JP2002270181A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP2002270181A
JP2002270181A JP2001066344A JP2001066344A JP2002270181A JP 2002270181 A JP2002270181 A JP 2002270181A JP 2001066344 A JP2001066344 A JP 2001066344A JP 2001066344 A JP2001066344 A JP 2001066344A JP 2002270181 A JP2002270181 A JP 2002270181A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
aqueous electrolyte
lithium
phthalimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001066344A
Other languages
Japanese (ja)
Inventor
忠義 ▲高▼橋
Tadayoshi Takahashi
Shinichi Kawaguchi
真一 川口
Nobuharu Koshiba
信晴 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001066344A priority Critical patent/JP2002270181A/en
Publication of JP2002270181A publication Critical patent/JP2002270181A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery capable of suppressing the deterioration of battery capacity caused by dissolution of a positive electrode active substance in the repetition of storage at a high temperature and charge and discharge and having excellent storage characteristic and charge and discharge cycle characteristic. SOLUTION: In the battery provided with a positive electrode, a negative electrode made of a material capable of storing and discharging lithium metal, lithium alloy or lithium, and non-aqueous electrolyte composed of a solvent and a solute, a phthalimide compound is added to at least either of the positive electrode and the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温での充放電サ
イクル特性、保存特性等を向上させた非水電解液電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery having improved high-temperature charge / discharge cycle characteristics and storage characteristics.

【0002】[0002]

【従来の技術】正極活物質としてコバルト酸リチウム
(LiCoO2)を用いて負極に黒鉛系の炭素材料とを
組み合わせたリチウムイオン二次電池が実用化され、携
帯電話などの小型携帯機器の主電源に用いられている。
コバルト酸リチウムはコストおよび安全性などに課題が
あり、それに変わる活物質としてスピネル型のリチウム
マンガン酸化物(LiMn24)が現在多くの研究者に
より実用化に向けての検討が勢力的に行われている。し
かし、スピネルマンガンを用いた二次電池は、高温保存
時または高温での充放電サイクル時に短期間で急激な容
量劣化があり、その実用化での大きな問題となってい
る。この容量劣化はリチウムマンガン酸化物中のマンガ
ンの溶出による結晶構造の崩壊による正極電気容量の減
少と、溶出マンガンの負極表面への析出による負極の電
気抵抗の増大とが複合的に起こることによるものと考え
られている。そこで正極活物質からマンガンの溶出を抑
制する方法として、マンガン酸リチウムの合成方法(特
開平7−245106号公報、特開平7−73883号
公報等)、マンガン酸リチウムへの異種金属の添加(特
開平7−14572号公報)、マンガン酸リチウムとニ
ッケル酸リチウムの混合(WO00/13250号公
報)、非水電解液への添加剤の添加(特開平11−25
0914号公報、特開平11−339850号公報)な
どの試みが提案されているが、特に高温におけるサイク
ル寿命特性及び保存特性の改善の余地を残している。
2. Description of the Related Art A lithium ion secondary battery in which lithium cobalt oxide (LiCoO 2 ) is used as a positive electrode active material and a negative electrode is combined with a graphite-based carbon material has been put into practical use. It is used for
Lithium cobalt oxide has problems such as cost and safety, and spinel-type lithium manganese oxide (LiMn 2 O 4 ) is currently being studied by many researchers as an active material to replace it. Is being done. However, a secondary battery using spinel manganese has a rapid capacity deterioration in a short period of time during high-temperature storage or high-temperature charge / discharge cycles, which is a major problem in practical use. This capacity deterioration is caused by a combination of a decrease in the electric capacity of the positive electrode due to the collapse of the crystal structure due to the elution of manganese in the lithium manganese oxide and an increase in the electric resistance of the negative electrode due to the precipitation of the eluted manganese on the negative electrode surface. It is believed that. Therefore, as a method for suppressing the elution of manganese from the positive electrode active material, a method for synthesizing lithium manganate (JP-A-7-245106, JP-A-7-73883, etc.), the addition of a different metal to lithium manganate (see JP-A-7-14572), mixing of lithium manganate and lithium nickelate (WO00 / 13250), addition of additives to non-aqueous electrolyte (JP-A-11-25)
Japanese Patent Application Laid-Open Nos. 0914 and 11-339850) have been proposed, but they still leave room for improvement in cycle life characteristics and storage characteristics especially at high temperatures.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来の
課題を解決するべくなされたものであって、その目的は
高温での充放電の繰り返し、保存での容量劣化が少な
く、信頼性に優れた非水電解液電池を提供することであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has an object to reduce the capacity deterioration upon repeated charge / discharge at high temperature and storage, and to improve reliability. An object of the present invention is to provide an excellent non-aqueous electrolyte battery.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明の非水電解液電池は、正極と、リチウム金属、
リチウム合金あるいはリチウムの吸蔵・放出が可能な材
料からなる負極と、有機溶媒と溶質から構成される非水
電解液とを備えてなり、前記正極および負極の少なくと
も一方の電極に、その活物質合剤に(化2)で示される
フタルイミド化合物を含有させたことを特徴とする。
To achieve the above object, a non-aqueous electrolyte battery according to the present invention comprises a positive electrode, a lithium metal,
A negative electrode made of a lithium alloy or a material capable of inserting and extracting lithium, and a non-aqueous electrolytic solution made of an organic solvent and a solute are provided. At least one of the positive electrode and the negative electrode has an active material A phthalimide compound represented by the following chemical formula (2) is contained in the agent.

【0005】[0005]

【化2】 (式中Xは水素、リチウム、ナトリウム、カリウムのア
ルカリ金属である。)
Embedded image (Where X is an alkali metal such as hydrogen, lithium, sodium, or potassium.)

【0006】ここで、前記フタルイミド化合物は正極及
び/もしくは負極の活物質重量に対して0.5〜15重
量%の比率にて含有することが好ましい。
Here, the phthalimide compound is preferably contained at a ratio of 0.5 to 15% by weight based on the weight of the active material of the positive electrode and / or the negative electrode.

【0007】このように、本発明の電池は、電極に含有
させたフタルイミド化合物が電解液に溶解して電極材料
表面に吸着されることにより、正極においては電極材料
の溶解要因あるいは溶解反応を抑制することと、負極に
おいては溶出した正極材料が負極材料表面に析出するこ
とを阻止する。そのため、本発明の電池は高温での充放
電サイクル特性、保存特性に優れたものとなる。
As described above, in the battery of the present invention, the phthalimide compound contained in the electrode is dissolved in the electrolytic solution and adsorbed on the surface of the electrode material, thereby suppressing the dissolution factor or the dissolution reaction of the electrode material in the positive electrode. In the negative electrode, the eluted positive electrode material is prevented from depositing on the negative electrode material surface. Therefore, the battery of the present invention has excellent charge / discharge cycle characteristics and storage characteristics at high temperatures.

【0008】[0008]

【発明の実施の形態】以下、本発明の好ましい実施形態
について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0009】前記フタルイミド化合物は(化2)に示す
構造を有し、具体的な化合物としてはフタルイミド、フ
タルイミドリチウム、フタルイミドナトリウム、フタル
イミドカリウム等が好ましく、特にフタルイミドが好ま
しい。
The phthalimide compound has a structure represented by the following chemical formula (2), and specific compounds are preferably phthalimide, lithium phthalimide, sodium phthalimide, potassium phthalimide, and the like, and particularly preferably phthalimide.

【0010】また、フタルイミド化合物の活物質合剤へ
の添加量は、正極あるいは負極の活物質重量に対して
0.5〜15重量%の比率とするのが好ましい。0.5
重量%より少ない場合はフタルイミド化合物の電極への
添加効果が小さく、一方、15重量%を超えて加えた場
合では添加効果を認められるが、電極に占める活物質比
率が低下し、放電容量の減少につながる。更に好ましく
は、フタルイミド化合物の添加による効果が顕著であ
り、放電容量の減少、及び化合物添加による電極合剤の
コストアップを招くことがない0.5〜5重量%の範囲
が最適である。
The amount of the phthalimide compound added to the active material mixture is preferably 0.5 to 15% by weight based on the weight of the positive electrode or negative electrode active material. 0.5
When the amount is less than 15% by weight, the effect of adding the phthalimide compound to the electrode is small. On the other hand, when the amount exceeds 15% by weight, the effect of adding the phthalimide compound is recognized. Leads to. More preferably, the effect of adding the phthalimide compound is remarkable, and the range of 0.5 to 5% by weight which does not cause a decrease in the discharge capacity and an increase in the cost of the electrode mixture due to the addition of the compound is optimal.

【0011】また、フタルイミド化合物と電極合剤との
混合は、フタルイミド化合物が数十μmの顆粒状粉末で
あるので、電極材料粉末と乾式混合や湿式混合等、通常
の方法が適用できる。更にはフタルイミド化合物の添加
効果を充分に発揮させるには電極中で活物質粒子の周辺
や粒子表面に微粒子が均一に存在させることがより好ま
しい。そこであらかじめフタルイミド化合物をボールミ
ル等で微紛化して用いたり、あるいはメカノフュージョ
ンシステムやアブロマスター(ホソカワミクロン株式会
社製)等の設備でフタルイミド化合物の微粒子を活物質
粒子の表面に付着させることで達成できる。
The phthalimide compound and the electrode mixture can be mixed by a usual method such as dry mixing or wet mixing with the electrode material powder since the phthalimide compound is a granular powder having a size of several tens of μm. Further, in order to sufficiently exert the effect of adding the phthalimide compound, it is more preferable that the fine particles are uniformly present around the active material particles or on the particle surface in the electrode. Therefore, it can be achieved by previously pulverizing the phthalimide compound using a ball mill or the like, or attaching fine particles of the phthalimide compound to the surface of the active material particles by using a facility such as a mechanofusion system or Avromaster (manufactured by Hosokawa Micron Corporation).

【0012】尚、本実施形態における正極の材料として
は、リチウムを含む金属酸化物、リチウムを含まない金
属酸化物、TiS2、MoS2、FeS2などの金属硫化
物、(CF)n、(C2F)nなどのフッ化黒鉛等を使用
することができる。特に遷移金属を少なくとも一種含む
金属酸化物が好ましく、LiCoO2、LiNiO2、L
iMn24、LiMnO2などのリチウム含有遷移金属
酸化物やMnO2、V25、V613、V38などの遷移
金属酸化物が挙げられる。更に、本発明はスピネル型の
リチウムマンガン酸化物(LiMn24)、二酸化マン
ガン(MnO2)などマンガン酸化物に顕著な効果がみ
られる。すなわち、有機電解液に溶解しやすいマンガン
を含む酸化物、特に4V級のLiMn24は高温で非常
にマンガンが溶解し易いが、フタルイミド化合物を添加
して電極を形成することによりマンガンの溶出反応を抑
制することができる。
The material of the positive electrode in this embodiment includes metal oxides containing lithium, metal oxides not containing lithium, metal sulfides such as TiS 2 , MoS 2 and FeS 2 , (CF) n , (CF Fluorinated graphite such as C 2 F) n can be used. In particular, a metal oxide containing at least one transition metal is preferable, and LiCoO 2 , LiNiO 2 , L
Examples include lithium-containing transition metal oxides such as iMn 2 O 4 and LiMnO 2 and transition metal oxides such as MnO 2 , V 2 O 5 , V 6 O 13 , and V 3 O 8 . Further, the present invention has a remarkable effect on manganese oxides such as spinel-type lithium manganese oxide (LiMn 2 O 4 ) and manganese dioxide (MnO 2 ). In other words, manganese-containing oxides that are easily dissolved in organic electrolytes, particularly 4V-class LiMn 2 O 4, are very easy to dissolve manganese at high temperatures, but manganese is eluted by forming an electrode by adding a phthalimide compound. The reaction can be suppressed.

【0013】一方、負極の材料としては、リチウム金
属、Li−Al、Li−Si化合物などのリチウム合
金、炭素材料や金属酸化物などのリチウムの吸蔵・放出
が可能な材料が挙げられる。炭素材料としては天然黒
鉛、人造黒鉛などの黒鉛質材料、金属酸化物としてはS
nO、SiO、リチウムチタン酸化物などが好ましい。
なお、リチウム金属やリチウム合金などの場合は金属シ
ート状であるので、本発明の適用が難しい。
On the other hand, examples of the material for the negative electrode include lithium alloys such as lithium metal, Li-Al and Li-Si compounds, and materials capable of inserting and extracting lithium such as carbon materials and metal oxides. Graphite materials such as natural graphite and artificial graphite as carbon materials, and S as metal oxides
Preferred are nO, SiO, lithium titanium oxide and the like.
In the case of lithium metal or lithium alloy, it is difficult to apply the present invention because the shape is a metal sheet.

【0014】さらに導電材としては特に制限はなく、カ
ーボンブラック、黒鉛、炭素繊維等の通常用いられるも
のを用いることができる。結着剤としては、PTFE、
PVDFなどのフッ素系の樹脂や、SBR、EPDMな
どのゴム系の通常用いられるものを用いることができ
る。
Further, the conductive material is not particularly limited, and a commonly used material such as carbon black, graphite and carbon fiber can be used. As the binder, PTFE,
A fluorine-based resin such as PVDF or a rubber-based one such as SBR or EPDM can be used.

【0015】また、有機電解液の有機溶媒としては、プ
ロピレンカーボネート、エチレンカーボネート、ブチレ
ンカーボネート、ビニレンカーボネート、ジメチルカー
ボネート、ジエチルカーボネート、スルホラン、ジメト
キシエタン、ジエトキシエタン、テトラヒドロフラン、
ジオキソラン、γ−ブチロラクトンなどの単体または複
数成分を使用することができるが、これに限定されるも
のではない。
As the organic solvent of the organic electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, sulfolane, dimethoxyethane, diethoxyethane, tetrahydrofuran,
Single or multiple components such as dioxolane and γ-butyrolactone can be used, but are not limited thereto.

【0016】溶質としては、LiPF6、LiBF4、L
iClO4、LiCF3SO3、LiAsF6、LiN(C
3SO22、LiN(C25SO22、LiN(CF3
SO2)(C49SO2)などの単体あるいは複数成分を
混合して使用することができる。
As the solute, LiPF 6 , LiBF 4 , L
iClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (C
F 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (CF 3
SO 2 ) (C 4 F 9 SO 2 ) or a mixture of a plurality of components can be used.

【0017】上記の各構成要素を用いての正極及び負極
の製造方法としては、特に制限はなく、従来公知の方法
に従ってペレット状や集電体に塗布した帯状の電極を作
製できる。そして、電池の形状についても特に限定され
ることはなく、円筒形、角形、コイン形、ボタン型など
の種々の形状にすることができる。また、一次電池及び
二次電池のいずれにも構成することが可能である。
The method for producing the positive electrode and the negative electrode using the above-mentioned respective constituent elements is not particularly limited, and a pellet-shaped or strip-shaped electrode applied to a current collector can be produced according to a conventionally known method. The shape of the battery is not particularly limited, and may be various shapes such as a cylinder, a square, a coin, and a button. Further, it can be configured as either a primary battery or a secondary battery.

【0018】[0018]

【実施例】以下、本発明の具体的な実施例について説明
する。本発明の内容はこれら実施例に限定されるもので
はない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. The content of the present invention is not limited to these examples.

【0019】(実施例1)実施例1として、非水電解液
二次電池の電極中に、本発明に係るフタルイミド化合物
の添加による電池特性を評価するために、図1に示す扁
平型非水電解液電池を作製した。
Example 1 As Example 1, in order to evaluate the battery characteristics by adding the phthalimide compound according to the present invention to the electrode of the non-aqueous electrolyte secondary battery, the flat non-aqueous electrolyte shown in FIG. An electrolyte battery was manufactured.

【0020】正極活物質としてはスピネル型のリチウム
マンガン酸化物(LiMn24)粉末を用いて、これに
導電剤としてカーボンブラック粉末を、結着剤としてP
TFE(フッ素樹脂)を、さらに本発明に係る添加剤と
してフタルイミド粉末をそれぞれ100:8:10:2
の重量比率で混合・混練した合剤を打錠成型した後、乾
燥して直径16mm、厚み0.8mmの正極1を作製し
た。尚、ここでフタルイミド粉末はあらかじめボールミ
ルにて粉砕して用いた。一方、負極活物質としては黒鉛
粉末を用いて、結着剤のPTFE(フッ素樹脂)を加え
て100:10の重量比率で混合・混練した合剤を打錠
成型した後、乾燥して直径16mm、厚み0.8mmの
負極2を作製した。
As the positive electrode active material, a spinel type lithium manganese oxide (LiMn 2 O 4 ) powder is used, and carbon black powder is used as a conductive agent, and P is used as a binder.
TFE (fluororesin), and phthalimide powder as an additive according to the present invention in a ratio of 100: 8: 10: 2, respectively.
After mixing and kneading at a weight ratio of the mixture, the mixture was tableted and dried to produce a positive electrode 1 having a diameter of 16 mm and a thickness of 0.8 mm. Here, the phthalimide powder was pulverized in advance with a ball mill and used. On the other hand, graphite powder was used as the negative electrode active material, PTFE (fluororesin) as a binder was added, and the mixture was mixed and kneaded at a weight ratio of 100: 10, tablet-formed, dried, and dried to a diameter of 16 mm. A negative electrode 2 having a thickness of 0.8 mm was produced.

【0021】正極1と負極2とはセパレータ3を介して
接しており、絶縁パッキング4を備えた負極缶5と正極
缶6によってかしめ密閉されている。
The positive electrode 1 and the negative electrode 2 are in contact with each other with a separator 3 interposed therebetween, and are caulked and sealed by a negative electrode can 5 having an insulating packing 4 and a positive electrode can 6.

【0022】非水電解液は、エチレンカーボネートとジ
エチルカーボネートを50:50の重量比で混合した溶
媒に、溶質としてLiPF6を1.0モル/リットルの
割合で溶解したものを用いてコイン型の本発明の電池A
を作製した。なお、電池の寸法は外径20mm、高さ
2.0mmである。
The non-aqueous electrolytic solution is a coin-type one obtained by dissolving LiPF 6 at a ratio of 1.0 mol / l as a solute in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a weight ratio of 50:50. Battery A of the present invention
Was prepared. The dimensions of the battery were 20 mm in outer diameter and 2.0 mm in height.

【0023】本発明の電池Aの正極と負極に代えて、正
極にはフタルイミドを添加しない、LiMn24:カー
ボンブラック:PTFE=100:10:10(重量
比)の合剤組成とし、一方負極にはフタルイミドを添加
して、黒鉛:PTFE:フタルイミド=100:8:2
(重量比)の合剤組成とした以外は、本発明の電池Aと
同様とした本発明の電池Bを作製した。
Instead of the positive electrode and the negative electrode of the battery A of the present invention, a mixture composition of LiMn 2 O 4 : carbon black: PTFE = 100: 10: 10 (weight ratio) without adding phthalimide to the positive electrode was used. Phthalimide was added to the negative electrode, and graphite: PTFE: phthalimide = 100: 8: 2.
A battery B of the present invention was prepared in the same manner as the battery A of the present invention except that the mixture composition was (weight ratio).

【0024】本発明の電池Aの負極に代えて、負極にも
フタルイミドを添加して、黒鉛:PTFE:フタルイミ
ド=100:8:2(重量比)の組成にした以外は、本
発明の電池Aと同様にして本発明の電池Cを作製した。
さらに本発明の電池Aの正極に代えて、正極活物質とし
てコバルト酸リチウム(LiCoO2)を用いて、Li
CoO2:カーボンブラック:PTFE:フタルイミド
=100:8:10:2(重量比)の合剤組成にした以
外は、本発明の電池Aと同様にして本発明の電池Dを作
製した。
The battery A of the present invention was the same as the battery A of the present invention, except that phthalimide was added to the negative electrode in place of the negative electrode of the battery A of the present invention to obtain a composition of graphite: PTFE: phthalimide = 100: 8: 2 (weight ratio). In the same manner as in the above, a battery C of the present invention was produced.
Further, instead of the positive electrode of the battery A of the present invention, lithium cobalt oxide (LiCoO 2 ) was used as a positive electrode active material, and Li was used.
Battery D of the present invention was prepared in the same manner as Battery A of the present invention, except that the mixture composition was CoO 2 : carbon black: PTFE: phthalimide = 100: 8: 10: 2 (weight ratio).

【0025】本発明の電池Aの正極への添加剤であるフ
タルイミドに代えて、フタルイミド化合物としてフタル
イミドカリウムを用いた以外は、本発明の電池Aと同様
にして本発明の電池Eを作製した。また、本発明の電池
Aの正極への添加剤であるフタルイミドに代えて、フタ
ルイミド化合物としてフタルイミドリチウムを用いた以
外は、本発明の電池Aと同様にして本発明の電池Fを作
製した。
Battery E of the present invention was prepared in the same manner as Battery A of the present invention except that potassium phthalimide was used as the phthalimide compound instead of phthalimide as an additive to the positive electrode of Battery A of the present invention. A battery F of the present invention was produced in the same manner as the battery A of the present invention, except that phthalimide lithium was used as a phthalimide compound instead of phthalimide as an additive to the positive electrode of the battery A of the present invention.

【0026】比較例の電池として、本発明の電池Aの正
極に代えて、正極にフタルイミドを添加しない、正極が
LiMn24:カーボンブラック:PTFE=100:
10:10(重量比)、負極が黒鉛:PTFE=10
0:10(重量比)の従来の合剤組成とした以外は、本
発明の電池Aと同様にして比較電池1を作製した。
As a battery of a comparative example, instead of the positive electrode of the battery A of the present invention, phthalimide was not added to the positive electrode, and the positive electrode was LiMn 2 O 4 : carbon black: PTFE = 100:
10:10 (weight ratio), negative electrode graphite: PTFE = 10
Comparative Battery 1 was prepared in the same manner as Battery A of the present invention, except that the conventional mixture composition was 0:10 (weight ratio).

【0027】本発明の電池Dの正極に代えて、正極には
フタルイミドを添加しない、LiCoO2:カーボンブ
ラック:PTFE=100:10:10(重量比)の合
剤組成にした以外は、本発明の電池Aと同様にして比較
電池2を作製した。
Instead of the positive electrode of the battery D of the present invention, a phthalimide was not added to the positive electrode, and a mixture composition of LiCoO 2 : carbon black: PTFE = 100: 10: 10 (weight ratio) was used. Comparative Battery 2 was produced in the same manner as Battery A.

【0028】本発明の電池Aの正極に代えて、正極にフ
タルイミドを添加しない、LiMn 24:カーボンブラ
ック:PTFE=100:10:10(重量比)の合剤
組成として、フタルイミドを0.5重量%添加した電解
液を用いた以外は、本発明の電池Aと同様にして比較例
の電池3を作製した。
Instead of the positive electrode of the battery A of the present invention, a positive electrode is
LiMn without adding tarimide TwoOFour: Carbon bra
Mix: PTFE = 100: 10: 10 (weight ratio)
Electrolysis to which 0.5% by weight of phthalimide was added as a composition
Comparative Example except that a liquid was used.
Battery 3 was manufactured.

【0029】このようにして作製した電池を高温での保
存特性と充放電サイクル特性を評価した。評価における
充放電の条件は、電流が1mAの定電流で、充電の終止
電圧を4.2V、および放電の終止電圧を2.7Vとし
て、本発明の電池A〜Fおよび比較例の電池1〜3につ
いて、まず、室温にて2サイクル充放電を繰り返して、
2サイクル目の放電容量を求めた。次いで、保存特性は
3サイクル目の充電を行なった電池を60℃の恒温槽内
に40日間保存し、その後、室温に戻して放電を行なっ
て放電容量を求めた。その値から2サイクル目の放電容
量に対する比率を求めて、60℃保存の容量維持率の値
とした。その結果を(表1)に示す。
The battery thus manufactured was evaluated for storage characteristics at high temperatures and charge / discharge cycle characteristics. The conditions of the charge and discharge in the evaluation were as follows: the current was a constant current of 1 mA, the end voltage of the charge was 4.2 V, and the end voltage of the discharge was 2.7 V. Regarding 3, first, charge and discharge were repeated for 2 cycles at room temperature,
The discharge capacity at the second cycle was determined. Next, regarding the storage characteristics, the battery charged in the third cycle was stored in a thermostat at 60 ° C. for 40 days, and then returned to room temperature and discharged to determine a discharge capacity. The ratio to the discharge capacity in the second cycle was determined from the value, and the ratio was defined as the value of the capacity retention rate at 60 ° C. storage. The results are shown in (Table 1).

【0030】[0030]

【表1】 [Table 1]

【0031】また、充放電サイクル特性は、2サイクル
充放電の終了後、45℃の雰囲気で充放電を繰り返し
て、100サイクル目の放電容量を求めた。その値から
2サイクル目の放電容量に対する比率をもとめて、45
℃サイクルの容量維持率の値とした。その結果を(表
1)に併せて示す。
The charge / discharge cycle characteristics were obtained by repeating the charge / discharge in a 45 ° C. atmosphere after the completion of the two-cycle charge / discharge, and the discharge capacity at the 100th cycle was determined. From the value, the ratio to the discharge capacity at the second cycle is calculated to be 45
The value was the value of the capacity retention rate of the ° C cycle. The results are also shown in (Table 1).

【0032】(表1)の結果からも明らかなように、電
極合剤中にフタルイミド化合物を添加した本発明の電池
A〜Fは、電極合剤中にフタルイミド化合物を添加して
いない比較電池1〜2よりも、フタルイミド化合物の種
類及び正・負極のいずれかへの添加に関わらず、60℃
保存及び45℃の充放電サイクルに伴う放電容量の劣化
が抑制されていることわかった。また、非水電解液にフ
タルイミド化合物を添加した比較例の電池3は、添加効
果が認められるものの、本発明の電池に比べて添加の効
果が充分でないことがわかった。
As is clear from the results in Table 1, the batteries A to F of the present invention in which the phthalimide compound was added to the electrode mixture were the comparative batteries 1 to which the phthalimide compound was not added to the electrode mixture. 2 to 60 ° C. regardless of the type of phthalimide compound and addition to either the positive or negative electrode.
It was found that the deterioration of the discharge capacity due to storage and charge / discharge cycles at 45 ° C. was suppressed. In addition, it was found that the battery 3 of the comparative example in which the phthalimide compound was added to the non-aqueous electrolyte had an effect of addition, but was not sufficiently effective as compared with the battery of the present invention.

【0033】(実施例2)実施例2として、本発明に係
るフタルイミド化合物の電極合剤中への添加量の影響を
検討するために、フタルイミドの添加量を活物質量に対
して0.1〜20重量%の範囲で変化させた電池A、及
び電池G〜Lを作製した。さらに、これら電池A、G〜
Lについて、60℃での保存特性の評価を実施例1と同
様の方法にて実施し、容量維持率および、2サイクル目
の放電容量の結果を(表2)に示す。
Example 2 As Example 2, in order to study the effect of the amount of the phthalimide compound according to the present invention added to the electrode mixture, the amount of the phthalimide added was 0.1% with respect to the amount of the active material. Batteries A and GL varied in the range of 2020% by weight were produced. Furthermore, these batteries A, G ~
For L, the storage characteristics at 60 ° C. were evaluated in the same manner as in Example 1, and the results of the capacity retention ratio and the discharge capacity at the second cycle are shown in (Table 2).

【0034】[0034]

【表2】 [Table 2]

【0035】(表2)からも明らかなように添加量が
0.5重量%以上では、高温保存での容量劣化を充分に
抑制できることが分かる。また、フタルイミド化合物は
電池の充放電反応に寄与しないことから、添加量が15
重量%を超えると電池容量の減少となるので望ましくな
い。従って、添加量は0.5〜15重量%が好ましく、
より好ましくは0.5〜5重量%である。
As is evident from Table 2, when the added amount is 0.5% by weight or more, the capacity deterioration during high-temperature storage can be sufficiently suppressed. Since the phthalimide compound does not contribute to the charge / discharge reaction of the battery, the amount of the phthalimide compound added is 15%.
Exceeding the weight percentage is undesirable because the battery capacity is reduced. Therefore, the addition amount is preferably 0.5 to 15% by weight,
More preferably, it is 0.5 to 5% by weight.

【0036】(実施例3)実施例3として、非水電解液
一次電池への本発明に係るフタルイミド化合物の添加に
よる電池特性を評価するために、実施例1と同様に、図
1に示す扁平型非水電解液電池を作製した。
Example 3 As Example 3, in order to evaluate battery characteristics by adding the phthalimide compound according to the present invention to a non-aqueous electrolyte primary battery, as in Example 1, the flat battery shown in FIG. A non-aqueous electrolyte battery was fabricated.

【0037】正極1の活物質としては400℃で熱処理
した二酸化マンガンを用い、この二酸化マンガンと導電
材としてカーボンブラック、結着剤としてPTFE(フ
ッ素樹脂)、添加剤としてフタルイミドをそれぞれ10
0:8:10:2の重量比で混合・混練し、打錠成形し
た後、250℃にて乾燥したものである。合剤を打錠成
型した後、乾燥して直径16mm、厚み1.0mmの正
極1を作製した。一方、負極2はリチウム金属からなる
ものであって、リチウム圧延板を直径18mm、厚み
0.8mmに打ち抜き、これを負極缶5の内面に固定し
ている。
As the active material of the positive electrode 1, manganese dioxide heat-treated at 400 ° C. was used, and the manganese dioxide and carbon black as a conductive material, PTFE (fluororesin) as a binder, and phthalimide as an additive were added in 10 parts each.
The mixture was mixed and kneaded at a weight ratio of 0: 8: 10: 2, tableted, and dried at 250 ° C. After the mixture was tablet-molded, it was dried to produce a positive electrode 1 having a diameter of 16 mm and a thickness of 1.0 mm. On the other hand, the negative electrode 2 is made of lithium metal, and a lithium rolled plate is punched to a diameter of 18 mm and a thickness of 0.8 mm, and this is fixed to the inner surface of the negative electrode can 5.

【0038】そして、非水電解液には、プロピレンカー
ボネートとジメトキシエタンを50:50の体積比で混
合した溶媒に、LiCF3SO2を1.0モル/リットル
の割合で溶解したものを用いて本発明の電池Mを作製し
た。
As the non-aqueous electrolyte, a solution obtained by dissolving LiCF 3 SO 2 at a ratio of 1.0 mol / liter in a solvent in which propylene carbonate and dimethoxyethane are mixed at a volume ratio of 50:50 is used. Battery M of the present invention was produced.

【0039】本発明の電池Mの正極に代えて、正極にフ
タルイミドを添加しない、二酸化マンガン:カーボンブ
ラック:PTFE(フッ素樹脂)=100:10:10
(重量比)の合剤組成とした以外は、本発明の電池Mと
同様にして比較電池4を作製した。
In place of the positive electrode of the battery M of the present invention, phthalimide was not added to the positive electrode. Manganese dioxide: carbon black: PTFE (fluororesin) = 100: 10: 10
Comparative Battery 4 was produced in the same manner as Battery M of the present invention except that the mixture composition was (weight ratio).

【0040】本発明の電池M及び比較例の電池4につい
て、60℃で保存特性の評価を行なった。
The storage characteristics of the battery M of the present invention and the battery 4 of the comparative example were evaluated at 60 ° C.

【0041】これらの電池は、まず室温にて1mAの電
流でニ酸化マンガンの理論容量の50%容量まで放電し
て、電池内部抵抗(交流1kHZ)を測定した後、60
℃の恒温槽に20日間保存した。保存終了後、室温にて
電池内部抵抗(交流1kHZ)を測定した後、1mAの
電流で放電終止電圧2.0Vまで放電して放電容量を求
めた。その値から、容量残存率を算出した。ここで、容
量残存率はニ酸化マンガンの理論容量を100として、
保存後の放電容量の比率を求めたものである。これらの
結果を(表3)に示す。
These batteries were first discharged at room temperature with a current of 1 mA to a capacity of 50% of the theoretical capacity of manganese dioxide, and the internal resistance of the battery (AC 1 kHz) was measured.
The samples were stored in a thermostat at 20 ° C. for 20 days. After the storage was completed, the internal resistance of the battery (AC 1 kHz) was measured at room temperature, and then the battery was discharged at a current of 1 mA to a discharge end voltage of 2.0 V to obtain a discharge capacity. The remaining capacity ratio was calculated from the value. Here, the capacity remaining rate is defined as the theoretical capacity of manganese dioxide being 100.
The ratio of the discharge capacity after storage was determined. The results are shown in (Table 3).

【0042】[0042]

【表3】 [Table 3]

【0043】(表3)から明らかなように、フタルイミ
ドを添加した発明電池Mは60℃の保存後でも抵抗値に
変化はなく、また残存容量も40%と高い値であり、高
温保存による劣化はほとんど見られないことが分かっ
た。また、これらの電池を分解して負極表面を調べた結
果、本発明の電池Mはリチウム表面が金属光沢を有して
いたが、比較電池4は、その表面が黒変していてマンガ
ンが検知された。このことからも、本発明に係るフタル
イミド化合物の電極への添加は正極からマンガンの溶出
が抑制できていることが分かった。
As is clear from Table 3, the resistance of the inventive battery M to which phthalimide was added did not change even after storage at 60 ° C., and the residual capacity was as high as 40%. Turned out to be rarely seen. In addition, as a result of disassembling these batteries and examining the negative electrode surface, the battery M of the present invention had a lithium surface with metallic luster, but the comparative battery 4 had its surface blackened and manganese was not detected. Was done. This also indicates that the addition of the phthalimide compound according to the present invention to the electrode can suppress the elution of manganese from the positive electrode.

【0044】[0044]

【発明の効果】本発明は非水電解液電池の高温での充放
電の繰り返し、高温保存等で正極活物質の溶解に伴う電
池容量の劣化を抑制することができ、その工業的価値は
極めて大きい。
According to the present invention, it is possible to suppress the deterioration of the battery capacity due to the dissolution of the positive electrode active material during repeated charging and discharging at a high temperature of a non-aqueous electrolyte battery and storage at a high temperature. large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例における扁平型非水電解液電池の構造
を示す断面図
FIG. 1 is a cross-sectional view showing the structure of a flat nonaqueous electrolyte battery according to an embodiment.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 絶縁パッキング 5 正極缶 6 負極缶 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Insulation packing 5 Positive electrode can 6 Negative electrode can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小柴 信晴 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ02 AJ05 AK03 AL02 AL06 AM03 AM04 AM05 AM07 DJ08 EJ11 HJ01 HJ02 5H050 AA05 AA07 CA08 CA09 CB02 CB07 DA02 DA03 DA09 EA22 HA01 HA02  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Nobuharu Koshiba 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F term (reference) 5H029 AJ02 AJ05 AK03 AL02 AL06 AM03 AM04 AM05 AM07 DJ08 EJ11 HJ01 HJ02 5H050 AA05 AA07 CA08 CA09 CB02 CB07 DA02 DA03 DA09 EA22 HA01 HA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極と、リチウム金属、リチウム合金あ
るいはリチウムの吸蔵・放出が可能な材料からなる負極
と、非水電解液とを備えた非水電解液電池であって、前
記正極および負極の少なくとも一方の電極は、その活物
質合剤に(化1)で示されるフタルイミド化合物を含有
することを特徴とする非水電解液電池。 【化1】 (式中Xは水素、リチウム、ナトリウム、カリウムのア
ルカリ金属である。)
1. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode made of a lithium metal, a lithium alloy or a material capable of inserting and extracting lithium, and a non-aqueous electrolyte, wherein the positive electrode and the negative electrode A non-aqueous electrolyte battery, wherein at least one electrode contains a phthalimide compound represented by the following formula (1) in its active material mixture. Embedded image (Where X is an alkali metal such as hydrogen, lithium, sodium, or potassium.)
【請求項2】 フタルイミド化合物を、活物質重量に対
して0.5〜15重量%の重量比率で含有する請求項1
記載の非水電解液電池。
2. The method according to claim 1, wherein the phthalimide compound is contained in a weight ratio of 0.5 to 15% by weight based on the weight of the active material.
The non-aqueous electrolyte battery according to the above.
【請求項3】 正極活物質が、少なくとも一種の遷移金
属を含む金属酸化物である請求項2記載の非水電解液電
池。
3. The non-aqueous electrolyte battery according to claim 2, wherein the positive electrode active material is a metal oxide containing at least one transition metal.
【請求項4】 遷移金属がマンガンである請求項3記載
の非水電解液電池。
4. The non-aqueous electrolyte battery according to claim 3, wherein the transition metal is manganese.
【請求項5】 負極材料が炭素材料である請求項2記載
の非水電解液電池。
5. The non-aqueous electrolyte battery according to claim 2, wherein the negative electrode material is a carbon material.
JP2001066344A 2001-03-09 2001-03-09 Non-aqueous electrolyte battery Pending JP2002270181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066344A JP2002270181A (en) 2001-03-09 2001-03-09 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066344A JP2002270181A (en) 2001-03-09 2001-03-09 Non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2002270181A true JP2002270181A (en) 2002-09-20

Family

ID=18924844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066344A Pending JP2002270181A (en) 2001-03-09 2001-03-09 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2002270181A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024407A (en) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2006173096A (en) * 2004-11-18 2006-06-29 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2007134108A (en) * 2005-11-09 2007-05-31 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid battery
US7615310B2 (en) * 2004-11-18 2009-11-10 Panasonic Corporation Organic electrolyte battery including at least one of phthalazone and a phthalazone derivative
CN102044675A (en) * 2009-10-23 2011-05-04 深圳市比克电池有限公司 Lithium battery anode slurry additive, slurry, battery and preparation method
JP2011192581A (en) * 2010-03-16 2011-09-29 Hitachi Maxell Energy Ltd Nonaqueous electrolyte for electrochemical device, and electrochemical device
US9023537B2 (en) 2010-04-09 2015-05-05 Sony Corporation Battery
US9123971B2 (en) 2010-09-02 2015-09-01 Nec Corporation Secondary battery
WO2020012718A1 (en) * 2018-07-12 2020-01-16 パナソニックIpマネジメント株式会社 Lithium primary battery
WO2020194430A1 (en) * 2019-03-25 2020-10-01 株式会社 東芝 Electrode, battery, and battery pack
CN114207903A (en) * 2021-03-31 2022-03-18 宁德新能源科技有限公司 Electrolyte solution, electrochemical device, and electronic device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024407A (en) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2006173096A (en) * 2004-11-18 2006-06-29 Matsushita Electric Ind Co Ltd Organic electrolyte battery
US7615310B2 (en) * 2004-11-18 2009-11-10 Panasonic Corporation Organic electrolyte battery including at least one of phthalazone and a phthalazone derivative
JP2007134108A (en) * 2005-11-09 2007-05-31 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid battery
CN102044675A (en) * 2009-10-23 2011-05-04 深圳市比克电池有限公司 Lithium battery anode slurry additive, slurry, battery and preparation method
JP2011192581A (en) * 2010-03-16 2011-09-29 Hitachi Maxell Energy Ltd Nonaqueous electrolyte for electrochemical device, and electrochemical device
US9023537B2 (en) 2010-04-09 2015-05-05 Sony Corporation Battery
US9123971B2 (en) 2010-09-02 2015-09-01 Nec Corporation Secondary battery
WO2020012718A1 (en) * 2018-07-12 2020-01-16 パナソニックIpマネジメント株式会社 Lithium primary battery
WO2020194430A1 (en) * 2019-03-25 2020-10-01 株式会社 東芝 Electrode, battery, and battery pack
JPWO2020194430A1 (en) * 2019-03-25 2021-10-21 株式会社東芝 Electrodes, batteries, and battery packs
JP7106749B2 (en) 2019-03-25 2022-07-26 株式会社東芝 Electrodes, batteries and battery packs
CN114207903A (en) * 2021-03-31 2022-03-18 宁德新能源科技有限公司 Electrolyte solution, electrochemical device, and electronic device
WO2022205172A1 (en) * 2021-03-31 2022-10-06 宁德新能源科技有限公司 Electrolyte, electrochemical apparatus, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP5232631B2 (en) Non-aqueous electrolyte battery
JP4696557B2 (en) Active material for lithium secondary battery, production method thereof, raw material used therefor, and lithium secondary battery
US20060093549A1 (en) Positive electrode active material for lithium ion secondary battery
JP4111806B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2006344509A (en) Lithium secondary battery
JP2000011996A (en) Nonaqueous electrolyte secondary battery
JP2002298846A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
KR20030076431A (en) Nonaqueous Electrolyte Secondary Battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP3580209B2 (en) Lithium ion secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP2000100434A (en) Lithium secondary battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JPH11265719A (en) Lithium secondary battery
JP2001319653A (en) Non-aqueous secondary battery
JP2010080231A (en) Precursor for positive electrode active material, method of manufacturing the same, positive electrode active material, method of manufacturing positive electrode active material, and nonaqueous electrolyte secondary battery
JP2003331922A (en) Cell
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH1145742A (en) Nonaqueous electrolytic secondary battery
JP4356127B2 (en) Lithium secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery