
As the non-aqueous solvent, EC and GS may be mixed and used, and EC and GS may be used alone. For example, 1,2-dimethoxymethane (DME) which is a low-viscosity solvent is used. ), 2-methyltetrahydrofuran (2-
MeTH), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propionate, ethyl propionate, methyl butyrate and the like can be mixed and used as a chain ester. Above all, it is more preferable to mix it with a chain ester carbonate such as DMC, MEC or DEC.

【0022】また、上記の非水溶媒に溶解させる電解質
は、特に限定されず、従来の非水電解液二次電池で用い
られているものがいずれも使用できる。例えばLiCl
4、LiAsF6、LiPF6、LiBF4、LiCF3
SO3、LiN(CF3SO22等が使用でき、このうち
特にLiPF6、LiBF4を使用することが好ましい。
The electrolyte to be dissolved in the above non-aqueous solvent is not particularly limited, and any of those used in conventional non-aqueous electrolyte secondary batteries can be used. For example LiCl
O 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3
SO 3 , LiN (CF 3 SO 2 ) 2 or the like can be used, and among these, LiPF 6 and LiBF 4 are particularly preferably used.

【0023】一方、上記非水電解液と組み合わせて用い
られる正極、負極としては、やはり通常この種の非水電
解液二次電池で用いられるものが使用される。
On the other hand, as the positive electrode and the negative electrode used in combination with the above non-aqueous electrolyte, those usually used in this type of non-aqueous electrolyte secondary battery are also used.

【0024】まず、正極活物質としては、電池容量を向
上させ、エネルギー密度を高めるという点から、リチウ
ムと1種以上の遷移金属を含有する複合酸化物を主体と
する活物質を使用することが好ましい。例えば、Lix
MO2(式中、Mは1種以上の遷移金属を表し、xは電
池の充放電状態により異なり、通常0.05≦x≦1.
10である)で表されるものが適している。この場合、
特に遷移金属Mとしては、Co、Ni、Mnの少なくと
も1種であることが好ましい。ここで、遷移金属MがM
nである場合、LixMnO2、LixMn24のいずれ
も使用することができる。
First, as the positive electrode active material, an active material mainly composed of a composite oxide containing lithium and one or more kinds of transition metals may be used from the viewpoint of improving battery capacity and energy density. preferable. For example, Li x
MO 2 (In the formula, M represents one or more kinds of transition metals, x varies depending on the charge / discharge state of the battery, and usually 0.05 ≦ x ≦ 1.
10) are suitable. in this case,
In particular, the transition metal M is preferably at least one of Co, Ni and Mn. Here, the transition metal M is M
When n, both Li x MnO 2 and Li x Mn 2 0 4 can be used.

【0025】次に、負極活物質としては、リチウムをド
ープ・脱ドープすることが可能な炭素材料を使用するこ
ととする。このうち特に、(002)面の面間隔が0.
340nm以下である炭素材料がより好ましい。さらに
好ましくは、C軸方向の結晶子厚みが16.0nm以
上、ラマンスペクトルにおけるG値が2.5以上、真密
度が2.1g/m3以上の結晶構造パラメーターを有す
る黒鉛材料である。
Next, as the negative electrode active material, a carbon material capable of being doped and dedoped with lithium is used. Among these, especially, the surface spacing of the (002) plane is 0.
A carbon material having a thickness of 340 nm or less is more preferable. More preferred is a graphite material having a crystal structure parameter having a crystallite thickness in the C-axis direction of 16.0 nm or more, a G value in a Raman spectrum of 2.5 or more, and a true density of 2.1 g / m 3 or more.

【0026】なお、ここでC値とは、ラマンスペクトル
において、炭素材料の黒鉛構造に由来するシグナル強度
と非晶質構造に由来するシグナル強度との比を表すもの
であり、ミクロな結晶構造欠陥の指標となるものであ
る。
Here, the C value represents the ratio of the signal intensity derived from the graphite structure of the carbon material to the signal intensity derived from the amorphous structure in the Raman spectrum, which is a microscopic crystal structure defect. Is an index of.

【0027】なお、このような活物質から電極を形成す
るに際しては、公知の導電材や結着材等を添加すること
ができる。
When forming an electrode from such an active material, a known conductive material, binder or the like can be added.

【0028】以上のような正極活物質、負極活物質は、
電池形状に応じた各種形態で正極、負極となされる。
The positive electrode active material and the negative electrode active material as described above are
The positive electrode and the negative electrode are formed in various forms according to the shape of the battery.

【0029】例えば、コイン型の電池の場合では、上記
正極活物質を導電材、結着材と混練し、この混練物を円
盤状に圧縮成型したものが正極として用いられ、上記負
極活物質を結着材と混練し、この混練物をやはり円盤状
に圧縮成型したものが負極として用いられる。ここで、
活物質と混練する結着材、導電材としては、従来公知の
ものがいずれも使用可能である。
For example, in the case of a coin-type battery, the positive electrode active material is kneaded with a conductive material and a binder, and the kneaded product is compression-molded into a disk, which is used as the positive electrode. A negative electrode is obtained by kneading with a binder and compression-molding the kneaded product into a disk shape. here,
As the binder and the conductive material that are kneaded with the active material, any conventionally known materials can be used.

【0030】なお、電池の形状は、コイン型に限らず、
円筒型、角型、ボタン型等の種々の形状を採用すること
ができ、大型、小型を問わない。この場合、正極、負極
の態様をそれぞれの形状、大きさ等に応じて変更すれば
よい。
The shape of the battery is not limited to the coin type,
Various shapes such as a cylindrical shape, a square shape, and a button shape can be adopted, regardless of large size or small size. In this case, the modes of the positive electrode and the negative electrode may be changed according to their shapes and sizes.

【0031】いずれにしても、本発明の非水電解液二次
電池においては、非水電解液溶媒としてエチレンカーボ
ネートとグリコールサルファイトを含む溶媒を用い、ま
たグリコールサルファイトの量を適正な範囲に抑えてい
るので、非水電解液二次電池の初期容量やサイクル特性
が改善される。
In any case, in the non-aqueous electrolyte secondary battery of the present invention, a solvent containing ethylene carbonate and glycol sulfite is used as the non-aqueous electrolyte solvent, and the amount of glycol sulfite is adjusted to an appropriate range. Since it is suppressed, the initial capacity and cycle characteristics of the non-aqueous electrolyte secondary battery are improved.

【0032】[0032]

【実施例】以下、本発明を適用した実施例について、具
体的な実験結果に基づいて説明する。
EXAMPLES Examples to which the present invention is applied will be described below based on concrete experimental results.

【0033】作製した電池の構造 後述の各実施例、比較例において作製した電池の構造を
図1に示す。
Structure of Battery Produced FIG. 1 shows the structure of the battery produced in each of Examples and Comparative Examples described later.

【0034】この電池は、負極集電体9に負極活物質を
塗布してなる負極1と、正極集電体10に正極活物質を
塗布してなる正極2とを、セパレーター3を介して巻回
し、巻回体の上下に絶縁体4を載置した状態で電池缶5
に収納してなるものである。
In this battery, a negative electrode 1 obtained by applying a negative electrode active material to a negative electrode current collector 9 and a positive electrode 2 obtained by applying a positive electrode active material to a positive electrode current collector 10 are wound with a separator 3 in between. Turn the battery can 5 with the insulator 4 placed on the top and bottom of the wound body.
It is stored in.

【0035】上記電池缶5には、電池蓋7が封ロガスケ
ット6を介してかしめることによって取り付けられ、そ
れぞれ負極リード11及び正極リード12を介して負極
1あるいは正極2と電気的に接続され、電池の負極ある
いは正極として機能するように構成されている。
A battery lid 7 is attached to the battery can 5 by caulking with a sealing gasket 6, and is electrically connected to the negative electrode 1 or the positive electrode 2 via a negative electrode lead 11 and a positive electrode lead 12, respectively. , And is configured to function as a negative electrode or a positive electrode of a battery.

【0036】負極1は以下のように作製した。The negative electrode 1 was manufactured as follows.

【0037】負極活物質である黒鉛粉末(ロンザ社製、
商品名KS‐75)を90重量部、結着材となるボリフ
ッ化ビニリデンを10重量部の割合で混合して負極合剤
を作製し、これをN−メチル−ピロリドンに分散させて
スラリー状としたものを負極集電体9である厚さl0μ
mの帯状の銅箔の両面に均一に塗布し、乾燥後、ロール
プレス機で圧縮成型し、負極1とした。
Graphite powder as an anode active material (manufactured by Lonza Co.,
90 parts by weight of product name KS-75) and 10 parts by weight of polyvinylidene fluoride serving as a binder are mixed to prepare a negative electrode mixture, which is dispersed in N-methyl-pyrrolidone to form a slurry. The obtained product is a negative electrode current collector 9 having a thickness of 10 μm.
m was applied uniformly on both sides of a strip-shaped copper foil, dried, and compression-molded by a roll press machine to obtain a negative electrode 1.

【0038】上記黒鉛粉末(商品名KS‐75)は、
(002)面間隔が0.3358nm、C軸結晶子厚み
が25.4nm、ラマンスペクトルにおけるG値が8.
82、真密度が2.23g/m3なる結晶構造パラメー
ターを有し、平均粒径が28.4μmである。
The above graphite powder (trade name KS-75) is
The (002) plane spacing is 0.3358 nm, the C-axis crystallite thickness is 25.4 nm, and the G value in the Raman spectrum is 8.
82, the true density is 2.23 g / m 3 , and the average grain size is 28.4 μm.

【0039】一方、正極2は以下のように作製した。On the other hand, the positive electrode 2 was manufactured as follows.

【0040】正極活物質には、炭酸リチウムと炭酸コバ
ルトを0.5mol:1.0molの比で混合し、空気
中で900℃、5時間焼成して得たLiCoO2を用
い、これを91重量部、導電剤としてグラファイトを6
重量部、結着剤としてポリフッ化ビニリデンを3重量部
の割合で混合して正極合剤を作製し、さらにN−メチル
−2−ピロリドンに分散させてスラリー状としたものを
正極集電体10である厚さ20μmの帯状のアルミニウ
ム箔の両面に均一に塗布し、乾燥後、ロールプレス機で
圧縮成型し、正極2とした。
LiCoO 2 obtained by mixing lithium carbonate and cobalt carbonate in a ratio of 0.5 mol: 1.0 mol and firing in air at 900 ° C. for 5 hours was used as the positive electrode active material. Part, graphite as conductive agent 6
By weight, polyvinylidene fluoride as a binder was mixed at a ratio of 3 parts by weight to prepare a positive electrode mixture, which was further dispersed in N-methyl-2-pyrrolidone to form a slurry. Was uniformly applied to both surfaces of a strip-shaped aluminum foil having a thickness of 20 μm, dried, and compression-molded with a roll press machine to obtain a positive electrode 2.

【0041】この帯状の正極2、負極1及び厚さ25μ
mの微孔性ポリプロピレンフィルムからなるセパレータ
ー3を順次積層し、これを渦巻き型に多数回巻回するこ
とにより巻回体を作製した。
This strip-shaped positive electrode 2, negative electrode 1 and thickness 25 μm
A separator 3 made of a microporous polypropylene film of m was sequentially laminated, and the spiral wound type was wound many times to prepare a wound body.

【0042】次に、ニッケルメッキを施した鉄製の電池
缶5の底部に絶縁体4を挿入し、上記巻回体を収納し
た。そして、負極の集電をとるために、ニッケル製の負
極リード11の一端を負極1に圧着し、他端を電池缶5
に溶接した。また、正極の集電をとるためにアルミニウ
ム製の正極リード12の一端を正極2に取り付け、他端
を電池電圧に応じて電流を遮断する電流遮断用薄板8を
介して電池蓋7と電気的に接続した。
Next, the insulator 4 was inserted into the bottom of the nickel-plated iron battery can 5 and the wound body was housed. Then, in order to collect current from the negative electrode, one end of a negative electrode lead 11 made of nickel is pressure-bonded to the negative electrode 1, and the other end is connected to the battery can 5.
Welded to. Further, one end of a positive electrode lead 12 made of aluminum is attached to the positive electrode 2 to collect current from the positive electrode, and the other end is electrically connected to the battery lid 7 via a thin plate 8 for interrupting a current according to the battery voltage. Connected to.

【0043】そして、この電池缶5の中に電解液を注入
し、アスファルトを塗布した絶縁封ロガスケット6を介
して、電池缶5をかしめる事で電池蓋7を固定し、直径
18mm、高さ65mmの円筒型非水電解液二次電池を
作製した。
Then, the electrolytic solution is injected into the battery can 5, and the battery can 5 is caulked through the asphalt-coated insulation-sealing gasket 6 to fix the battery lid 7, and the diameter of the battery can is 18 mm. A 65 mm thick cylindrical non-aqueous electrolyte secondary battery was produced.

【0044】実施例1〜7、比較例1〜3 下記の表1に示すような割合でEC、GS、DMCを混
合した混合溶媒に電解質としてLiPF6を1モル/l
の濃度で溶解させて電解液を調製し、これを上述のよう
にして作製した円筒型非水電解液二次電池に注入した。
Examples 1 to 7 and Comparative Examples 1 to 3 LiPF 6 was used as an electrolyte in a mixed solvent prepared by mixing EC, GS and DMC in a ratio as shown in Table 1 below at 1 mol / l.
An electrolyte solution was prepared by dissolving the electrolyte solution at a concentration of, and this was injected into the cylindrical non-aqueous electrolyte secondary battery produced as described above.

【0045】[0045]

【表1】 [Table 1]

【0046】電池特性の評価 実施例1〜7及び比較例1〜3の非水電解液二次電池に
ついて、次のようにサイクル特性を評価した。
Evaluation of Battery Characteristics The cycle characteristics of the non-aqueous electrolyte secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3 were evaluated as follows.

【0047】先ず、23℃で上限電圧を4.2Vに設定
して1Aで3時間定電流定電圧充電し、続いて0.7A
の定電流で終止電圧2.75Vまで放電を行って1サイ
クルとして、このような充放電を100サイクル繰り返
し、 100サイクル目の容量/2サイクル目の容量×100
=容量維持率(%) としてサイクル特性を調べ、初期容量と容量維持率の結
果を表2に示した。
First, the upper limit voltage was set to 4.2 V at 23 ° C., and the battery was charged with a constant current and constant voltage at 1 A for 3 hours, and then 0.7 A.
The discharge is performed at a constant current of 2.75 V to a final voltage of 2.75 V as one cycle, and such charging / discharging is repeated 100 times.
= Capacity retention rate (%), the cycle characteristics were examined, and the results of initial capacity and capacity retention rate are shown in Table 2.

【0048】[0048]

【表2】 [Table 2]

【0049】この結果から、GSを混合していない比較
例1と比較して、実施例1〜7の非水電解液二次電池
は、100サイクル目の容量維持率が高く、優れたサイ
クル特性を示すことがわかった。
From these results, as compared with Comparative Example 1 in which GS was not mixed, the nonaqueous electrolyte secondary batteries of Examples 1 to 7 had a high capacity retention ratio at the 100th cycle and had excellent cycle characteristics. Was found to show.

【0050】また、GSを10容量%より多い割合で混
合した比較例2、3の非水電解液二次電池では、初期容
量が低下し、サイクル特性も悪くなることがわかった。
It was also found that in the non-aqueous electrolyte secondary batteries of Comparative Examples 2 and 3 in which GS was mixed in a proportion of more than 10% by volume, the initial capacity was lowered and the cycle characteristics were also deteriorated.

【0051】これらの結果より、GSを混合すると初期
容量とサイクル特性を向上させることができるが、混合
割合があまり多くなりすぎるとかえって特性が悪くな
り、適正な範囲で混合することが重要であるとの結論を
得るに至った。
From these results, it is possible to improve the initial capacity and the cycle characteristics by mixing GS, but if the mixing ratio is too large, the characteristics deteriorate rather and it is important to mix in an appropriate range. I came to the conclusion.

【0052】[0052]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池は、電解液の非水溶媒としてエ
チレンカーボネートとグリコールサルファイトを含み、
特にグリコールサルファイトを0.05〜10容量%の
割合で含むので、初期容量を確保しつつサイクル特性を
大幅に改善することができる。
As is apparent from the above description, the non-aqueous electrolyte secondary battery of the present invention contains ethylene carbonate and glycol sulfite as a non-aqueous solvent of the electrolyte,
In particular, since glycol sulphite is contained in a proportion of 0.05 to 10% by volume, the cycle characteristics can be greatly improved while ensuring the initial capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】作製した非水電解液二次電池の構成を示す概略
断面図である。
FIG. 1 is a schematic cross-sectional view showing a configuration of a produced non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1 負極 2 正極 3 セパレータ 1 Negative electrode 2 Positive electrode 3 Separator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムをドープ・脱ドープすることが
可能な炭素材料からなる負極と、正極と、非水溶媒に電
解質が溶解されてなる非水電解液とを備える非水電解液
二次電池において、 上記非水溶媒が、エチレンカーボネートと下記の化1で
示されるグリコールサルファイトを含み、且つグリコー
ルサルファイトの割合が0.05容量%〜10容量%で
あることを特徴とする非水電解液二次電池。 【化1】
1. A non-aqueous electrolyte secondary battery comprising a negative electrode made of a carbon material capable of being doped and dedoped with lithium, a positive electrode, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent. In the above non-aqueous electrolysis, the non-aqueous solvent contains ethylene carbonate and glycol sulfite represented by the following chemical formula 1, and the proportion of glycol sulfite is 0.05% by volume to 10% by volume. Liquid secondary battery. Embedded image
【請求項2】 負極を構成する炭素材料の(002)面
の面間隔が0.340nm以下であることを特徴とする
請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon material constituting the negative electrode has a (002) plane spacing of 0.340 nm or less.
【請求項3】 正極が、リチウムと1種以上の遷移金属
を含有する複合酸化物からなることを特徴とする請求項
1記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode comprises a composite oxide containing lithium and at least one transition metal.
【請求項4】 非水溶媒が鎖状エステルを含むことを特
徴とする請求項1記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous solvent contains a chain ester.
【請求項5】 鎖状エステルがジエチルカーボネート、
メチルエチルカーボネート、ジエチルカーボネートから
選ばれた少なくとも1種であることを特徴とする請求項
4記載の非水電解液二次電池。
5. The chain ester is diethyl carbonate,
The non-aqueous electrolyte secondary battery according to claim 4, which is at least one selected from methyl ethyl carbonate and diethyl carbonate.
【請求項6】 エチレンカーボネートの割合が10容量
%〜50容量%であることを特徴とする請求項1記載の
非水電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the proportion of ethylene carbonate is 10% by volume to 50% by volume.
JP28067995A 1995-10-27 1995-10-27 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3546566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28067995A JP3546566B2 (en) 1995-10-27 1995-10-27 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28067995A JP3546566B2 (en) 1995-10-27 1995-10-27 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09120837A true JPH09120837A (en) 1997-05-06
JP3546566B2 JP3546566B2 (en) 2004-07-28

Family

ID=17628429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28067995A Expired - Fee Related JP3546566B2 (en) 1995-10-27 1995-10-27 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3546566B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016144A1 (en) * 1997-09-19 1999-04-01 Mitsubishi Chemical Corporation Non-aqueous electrolyte cell
EP1022799A2 (en) * 1999-01-25 2000-07-26 Wilson Greatbatch Limited Sulfite additives for non-aqueous electrolyte rechargeable cells
JP2004281073A (en) * 2003-03-12 2004-10-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte and battery therewith
EP1176659A3 (en) * 2000-07-25 2006-05-31 Samsung SDI Co. Ltd. Electrolyte for a lithium-sulfur battery and a lithium-sulfur battery using the same
WO2007020876A1 (en) 2005-08-18 2007-02-22 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
US7368203B2 (en) 2002-09-30 2008-05-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cell
CN100394634C (en) * 2001-08-29 2008-06-11 三菱化学株式会社 Electrolyte for lithium battery, and lithium battery containing electrolyte
JP2015088261A (en) * 2013-10-29 2015-05-07 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
US10587006B2 (en) 2013-10-29 2020-03-10 Samsung Sdi Co., Ltd. Rechargeable lithium ion battery, and manufacturing method for rechargeable lithium ion battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670078B1 (en) 1997-09-19 2003-12-30 Mitsubishi Chemical Corporation Non-aqueous electrolyte cell with a solvent including a S-O bond
WO1999016144A1 (en) * 1997-09-19 1999-04-01 Mitsubishi Chemical Corporation Non-aqueous electrolyte cell
EP1022799A2 (en) * 1999-01-25 2000-07-26 Wilson Greatbatch Limited Sulfite additives for non-aqueous electrolyte rechargeable cells
EP1022799A3 (en) * 1999-01-25 2000-08-02 Wilson Greatbatch Limited Sulfite additives for non-aqueous electrolyte rechargeable cells
EP1176659A3 (en) * 2000-07-25 2006-05-31 Samsung SDI Co. Ltd. Electrolyte for a lithium-sulfur battery and a lithium-sulfur battery using the same
CN100394634C (en) * 2001-08-29 2008-06-11 三菱化学株式会社 Electrolyte for lithium battery, and lithium battery containing electrolyte
US7368203B2 (en) 2002-09-30 2008-05-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cell
JP4561037B2 (en) * 2003-03-12 2010-10-13 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2004281073A (en) * 2003-03-12 2004-10-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte and battery therewith
WO2007020876A1 (en) 2005-08-18 2007-02-22 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
US8568932B2 (en) 2005-08-18 2013-10-29 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2015088261A (en) * 2013-10-29 2015-05-07 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
US10587006B2 (en) 2013-10-29 2020-03-10 Samsung Sdi Co., Ltd. Rechargeable lithium ion battery, and manufacturing method for rechargeable lithium ion battery

Also Published As

Publication number Publication date
JP3546566B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
RU2330354C1 (en) Non-aquatic electrolyte containing oxyanions, and lithium battery using it
JP2000011996A (en) Nonaqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH08115742A (en) Lithium secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP2001222995A (en) Lithium ion secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2000012029A (en) Nonaqueous electrolyte secondary battery
JP2002042890A (en) Nonaqueous electrolyte battery
JPH1027627A (en) Lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery
JPH08190932A (en) Secondary battery having nonaqueous solvent electrolyte
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JPH05307974A (en) Organic electrolyte secondary battery
JP2000012024A (en) Manufacture of positive electrode for nonaqueous secondary battery
JP3050016B2 (en) Non-aqueous electrolyte secondary battery
JPH05151998A (en) Nonaqueous electrolyte secondary battery
JPH10116628A (en) Lithium secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees