WO2020012718A1 - Lithium primary battery - Google Patents

Lithium primary battery Download PDF

Info

Publication number
WO2020012718A1
WO2020012718A1 PCT/JP2019/011054 JP2019011054W WO2020012718A1 WO 2020012718 A1 WO2020012718 A1 WO 2020012718A1 JP 2019011054 W JP2019011054 W JP 2019011054W WO 2020012718 A1 WO2020012718 A1 WO 2020012718A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
atom
battery
general formula
additive
Prior art date
Application number
PCT/JP2019/011054
Other languages
French (fr)
Japanese (ja)
Inventor
貴士 川口
加藤 文生
清水 敏之
加藤 真一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020012718A1 publication Critical patent/WO2020012718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Definitions

  • the present invention relates to a lithium primary battery.
  • Lithium primary batteries are used in many electronic devices because of their high energy density and low self-discharge. Lithium primary batteries have an extremely long storage life and can be stored for a long period of time of 10 years or more at room temperature, and thus are widely used as a main power supply and a memory backup power supply for various meters.
  • Patent Document 1 discloses a small-sized (17 mm in outer diameter and 45 mm in height) cylindrical lithium primary battery provided with an electrolyte containing hydroxyphthalimide.
  • hydroxyphthalimide is used for the purpose of suppressing an increase in internal resistance during storage of a battery in the final stage of discharge and suppressing gas generation due to decomposition of an electrolytic solution during storage of the battery in a high-temperature environment. I have.
  • the cylindrical lithium primary battery includes a band-shaped positive electrode and a band-shaped negative electrode, a column-shaped electrode group wound with a band-shaped separator interposed therebetween, and a bottomed cylindrical battery can housing the electrode group. .
  • a cylindrical lithium primary battery provided with such a spiral-structured electrode group has a high output and is easy to take out a large current.
  • Patent Document 2 discloses a coin-shaped lithium primary battery using an electrolyte containing phthalimide.
  • phthalimide is used to suppress an increase in internal resistance during storage of a battery in a high-temperature environment.
  • the dispersion of the electrolyte solution in the radial direction of the electrode group becomes large in the latter half of the discharge, and the discharge reaction of the positive electrode is thereby impaired.
  • the problem is to make it uniform. This is because, during discharge, the positive electrode expands in the electrode group, the separator is compressed accordingly, and the degree of compression of the separator on the center side of the electrode group on the outer side is increased. That is, a large amount of the electrolytic solution is distributed on the outer peripheral side of the electrode group, and the discharge reaction of the positive electrode proceeds excessively.
  • One aspect of the present disclosure includes a band-shaped positive electrode, a band-shaped negative electrode, and a band-shaped separator, wherein the positive electrode and the negative electrode are an electrode group wound via the separator, a non-aqueous solvent, and the non-aqueous solvent.
  • An electrolytic solution containing a lithium salt dissolved in, and a bottomed cylindrical battery can containing the electrode group and the electrolytic solution, wherein the electrolytic solution comprises phthalimide, phthalimidine, tetrahydrophthalimide and derivatives thereof.
  • the battery contains at least one additive selected from the group consisting of: a content of the additive in the electrolytic solution of not less than 0.001% by mass and not more than 10% by mass, and an inner diameter of the battery can of not less than 20 mm. Which relates to a lithium primary battery.
  • the positive electrode utilization rate can be increased.
  • the lithium primary battery has high output and high capacity. That is, the lithium primary battery includes a band-shaped positive electrode, a band-shaped negative electrode, and a band-shaped separator, and the positive electrode and the negative electrode are separated from each other by an electrode group wound through the separator, and a non-aqueous solvent and a lithium dissolved in a non-aqueous solvent.
  • An electrolytic solution containing a salt, and a bottomed cylindrical battery can containing the electrode group and the electrolytic solution are provided.
  • the inner diameter of the battery can is 20 mm or more.
  • a columnar electrode group having a large size (having a diameter of about 20 mm or more) can be accommodated in the battery can.
  • the electrolyte contains at least one additive selected from the group consisting of phthalimide, phthalimidine, tetrahydrophthalimide and derivatives thereof, and the content of the additive in the electrolyte (mass ratio of the additive to the entire electrolyte). Is 0.001% by mass or more and 10% by mass or less.
  • the inner diameter of the battery can is increased to 20 mm or more, a large-sized electrode group can be accommodated in the battery can, and a high battery capacity required for a smart meter or the like can be obtained.
  • the variation in the distribution of the electrolyte in the radial direction of the electrode group becomes large, which makes the discharge reaction of the positive electrode non-uniform and reduces the positive electrode utilization rate.
  • an electrolytic solution containing a specific amount of the above additive when a large electrode group is accommodated in a battery can having an inner diameter of 20 mm or more, a decrease in the positive electrode utilization rate is suppressed, and Long-term reliability is improved. That is, when the electrolytic solution contains the additive in a specific amount, a part of the additive is reduced at the negative electrode and becomes a radical derived from the additive such as a phthalimidoketoanion radical. These radicals are appropriately diffused into the positive electrode, and are appropriately adsorbed to active sites on the positive electrode surface. This suppresses an excessive discharge reaction of the positive electrode on the outer peripheral side of the electrode group in which a large amount of the electrolytic solution is distributed, and makes the discharge reaction of the entire positive electrode uniform.
  • the content of the additive in the electrolytic solution is preferably 0.01% by mass or more and 5% by mass or less.
  • the additive contains at least one selected from the group consisting of phthalimide, phthalimidine, tetrahydrophthalimide and derivatives thereof.
  • phthalimide, 2-ethylphthalimide, 2-fluorophthalimide, hydroxyphthalimide, N-methylphthalimide, phthalimidine, 2-ethylphthalimidine, 2-fluorophthalimidine, hydroxyphthalimidine, N-methylphthalimidine, Tetrahydrophthalimide, potassium tetrahydrophthalimide, N-hydroxytetrahydrophthalimide, N-methyltetrahydrophthalimide are preferred.
  • These compounds have low reactivity to a non-aqueous solvent or a lithium salt of the electrolytic solution.
  • radicals derived from the above compounds generated by the reduction reaction at the negative electrode have high stability.
  • the additive has the general formula (1):
  • X 1 to X 4 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 1 Is a hydrogen atom or a potassium atom.
  • X 1 to X 4 are preferably hydrogen atoms.
  • X 2 or X 3 may be an ethyl group or a fluorine atom, and the rest may be hydrogen atoms.
  • the additive has the general formula (2):
  • X 5 to X 8 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 2 Is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • X 5 to X 8 are preferably hydrogen atoms.
  • Y 2 is preferably a hydrogen atom or a methyl group.
  • the additive has the general formula (3):
  • X 9 to X 12 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 3 Is a hydrogen atom or a potassium atom.
  • X 9 to X 12 are preferably hydrogen atoms.
  • X 10 or X 11 may be an ethyl group or a fluorine atom, and the rest may be hydrogen atoms.
  • the additive has the general formula (4):
  • X 13 to X 16 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 4 Is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • X 13 to X 16 are preferably hydrogen atoms.
  • Y 4 is preferably a hydrogen atom or a methyl group.
  • the additive has the general formula (5):
  • Y 5 is a hydrogen atom or a potassium atom.
  • the additive has the general formula (6):
  • Y 6 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • Y 6 is preferably a hydrogen atom or a methyl group.
  • the compounds represented by the general formulas (1) to (6) have low reactivity to a non-aqueous solvent or a lithium salt of the electrolytic solution, and also have high stability of radicals derived from the compounds generated by a reduction reaction at the negative electrode. it is conceivable that.
  • the thickness of the positive electrode is preferably 0.5 mm or more and 2.0 mm or less.
  • the thickness of the negative electrode is, for example, 0.19 mm or more and 0.83 mm or less.
  • the thickness of the positive electrode is 0.5 mm or more, for example, by setting the length of the positive electrode in the range described later, the capacity can be sufficiently increased to the extent required for a smart meter.
  • the thickness of the positive electrode is 2.0 mm or less, the positive electrode active material is sufficiently used from the surface to the inside of the positive electrode during discharge, so that the positive electrode utilization rate is significantly improved.
  • the thickness of the positive electrode is 0.5 mm or more and 2.0 mm or less, the dispersion of the electrolyte solution between the surface portion and the inside of the positive electrode increases, and the discharge reaction in the thickness direction of the positive electrode becomes uneven. There are cases.
  • radicals derived from the additive are adsorbed on the surface of the positive electrode, and when the thickness of the positive electrode is in the above range, the variation in the electrolyte solution distribution in the thickness direction of the positive electrode increases. Excessive discharge reaction on the surface of the positive electrode due to the above is suppressed. As a result, the discharge reaction is made uniform not only in the length direction of the positive electrode but also in the thickness direction of the positive electrode.
  • the thickness of the positive electrode is more preferably 0.5 mm or more and 1.5 mm or less.
  • the length is preferably 90 mm or more and 530 mm or less.
  • the length of the negative electrode is, for example, 100 mm or more and 550 mm or less.
  • the length of the positive electrode is preferably 140 mm or more and 530 mm or less, and the length of the negative electrode is, for example, 150 mm or more and 550 mm or less. is there.
  • the length of the positive electrode is preferably 230 mm or more and 530 mm or less, and the length of the negative electrode is, for example, 240 mm or more and 550 mm or less. is there.
  • the length is preferably 200 mm or more and 1050 mm or less.
  • the length of the negative electrode is, for example, not less than 210 mm and not more than 1070 mm.
  • the length of the positive electrode is preferably 300 mm or more and 1050 mm or less, and the length of the negative electrode is, for example, 310 mm or more and 1070 mm or less. is there.
  • the length of the positive electrode is preferably 480 mm or more and 1050 mm or less, and the length of the negative electrode is, for example, 490 mm or more and 1070 mm or less. is there.
  • the positive electrode contains a positive electrode active material, and manganese dioxide can be used as the positive electrode active material.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer attached to the positive electrode current collector.
  • the positive electrode mixture layer is formed, for example, such that the positive electrode current collector is embedded on both sides of a sheet-shaped positive electrode current collector.
  • the positive electrode mixture layer may include a resin material such as a fluororesin as a binder in addition to the positive electrode active material.
  • the positive electrode mixture layer may include a conductive material such as a carbon material as a conductive agent.
  • the positive electrode current collector is, for example, an expanded metal, a net, or a punched metal made of stainless steel.
  • the negative electrode contains a negative electrode active material, and lithium metal or a lithium alloy can be used as the negative electrode active material.
  • metal lithium or a lithium alloy is extruded into a long sheet and used as a negative electrode.
  • the lithium alloy an alloy such as Li-Al, Li-Sn, Li-Ni-Si, or Li-Pb is used, and a Li-Al alloy is preferable.
  • the content of metal elements other than lithium contained in the lithium alloy is preferably 0.1% by mass or more and 5% by mass or less from the viewpoint of securing discharge capacity and stabilizing internal resistance.
  • a porous sheet formed of an insulating material having resistance to the internal environment of the lithium primary battery may be used.
  • a nonwoven fabric made of a synthetic resin, a microporous film made of a synthetic resin, and the like can be given.
  • the electrolytic solution contains a non-aqueous solvent, a lithium salt dissolved in the non-aqueous solvent, and the above-mentioned additive.
  • the non-aqueous solvent is not particularly limited, but propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, ⁇ -butyrolactone and the like can be used.
  • As the lithium salt lithium borofluoride, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethylsulfonyl) imide, or the like can be used.
  • GCMS Gas chromatography / mass spectrometry
  • FIG. 1 is a front view showing a cross section of a part of a cylindrical lithium primary battery according to an embodiment of the present invention.
  • the cylindrical lithium primary battery 10 includes a band-shaped positive electrode 1 and a band-shaped negative electrode 2 made of a sheet of lithium metal or a lithium alloy.
  • the positive electrode 1 and the negative electrode 2 are spirally wound via a separator 3. Thus, a columnar electrode group is formed.
  • the electrode group is housed in a cylindrical metal case (battery can 9) having an opening together with an electrolytic solution (not shown). To prevent an internal short circuit, an upper insulating plate 6 and a lower insulating plate 7 are provided above and below the electrode group, respectively.
  • the metal case generally contains iron, stainless steel, or the like.
  • the positive electrode 1 has a positive electrode current collector 1a and a positive electrode mixture layer attached to the positive electrode current collector 1a.
  • the positive electrode 1 is provided with a portion exposing a part of the positive electrode mixture to expose the positive electrode current collector 1a, and one end of a positive electrode tab lead 4 is welded to the portion.
  • the other end of the positive electrode tab lead 4 is welded to the inner surface of a sealing plate 8 for closing the opening of the battery can 9.
  • One end of the negative electrode tab lead 5 is welded to the negative electrode 2.
  • the other end of the negative electrode tab lead 5 is welded to the inner bottom surface of the battery can 9.
  • Example 1 Production of positive electrode 92 parts by mass of electrolytic manganese dioxide as a positive electrode active material, 3.5 parts by mass of Ketjen black as a conductive agent, 4.5 parts by mass of polytetrafluoroethylene as a binder, and an appropriate amount And pure water were added and kneaded to prepare a positive electrode mixture in a wet state.
  • the positive electrode mixture in a wet state is passed between a pair of rotating rolls rotating at a constant speed together with a positive electrode current collector 1a made of expanded metal having a thickness of 0.4 mm made of stainless steel, thereby forming a thinned expanded metal.
  • the holes were filled with a positive electrode mixture, and both surfaces of the expanded metal were covered with a positive electrode mixture layer to prepare a positive electrode precursor.
  • the positive electrode precursor was dried, rolled by a roll press until the thickness became 1.0 mm, and cut into a predetermined size to obtain a belt-shaped positive electrode 1.
  • the positive electrode mixture was peeled from a part of the positive electrode 1 to expose the positive electrode current collector, and a stainless steel positive electrode tab lead 4 was welded to the exposed portion.
  • a negative electrode tab lead 5 made of nickel was welded to a predetermined portion of the negative electrode 2.
  • the positive electrode 1 and the negative electrode 2 were spirally wound with a separator 3 interposed therebetween to form a columnar electrode group.
  • As the separator 3 a 25 ⁇ m-thick microporous polyethylene film (porosity: 40%) was used.
  • Lithium salt was added to a non-aqueous solvent in which propylene carbonate (PC), ethylene carbonate (EC), and 1,2-dimethoxyethane (DME) were mixed at a volume ratio of 2: 1: 2.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DME 1,2-dimethoxyethane
  • the electrolyte solution contained 0.5% by mass of phthalimide (additive a1 in Table 3) as an additive.
  • the size of the battery can was changed. Specifically, the inner diameter of the battery can was set to a value shown in Table 1. The thickness of the side of the battery can was adjusted in the range of 0.2 mm to 0.3 mm according to the size (dimension of the inner diameter) of the battery can. The height of the battery can was kept constant at 48.6 mm.
  • the length of the strip-shaped positive electrode and the length of the negative electrode were changed according to the size (dimension of the inner diameter) of the battery can, and the diameter of the columnar electrode group was adjusted. Specifically, the length of the belt-shaped positive electrode was changed in the range of 14.0 mm to 484.0 mm. For example, the length of the positive electrode of the battery B5 was 139 mm. The length of the strip-shaped negative electrode was changed in the range of 28.0 mm to 498.0 mm. The width of the band-shaped positive electrode was fixed at 39 mm. The width of the strip-shaped negative electrode was fixed at 36 mm.
  • Batteries B1 to B8 having different battery sizes (capacities) were thus manufactured.
  • the nominal capacity of the battery B5 is 3350 mAh.
  • Batteries A1 to A8 were produced in the same manner as batteries B1 to B8, except that phthalimide as an additive was not added to the electrolytic solution.
  • the following evaluations were performed on the batteries A1 to A8 and B1 to B8 obtained above.
  • the batteries B5 to B8 are examples, and the batteries A1 to A8 and B1 to B4 are comparative examples.
  • Table 1 shows the evaluation results.
  • the increase in the positive electrode utilization rate in Table 1 and Tables 2 and 4 to 8 described below indicates the increase in the positive electrode utilization rate due to the use of the additive. It refers to a value obtained by subtracting the positive electrode utilization rate of a battery manufactured under the same conditions except that no agent is added.
  • the increase in the positive electrode utilization rate of the battery B5 (6.3%) is a value obtained by subtracting the positive electrode utilization rate of the battery A5 (86.1%) from the positive electrode utilization rate of the battery B5 (92.4%). .
  • the addition of phthalimide to the electrolytic solution made the discharge reaction of the positive electrode uniform, so that the positive electrode utilization rate was significantly increased and the high positive electrode utilization rate was high. Rate was obtained.
  • the diameter of the electrode group is small and the dispersion of the electrolyte solution in the radial direction of the electrode group is small, so that phthalimide is not added to the electrolyte solution. And a high positive electrode utilization rate was obtained.
  • the utilization rate of the positive electrode is higher than that of the batteries A1 to A4 by adding phthalimide to the electrolytic solution. The increase in the positive electrode utilization was small.
  • Example 2 Batteries C1 to C7 were prepared and evaluated in the same manner as the battery B1, except that the content of phthalimide in the electrolyte was changed to the value shown in Table 2. Batteries C2 to C6 are examples, and batteries C1 and C7 are comparative examples.
  • Table 2 shows the evaluation results.
  • Example 3 Instead of phthalimide (additive a1), additives a2 to a4, b1, b2, c1 to c4, d1, d2, e1, e2, f1, and f2 shown in Table 3 (the above general formulas (1) to (6) ) was used. Except for the above, batteries D1 to D15 were prepared and evaluated in the same manner as battery B5. Batteries D1 to D15 are examples.
  • Table 4 shows the evaluation results.
  • Example 4 Batteries E1 to F8 and F1 to F8 were fabricated and evaluated in the same manner as batteries A1 to A8 and B1 to B8, except that the thickness of the positive electrode was 0.4 mm. Batteries F5 to F8 are examples, and batteries E1 to E8 and F1 to F4 are comparative examples.
  • Batteries G1 to G8 and H1 to H8 were fabricated and evaluated in the same manner as batteries A1 to A8 and B1 to B8 except that the thickness of the positive electrode was 0.5 mm. Batteries H5 to H8 are examples, and batteries G1 to G8 and H1 to H4 are comparative examples.
  • Batteries I3 to I8 and J3 to J8 were prepared and evaluated in the same manner as batteries A3 to A8 and B3 to B8, except that the thickness of the positive electrode was 2.0 mm. Batteries J5 to J8 are examples, and batteries I3 to I8 and J3 to J4 are comparative examples.
  • Batteries K4 to K8 and L4 to L8 were prepared and evaluated in the same manner as batteries A4 to A8 and B4 to B8 except that the thickness of the positive electrode was changed to 2.5 mm. Batteries L5 to L8 are examples, and batteries K4 to K8 and L4 are comparative examples.
  • Table 1 shows the case where the thickness of the positive electrode is 1.0 mm.
  • phthalimide is added to the electrolyte.
  • the increase in the positive electrode utilization was particularly large.
  • the lithium primary battery according to the present invention is suitably used, for example, as a power source for electronic devices such as smart meters that require high battery performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

This lithium primary battery comprises: an electrode group which includes a belt-like positive electrode, a belt-like negative electrode, and a belt-like separator, the positive electrode and the negative electrode being wound via the separator; an electrolytic solution which includes a nonaqueous solvent and lithium salt dissolved in the nonaqueous solvent; and a bottomed cylindrical battery can which contains the electrode group and the electrolytic solution. The electrolytic solution contains at least one additive selected from the group consisting of phthalimide, phthalimidine, tetrahydrophthalimide, and derivatives thereof, and the content of the additive in the electrolytic solution is 0.001 to 10 mass%. The battery can has an inner diameter of 20 mm or greater.

Description

リチウム一次電池Lithium primary battery
 本発明は、リチウム一次電池に関する。 The present invention relates to a lithium primary battery.
 リチウム一次電池は、高エネルギー密度であり、自己放電が少ないことから、多くの電子機器に使用されている。リチウム一次電池は、極めて長い貯蔵寿命を有し、常温で10年以上という長期保存が可能であるため、各種メータの主電源やメモリーバックアップ電源として広く用いられている。 Lithium primary batteries are used in many electronic devices because of their high energy density and low self-discharge. Lithium primary batteries have an extremely long storage life and can be stored for a long period of time of 10 years or more at room temperature, and thus are widely used as a main power supply and a memory backup power supply for various meters.
 特許文献1では、ヒドロキシフタルイミドを含む電解液を備えた、小さいサイズ(外径17mmおよび高さ45mm)の円筒形のリチウム一次電池が、開示されている。特許文献1では、放電末期状態での電池保存時の内部抵抗の上昇の抑制と、高温環境下での電池保存時の電解液の分解によるガス発生の抑制とを目的として、ヒドロキシフタルイミドを用いている。 Patent Document 1 discloses a small-sized (17 mm in outer diameter and 45 mm in height) cylindrical lithium primary battery provided with an electrolyte containing hydroxyphthalimide. In Patent Document 1, hydroxyphthalimide is used for the purpose of suppressing an increase in internal resistance during storage of a battery in the final stage of discharge and suppressing gas generation due to decomposition of an electrolytic solution during storage of the battery in a high-temperature environment. I have.
 上記の円筒形リチウム一次電池は、帯状の正極および帯状の負極が、帯状のセパレータを介して捲回された柱状の電極群と、電極群を収容する有底円筒形の電池缶と、を備える。このようなスパイラル構造の電極群を備える円筒形リチウム一次電池は、高出力を有し、大電流を取り出しやすい。 The cylindrical lithium primary battery includes a band-shaped positive electrode and a band-shaped negative electrode, a column-shaped electrode group wound with a band-shaped separator interposed therebetween, and a bottomed cylindrical battery can housing the electrode group. . A cylindrical lithium primary battery provided with such a spiral-structured electrode group has a high output and is easy to take out a large current.
 また、特許文献2では、フタルイミドを含む電解液を用いたコイン形のリチウム一次電池が開示されている。特許文献2では、高温環境下での電池保存時の内部抵抗の上昇を抑制するために、フタルイミドを用いている。 Patent Document 2 discloses a coin-shaped lithium primary battery using an electrolyte containing phthalimide. In Patent Document 2, phthalimide is used to suppress an increase in internal resistance during storage of a battery in a high-temperature environment.
特開2015-149140号公報JP 2015-149140 A 国際公開第01/041247号International Publication No. 01/041247
 近年、スマートメータの普及に伴い、サイズが大きい高容量の円筒形リチウム一次電池(例えば、CサイズやDサイズの電池)が、スマートメータの電源として求められている。サイズが大きい電池では、内径が大きい電池缶内に、径が大きい電極群が収容されている。 In recent years, with the spread of smart meters, large-sized, high-capacity cylindrical lithium primary batteries (for example, C size and D size batteries) have been demanded as power sources for smart meters. In a battery having a large size, an electrode group having a large diameter is accommodated in a battery can having a large inner diameter.
 しかし、サイズが大きい円筒形リチウム一次電池では、特許文献1のサイズが小さい円筒形電池や特許文献2のコイン形電池では生じなかった正極利用率が大幅に低下するという問題が生じ得る。リチウム一次電池では、通常、正極の設計容量は負極の設計容量よりも小さいため、正極利用率の低下は、電池の放電容量に大きな影響を及ぼす。 However, in the case of a large cylindrical lithium primary battery, there may be a problem that the positive electrode utilization rate, which is not generated in the small cylindrical battery of Patent Document 1 or the coin battery of Patent Document 2, is significantly reduced. In a lithium primary battery, the design capacity of the positive electrode is usually smaller than the design capacity of the negative electrode, so that a decrease in the positive electrode utilization rate has a large effect on the discharge capacity of the battery.
 具体的には、電極群の径が大きい場合、放電の後半で、電極群の径方向(帯状の正極の長さ方向)における電解液分布のばらつきが大きくなり、それにより正極の放電反応が不均一化することが問題となる。これは、放電時に、電極群内において、正極が膨張し、それに伴いセパレータが圧縮され、電極群の外周側よりも中心側でセパレータが圧縮される度合いが大きくなることに起因する。すなわち、電極群の外周側で、電解液が多く分布し、正極の放電反応が過剰に進むことに起因する。 Specifically, when the diameter of the electrode group is large, the dispersion of the electrolyte solution in the radial direction of the electrode group (the length direction of the strip-shaped positive electrode) becomes large in the latter half of the discharge, and the discharge reaction of the positive electrode is thereby impaired. The problem is to make it uniform. This is because, during discharge, the positive electrode expands in the electrode group, the separator is compressed accordingly, and the degree of compression of the separator on the center side of the electrode group on the outer side is increased. That is, a large amount of the electrolytic solution is distributed on the outer peripheral side of the electrode group, and the discharge reaction of the positive electrode proceeds excessively.
 本開示の一局面は、帯状の正極、帯状の負極および帯状のセパレータを含み、前記正極と前記負極とが、前記セパレータを介して捲回された電極群と、非水溶媒および前記非水溶媒に溶解したリチウム塩を含む電解液と、前記電極群および前記電解液を収容する有底円筒形の電池缶と、を具備し、前記電解液は、フタルイミド、フタルイミジン、テトラヒドロフタルイミドおよびこれらの誘導体よりなる群から選択される少なくとも1種の添加剤を含み、前記電解液中の前記添加剤の含有量は、0.001質量%以上10質量%以下であり、前記電池缶の内径は、20mm以上である、リチウム一次電池に関する。 One aspect of the present disclosure includes a band-shaped positive electrode, a band-shaped negative electrode, and a band-shaped separator, wherein the positive electrode and the negative electrode are an electrode group wound via the separator, a non-aqueous solvent, and the non-aqueous solvent. An electrolytic solution containing a lithium salt dissolved in, and a bottomed cylindrical battery can containing the electrode group and the electrolytic solution, wherein the electrolytic solution comprises phthalimide, phthalimidine, tetrahydrophthalimide and derivatives thereof. The battery contains at least one additive selected from the group consisting of: a content of the additive in the electrolytic solution of not less than 0.001% by mass and not more than 10% by mass, and an inner diameter of the battery can of not less than 20 mm. Which relates to a lithium primary battery.
 本開示によれば、高出力および高容量を有するリチウム一次電池において、正極利用率を高めることができる。 According to the present disclosure, in a lithium primary battery having high output and high capacity, the positive electrode utilization rate can be increased.
本発明の一実施形態に係るリチウム一次電池の一部を断面とする正面図である。It is a front view which makes a part of lithium primary battery concerning one embodiment of the present invention a section.
 本発明の実施形態に係るリチウム一次電池は、高出力および高容量を有する。すなわち、リチウム一次電池は、帯状の正極、帯状の負極および帯状のセパレータを含み、正極と負極とが、セパレータを介して捲回された電極群と、非水溶媒および非水溶媒に溶解したリチウム塩を含む電解液と、電極群および電解液を収容する有底円筒形の電池缶と、を具備する。電池缶の内径は、20mm以上である。この電池缶内には、大きいサイズ(直径が約20mm以上)の柱状の電極群が収容され得る。 リ チ ウ ム The lithium primary battery according to the embodiment of the present invention has high output and high capacity. That is, the lithium primary battery includes a band-shaped positive electrode, a band-shaped negative electrode, and a band-shaped separator, and the positive electrode and the negative electrode are separated from each other by an electrode group wound through the separator, and a non-aqueous solvent and a lithium dissolved in a non-aqueous solvent. An electrolytic solution containing a salt, and a bottomed cylindrical battery can containing the electrode group and the electrolytic solution are provided. The inner diameter of the battery can is 20 mm or more. A columnar electrode group having a large size (having a diameter of about 20 mm or more) can be accommodated in the battery can.
 電解液は、フタルイミド、フタルイミジン、テトラヒドロフタルイミドおよびこれらの誘導体よりなる群から選択される少なくとも1種の添加剤を含み、電解液中の添加剤の含有量(電解液全体に対する添加剤の質量比)は、0.001質量%以上10質量%以下である。 The electrolyte contains at least one additive selected from the group consisting of phthalimide, phthalimidine, tetrahydrophthalimide and derivatives thereof, and the content of the additive in the electrolyte (mass ratio of the additive to the entire electrolyte). Is 0.001% by mass or more and 10% by mass or less.
 一般に、電池缶の内径を20mm以上に大きくすると、電池缶内に大きいサイズの電極群を収納可能であり、スマートメータなどに求められる高い電池容量が得られる。その反面、放電の後半で、電極群の径方向(帯状の正極の長さ方向)での電解液分布のばらつきが大きくなり、それにより正極の放電反応が不均一化し、正極利用率が低下してしまう。 Generally, when the inner diameter of the battery can is increased to 20 mm or more, a large-sized electrode group can be accommodated in the battery can, and a high battery capacity required for a smart meter or the like can be obtained. On the other hand, in the latter half of the discharge, the variation in the distribution of the electrolyte in the radial direction of the electrode group (the length direction of the belt-like positive electrode) becomes large, which makes the discharge reaction of the positive electrode non-uniform and reduces the positive electrode utilization rate. Would.
 これに対して、上記添加剤を特定量含む電解液を用いることにより、内径が20mm以上の電池缶内にサイズが大きい電極群を収納した場合に、正極利用率の低下が抑制され、電池の長期信頼性が向上する。すなわち、電解液が上記添加剤を特定量含む場合、上記添加剤の一部が負極で還元され、フタルイミドケトアニオンラジカルなどの添加剤由来のラジカルとなる。このラジカルが、正極へ適度に拡散し、正極表面の活性部位に適度に吸着する。これにより、電解液が多く分布する電極群の外周側での正極の過剰な放電反応が抑制され、正極全体の放電反応が均一化される。 On the other hand, by using an electrolytic solution containing a specific amount of the above additive, when a large electrode group is accommodated in a battery can having an inner diameter of 20 mm or more, a decrease in the positive electrode utilization rate is suppressed, and Long-term reliability is improved. That is, when the electrolytic solution contains the additive in a specific amount, a part of the additive is reduced at the negative electrode and becomes a radical derived from the additive such as a phthalimidoketoanion radical. These radicals are appropriately diffused into the positive electrode, and are appropriately adsorbed to active sites on the positive electrode surface. This suppresses an excessive discharge reaction of the positive electrode on the outer peripheral side of the electrode group in which a large amount of the electrolytic solution is distributed, and makes the discharge reaction of the entire positive electrode uniform.
 電解液中の添加剤の含有量が0.001質量%未満である場合、添加剤の添加による効果が小さくなり、正極利用率が低下する。電解液中の添加剤の含有量が10質量%超である場合、正極表面の活性部位に上記ラジカルが過剰に吸着するため、正極の反応抵抗が上昇し、正極利用率が低下する。 (4) When the content of the additive in the electrolytic solution is less than 0.001% by mass, the effect of the addition of the additive is reduced, and the utilization rate of the positive electrode is reduced. When the content of the additive in the electrolytic solution is more than 10% by mass, the radicals are excessively adsorbed on the active site on the positive electrode surface, so that the reaction resistance of the positive electrode increases and the utilization rate of the positive electrode decreases.
 正極利用率の更なる向上の観点から、電解液中の添加剤の含有量は、0.01質量%以上5質量%以下であることが好ましい。 From the viewpoint of further improving the utilization rate of the positive electrode, the content of the additive in the electrolytic solution is preferably 0.01% by mass or more and 5% by mass or less.
 添加剤は、フタルイミド、フタルイミジン、テトラヒドロフタルイミドおよびこれらの誘導体よりなる群から選択される少なくとも1種を含む。中でも、フタルイミド、2-エチルフタルイミド、2-フルオロフタルイミド、ヒドロキシフタルイミド、N-メチルフタルイミド、フタルイミジン、2-エチルフタルイミジン、2-フルオロフタルイミジン、ヒドロキシフタルイミジン、N-メチルフタルイミジン、テトラヒドロフタルイミド、テトラヒドロフタルイミドカリウム、N-ヒドロキシテトラヒドロフタルイミド、N-メチルテトラヒドロフタルイミドが好ましい。これらの化合物は、電解液の非水溶媒やリチウム塩に対する反応性が低い。また、負極での還元反応で生成される上記化合物由来のラジカルは、安定性が高い。 The additive contains at least one selected from the group consisting of phthalimide, phthalimidine, tetrahydrophthalimide and derivatives thereof. Among them, phthalimide, 2-ethylphthalimide, 2-fluorophthalimide, hydroxyphthalimide, N-methylphthalimide, phthalimidine, 2-ethylphthalimidine, 2-fluorophthalimidine, hydroxyphthalimidine, N-methylphthalimidine, Tetrahydrophthalimide, potassium tetrahydrophthalimide, N-hydroxytetrahydrophthalimide, N-methyltetrahydrophthalimide are preferred. These compounds have low reactivity to a non-aqueous solvent or a lithium salt of the electrolytic solution. In addition, radicals derived from the above compounds generated by the reduction reaction at the negative electrode have high stability.
 添加剤は、一般式(1): The additive has the general formula (1):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(一般式(1)中、X~Xは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子または炭素原子数が1~3のアルキル基であり、Yは、水素原子またはカリウム原子である。)で表される化合物(フタルイミドまたはフタルイミドの誘導体)であってもよい。中でも、X~Xは水素原子であることが好ましい。または、X~Xのうち、XまたはXはエチル基またはフッ素原子であり、残りは水素原子であってもよい。 (In the general formula (1), X 1 to X 4 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 1 Is a hydrogen atom or a potassium atom.) (Phthalimide or a derivative of phthalimide). Among them, X 1 to X 4 are preferably hydrogen atoms. Alternatively, among X 1 to X 4 , X 2 or X 3 may be an ethyl group or a fluorine atom, and the rest may be hydrogen atoms.
 添加剤は、一般式(2): The additive has the general formula (2):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(一般式(2)中、X~Xは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子または炭素原子数が1~3のアルキル基であり、Yは、水素原子または炭素原子数が1~3のアルキル基である。)で表される化合物(フタルイミドの誘導体)であってもよい。中でも、X~Xは水素原子であることが好ましい。Yは水素原子またはメチル基であることが好ましい。 (In the general formula (2), X 5 to X 8 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 2 Is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.) (Phthalimide derivative). Among them, X 5 to X 8 are preferably hydrogen atoms. Y 2 is preferably a hydrogen atom or a methyl group.
 添加剤は、一般式(3): The additive has the general formula (3):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(一般式(3)中、X~X12は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子または炭素原子数が1~3のアルキル基であり、Yは、水素原子またはカリウム原子である。)で表される化合物(フタルイミジンまたはフタルイミジンの誘導体)であってもよい。中でも、X~X12は水素原子であることが好ましい。または、X~X12のうち、X10またはX11はエチル基またはフッ素原子であり、残りは水素原子であってもよい。 (In the general formula (3), X 9 to X 12 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 3 Is a hydrogen atom or a potassium atom.) (Phthalimidine or a derivative of phthalimidine). Among them, X 9 to X 12 are preferably hydrogen atoms. Alternatively, among X 9 to X 12 , X 10 or X 11 may be an ethyl group or a fluorine atom, and the rest may be hydrogen atoms.
 添加剤は、一般式(4): The additive has the general formula (4):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(一般式(4)中、X13~X16は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子または炭素原子数が1~3のアルキル基であり、Yは、水素原子または炭素原子数が1~3のアルキル基である。)で表される化合物(フタルイミジンの誘導体)であってもよい。中でも、X13~X16は水素原子であることが好ましい。Yは水素原子またはメチル基であることが好ましい。 (In the general formula (4), X 13 to X 16 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 4 Is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.) (Phthalimidine derivative). Among them, X 13 to X 16 are preferably hydrogen atoms. Y 4 is preferably a hydrogen atom or a methyl group.
 添加剤は、一般式(5): The additive has the general formula (5):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(一般式(5)中、Yは、水素原子またはカリウム原子である。)で表される化合物(テトラヒドロフタルイミドまたはテトラヒドロフタルイミドの誘導体)であってもよい。 (In the general formula (5), Y 5 is a hydrogen atom or a potassium atom.) (Tetrahydrophthalimide or a derivative of tetrahydrophthalimide).
 添加剤は、一般式(6): The additive has the general formula (6):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(一般式(6)中、Yは、水素原子または炭素原子数が1~3のアルキル基である。)で表される化合物(テトラヒドロフタルイミドの誘導体)であってもよい。中でも、Yは、水素原子またはメチル基であることが好ましい。 (In the general formula (6), Y 6 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.) (Tetrahydrophthalimide derivative). Among them, Y 6 is preferably a hydrogen atom or a methyl group.
 一般式(1)~(6)で表される化合物は、電解液の非水溶媒やリチウム塩に対する反応性が低く、負極での還元反応で生成される上記化合物由来のラジカルの安定性も高いと考えられる。 The compounds represented by the general formulas (1) to (6) have low reactivity to a non-aqueous solvent or a lithium salt of the electrolytic solution, and also have high stability of radicals derived from the compounds generated by a reduction reaction at the negative electrode. it is conceivable that.
 高容量化の観点から、正極の厚さは、0.5mm以上2.0mm以下であることが好ましい。この場合、負極の厚さは、例えば0.19mm以上0.83mm以下である。 か ら From the viewpoint of increasing the capacity, the thickness of the positive electrode is preferably 0.5 mm or more and 2.0 mm or less. In this case, the thickness of the negative electrode is, for example, 0.19 mm or more and 0.83 mm or less.
 正極の厚さが0.5mm以上である場合、例えば正極の長さを後述の範囲とすることにより、スマートメータに求められる程度に容量を十分に高めることができる。正極の厚さが2.0mm以下である場合、放電時に正極の表面部から内部にかけて正極活物質が十分に利用されるため、正極利用率が大幅に向上する。 (4) When the thickness of the positive electrode is 0.5 mm or more, for example, by setting the length of the positive electrode in the range described later, the capacity can be sufficiently increased to the extent required for a smart meter. When the thickness of the positive electrode is 2.0 mm or less, the positive electrode active material is sufficiently used from the surface to the inside of the positive electrode during discharge, so that the positive electrode utilization rate is significantly improved.
 一般に、正極の厚さが0.5mm以上2.0mm以下である場合、正極の表面部と内部とで電解液分布のばらつきが大きくなり、正極の厚さ方向での放電反応が不均一となる場合がある。 Generally, when the thickness of the positive electrode is 0.5 mm or more and 2.0 mm or less, the dispersion of the electrolyte solution between the surface portion and the inside of the positive electrode increases, and the discharge reaction in the thickness direction of the positive electrode becomes uneven. There are cases.
 これに対して、上記添加剤の使用により、上記添加剤に由来するラジカルが正極表面に吸着し、正極厚さが上記範囲の場合に、正極の厚さ方向での電解液分布のばらつきの増大による正極表面側での過剰な放電反応が抑制される。その結果、正極の長さ方向とともに正極の厚さ方向においても放電反応が均一化される。 On the other hand, by using the additive, radicals derived from the additive are adsorbed on the surface of the positive electrode, and when the thickness of the positive electrode is in the above range, the variation in the electrolyte solution distribution in the thickness direction of the positive electrode increases. Excessive discharge reaction on the surface of the positive electrode due to the above is suppressed. As a result, the discharge reaction is made uniform not only in the length direction of the positive electrode but also in the thickness direction of the positive electrode.
 更なる高容量化および正極利用率向上の観点から、正極の厚さは0.5mm以上1.5mm以下が、より好ましい。 か ら From the viewpoint of further increasing the capacity and improving the utilization rate of the positive electrode, the thickness of the positive electrode is more preferably 0.5 mm or more and 1.5 mm or less.
 高容量化および正極利用率向上の観点から、内径が24.6±0.15mmの電池缶(Cサイズ)を用い、正極の厚さを0.5mm以上2.0mm以下とする場合、正極の長さは90mm以上530mm以下が好ましい。この場合、負極の長さは、例えば100mm以上550mm以下である。上記Cサイズの電池缶を用い、正極の厚さを0.5mm以上1.5mm以下とする場合、正極の長さは140mm以上530mm以下が好ましく、負極の長さは、例えば150mm以上550mm以下である。上記Cサイズの電池缶を用い、正極の厚さを0.5mm以上1.0mm以下とする場合、正極の長さは230mm以上530mm以下が好ましく、負極の長さは、例えば240mm以上550mm以下である。 In the case of using a battery can (C size) having an inner diameter of 24.6 ± 0.15 mm and a thickness of the positive electrode of 0.5 mm or more and 2.0 mm or less from the viewpoint of increasing the capacity and improving the utilization rate of the positive electrode, The length is preferably 90 mm or more and 530 mm or less. In this case, the length of the negative electrode is, for example, 100 mm or more and 550 mm or less. When the thickness of the positive electrode is set to 0.5 mm or more and 1.5 mm or less using the C size battery can, the length of the positive electrode is preferably 140 mm or more and 530 mm or less, and the length of the negative electrode is, for example, 150 mm or more and 550 mm or less. is there. When the thickness of the positive electrode is 0.5 mm or more and 1.0 mm or less using the C size battery can, the length of the positive electrode is preferably 230 mm or more and 530 mm or less, and the length of the negative electrode is, for example, 240 mm or more and 550 mm or less. is there.
 高容量化および正極利用率向上の観点から、内径が33.6±0.15mmの電池缶(Dサイズ)を用い、正極の厚さを0.5mm以上2.0mm以下とする場合、正極の長さは200mm以上1050mm以下が好ましい。この場合、負極の長さは、例えば210mm以上1070mm以下である。上記Dサイズの電池缶を用い、正極の厚さを0.5mm以上1.5mm以下とする場合、正極の長さは300mm以上1050mm以下が好ましく、負極の長さは、例えば310mm以上1070mm以下である。上記Dサイズの電池缶を用い、正極の厚さを0.5mm以上1.0mm以下とする場合、正極の長さは480mm以上1050mm以下が好ましく、負極の長さは、例えば490mm以上1070mm以下である。 In the case of using a battery can (D size) having an inner diameter of 33.6 ± 0.15 mm and a thickness of 0.5 mm or more and 2.0 mm or less from the viewpoint of increasing the capacity and improving the utilization rate of the cathode, The length is preferably 200 mm or more and 1050 mm or less. In this case, the length of the negative electrode is, for example, not less than 210 mm and not more than 1070 mm. When using the D-size battery can and setting the thickness of the positive electrode to 0.5 mm or more and 1.5 mm or less, the length of the positive electrode is preferably 300 mm or more and 1050 mm or less, and the length of the negative electrode is, for example, 310 mm or more and 1070 mm or less. is there. When the thickness of the positive electrode is set to 0.5 mm or more and 1.0 mm or less using the D-size battery can, the length of the positive electrode is preferably 480 mm or more and 1050 mm or less, and the length of the negative electrode is, for example, 490 mm or more and 1070 mm or less. is there.
 正極は正極活物質を含み、正極活物質として二酸化マンガンを用いることができる。正極は、例えば、正極集電体と、正極集電体に付着している正極合剤層とを具備する。正極合剤層は、例えばシート状の正極集電体の両面に、正極集電体を埋設するように形成される。正極合剤層は、正極活物質の他に、フッ素樹脂などの樹脂材料を結着剤として含み得る。正極合剤層は、炭素材料などの導電性材料を導電剤として含んでもよい。正極集電体は、例えばステンレス鋼製のエキスパンドメタル、ネット、パンチングメタルなどである。 The positive electrode contains a positive electrode active material, and manganese dioxide can be used as the positive electrode active material. The positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer attached to the positive electrode current collector. The positive electrode mixture layer is formed, for example, such that the positive electrode current collector is embedded on both sides of a sheet-shaped positive electrode current collector. The positive electrode mixture layer may include a resin material such as a fluororesin as a binder in addition to the positive electrode active material. The positive electrode mixture layer may include a conductive material such as a carbon material as a conductive agent. The positive electrode current collector is, for example, an expanded metal, a net, or a punched metal made of stainless steel.
 負極は負極活物質を含み、負極活物質として金属リチウムまたはリチウム合金を用いることができる。金属リチウムまたはリチウム合金は、例えば、長尺のシート状に押し出し成形され、負極として用いられる。リチウム合金としては、Li-Al、Li-Sn、Li-Ni-Si、Li-Pbなどの合金が用いられるが、Li-Al合金が好ましい。リチウム合金に含まれるリチウム以外の金属元素の含有量は、放電容量の確保や内部抵抗の安定化の観点から、0.1質量%以上5質量%以下とすることが好ましい。 The negative electrode contains a negative electrode active material, and lithium metal or a lithium alloy can be used as the negative electrode active material. For example, metal lithium or a lithium alloy is extruded into a long sheet and used as a negative electrode. As the lithium alloy, an alloy such as Li-Al, Li-Sn, Li-Ni-Si, or Li-Pb is used, and a Li-Al alloy is preferable. The content of metal elements other than lithium contained in the lithium alloy is preferably 0.1% by mass or more and 5% by mass or less from the viewpoint of securing discharge capacity and stabilizing internal resistance.
 セパレータとしては、リチウム一次電池の内部環境に対して耐性を有する絶縁性材料で形成された多孔質シートを使用すればよい。具体的には、合成樹脂製の不織布や、合成樹脂製の微多孔膜などが挙げられる。 (4) As the separator, a porous sheet formed of an insulating material having resistance to the internal environment of the lithium primary battery may be used. Specifically, a nonwoven fabric made of a synthetic resin, a microporous film made of a synthetic resin, and the like can be given.
 電解液は、非水溶媒と、非水溶媒に溶解するリチウム塩と、上記添加剤と、を含む。非水溶媒は、特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、1,2-ジメトキシエタン、γ-ブチロラクトンなどを使用することができる。リチウム塩としては、ホウフッ化リチウム、六フッ化リン酸リチウム、トリフルオロメタンスルホン酸リチウム、リチウムビス(フルオロスルホニル)イミド、リチウムビス(トリフルオロメチルスルホニル)イミドなどを用いることができる。 The electrolytic solution contains a non-aqueous solvent, a lithium salt dissolved in the non-aqueous solvent, and the above-mentioned additive. The non-aqueous solvent is not particularly limited, but propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone and the like can be used. As the lithium salt, lithium borofluoride, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethylsulfonyl) imide, or the like can be used.
 電解液の添加剤などの成分分析には、ガスクロマトグラフィー質量分析法(GCMS)を用いることができる。具体的には、未使用の電池を解体し、電池内部より採取した電解液についてGCMSの分析を行う。 ガ ス Gas chromatography / mass spectrometry (GCMS) can be used for analyzing components such as additives of the electrolytic solution. Specifically, an unused battery is dismantled, and the GCMS analysis is performed on the electrolyte collected from inside the battery.
 次に、図面を参照しながら、本発明の実施形態に係るリチウム一次電池について更に具体的に説明する。ただし、本発明は下記の実施形態に限定されるものではない。 Next, the lithium primary battery according to the embodiment of the present invention will be described more specifically with reference to the drawings. However, the present invention is not limited to the following embodiments.
 図1に、本発明の一実施形態に係る円筒形リチウム一次電池の一部を断面にした正面図を示す。 FIG. 1 is a front view showing a cross section of a part of a cylindrical lithium primary battery according to an embodiment of the present invention.
 円筒形リチウム一次電池10は、帯状の正極1と、金属リチウムまたはリチウム合金のシートからなる帯状の負極2とを具備し、正極1と負極2とがセパレータ3を介して渦巻き状に捲回されて、柱状の電極群を構成している。 The cylindrical lithium primary battery 10 includes a band-shaped positive electrode 1 and a band-shaped negative electrode 2 made of a sheet of lithium metal or a lithium alloy. The positive electrode 1 and the negative electrode 2 are spirally wound via a separator 3. Thus, a columnar electrode group is formed.
 電極群は、電解液(図示せず)とともに、開口を有する有底円筒形の金属ケース(電池缶9)の内部に収納されている。内部短絡防止のために、電極群の上部および下部には、それぞれ上部絶縁板6および下部絶縁板7が配備されている。金属ケースには、鉄、ステンレス鋼などが含まれることが一般的である。 The electrode group is housed in a cylindrical metal case (battery can 9) having an opening together with an electrolytic solution (not shown). To prevent an internal short circuit, an upper insulating plate 6 and a lower insulating plate 7 are provided above and below the electrode group, respectively. The metal case generally contains iron, stainless steel, or the like.
 正極1は、正極集電体1aと、正極集電体1aに付着している正極合剤層と、を有する。正極1には、正極合剤の一部分を剥離して正極集電体1aを露出させた部分が設けられており、その部分に正極タブリード4の一端が溶接されている。正極タブリード4の他端は、電池缶9の開口を封口する封口板8の内面に溶接されている。負極タブリード5の一端は、負極2に溶接されている。負極タブリード5の他端は、電池缶9の内底面に溶接されている。 The positive electrode 1 has a positive electrode current collector 1a and a positive electrode mixture layer attached to the positive electrode current collector 1a. The positive electrode 1 is provided with a portion exposing a part of the positive electrode mixture to expose the positive electrode current collector 1a, and one end of a positive electrode tab lead 4 is welded to the portion. The other end of the positive electrode tab lead 4 is welded to the inner surface of a sealing plate 8 for closing the opening of the battery can 9. One end of the negative electrode tab lead 5 is welded to the negative electrode 2. The other end of the negative electrode tab lead 5 is welded to the inner bottom surface of the battery can 9.
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to the following examples.
 《実施例1》
 (1)正極の作製
 正極活物質である電解二酸化マンガン92質量部に、導電剤であるケッチェンブラック3.5質量部と、結着剤であるポリテトラフルオロエチレン4.5質量部と、適量の純水と、を加えて混錬し、湿潤状態の正極合剤を調製した。
<< Example 1 >>
(1) Production of positive electrode 92 parts by mass of electrolytic manganese dioxide as a positive electrode active material, 3.5 parts by mass of Ketjen black as a conductive agent, 4.5 parts by mass of polytetrafluoroethylene as a binder, and an appropriate amount And pure water were added and kneaded to prepare a positive electrode mixture in a wet state.
 次に、湿潤状態の正極合剤を、ステンレス鋼製の厚さ0.4mmのエキスパンドメタルからなる正極集電体1aとともに、等速回転を行う一対の回転ロール間に通過させ、エキスパンドメタルの細孔に正極合剤を充填するとともに、エキスパンドメタルの両面を正極合剤層で覆い、正極前駆体を作製した。その後、正極前駆体を、乾燥させ、ロールプレスにより厚さが1.0mmになるまで圧延し、所定寸法に裁断し、帯状の正極1を得た。 Next, the positive electrode mixture in a wet state is passed between a pair of rotating rolls rotating at a constant speed together with a positive electrode current collector 1a made of expanded metal having a thickness of 0.4 mm made of stainless steel, thereby forming a thinned expanded metal. The holes were filled with a positive electrode mixture, and both surfaces of the expanded metal were covered with a positive electrode mixture layer to prepare a positive electrode precursor. Thereafter, the positive electrode precursor was dried, rolled by a roll press until the thickness became 1.0 mm, and cut into a predetermined size to obtain a belt-shaped positive electrode 1.
 (2)負極の作製
 厚さ0.4mmのシート状のLi-Al合金(Al含有量:0.3質量%)を、所定寸法に裁断し、帯状の負極2を得た。
(2) Preparation of Negative Electrode A sheet-shaped Li-Al alloy (Al content: 0.3% by mass) having a thickness of 0.4 mm was cut into a predetermined size to obtain a strip-shaped negative electrode 2.
 (3)電極群の作製
 正極1の一部から正極合剤を剥がして正極集電体を露出させ、その露出部にステンレス鋼製の正極タブリード4を溶接した。負極2の所定箇所にニッケル製の負極タブリード5を溶接した。正極1と負極2とを、これらの間にセパレータ3を介在させて、渦巻状に捲回し、柱状の電極群を構成した。セパレータ3には、厚さ25μmのポリエチレン製の微多孔膜(空隙率40%)を用いた。
(3) Preparation of Electrode Group The positive electrode mixture was peeled from a part of the positive electrode 1 to expose the positive electrode current collector, and a stainless steel positive electrode tab lead 4 was welded to the exposed portion. A negative electrode tab lead 5 made of nickel was welded to a predetermined portion of the negative electrode 2. The positive electrode 1 and the negative electrode 2 were spirally wound with a separator 3 interposed therebetween to form a columnar electrode group. As the separator 3, a 25 μm-thick microporous polyethylene film (porosity: 40%) was used.
 (4)電解液の調製
 プロピレンカーボネート(PC)と、エチレンカーボネート(EC)と、1,2-ジメトキシエタン(DME)とを、体積比2:1:2で混合した非水溶媒に、リチウム塩としてトリフルオロメタンスルホン酸リチウムを0.5モル/リットルの濃度で溶解させ、電解液を調製した。電解液に、添加剤であるフタルイミド(表3の添加剤a1)を0.5質量%含ませた。
(4) Preparation of electrolyte solution Lithium salt was added to a non-aqueous solvent in which propylene carbonate (PC), ethylene carbonate (EC), and 1,2-dimethoxyethane (DME) were mixed at a volume ratio of 2: 1: 2. Was dissolved in lithium trifluoromethanesulfonate at a concentration of 0.5 mol / liter to prepare an electrolytic solution. The electrolyte solution contained 0.5% by mass of phthalimide (additive a1 in Table 3) as an additive.
 (5)円筒形電池の組み立て
 電極群を、その底部にリング状の下部絶縁板7を配置した状態で、有底円筒形の鉄製の電池缶9の内部に挿入した。負極タブリード5を電池缶9の内底面に溶接し、リング状の上部絶縁板6を電極群の上部に配置した後、溝入れ加工をし、正極タブリード4を封口板8の内面に溶接した。次に、電解液を電池缶9の内部に注液し、その後、電池缶9の開口部を封口板8で封口した。このようにして、図1に示す構造を有する円筒形リチウム電池を作製した。
(5) Assembly of Cylindrical Battery The electrode group was inserted into a bottomed cylindrical iron battery can 9 with the ring-shaped lower insulating plate 7 disposed at the bottom. After the negative electrode tab lead 5 was welded to the inner bottom surface of the battery can 9 and the ring-shaped upper insulating plate 6 was arranged on the upper part of the electrode group, grooving was performed, and the positive electrode tab lead 4 was welded to the inner surface of the sealing plate 8. Next, the electrolytic solution was injected into the battery can 9, and then the opening of the battery can 9 was sealed with a sealing plate 8. Thus, a cylindrical lithium battery having the structure shown in FIG. 1 was produced.
 上記において、電池缶のサイズを変えた。具体的には、電池缶の内径を表1に示す値とした。電池缶のサイズ(内径の寸法)に応じて、電池缶の側部の厚さは、0.2mm~0.3mmの範囲で調整した。電池缶の高さは48.6mmと一定にした。 に お い て In the above, the size of the battery can was changed. Specifically, the inner diameter of the battery can was set to a value shown in Table 1. The thickness of the side of the battery can was adjusted in the range of 0.2 mm to 0.3 mm according to the size (dimension of the inner diameter) of the battery can. The height of the battery can was kept constant at 48.6 mm.
 電池缶のサイズ(内径の寸法)に応じて帯状の正極および負極の長さ寸法を変えて、柱状の電極群の径の寸法を調整した。具体的には、帯状の正極の長さ寸法は、14.0mm~484.0mmの範囲で変えた。例えば、電池B5の正極の長さは、139mmであった。帯状の負極の長さ寸法は、28.0mm~498.0mmの範囲で変えた。帯状の正極の幅寸法は、39mmと一定にした。帯状の負極の幅寸法は、36mmと一定にした。 帯 The length of the strip-shaped positive electrode and the length of the negative electrode were changed according to the size (dimension of the inner diameter) of the battery can, and the diameter of the columnar electrode group was adjusted. Specifically, the length of the belt-shaped positive electrode was changed in the range of 14.0 mm to 484.0 mm. For example, the length of the positive electrode of the battery B5 was 139 mm. The length of the strip-shaped negative electrode was changed in the range of 28.0 mm to 498.0 mm. The width of the band-shaped positive electrode was fixed at 39 mm. The width of the strip-shaped negative electrode was fixed at 36 mm.
 このようにして電池サイズ(容量)の異なる電池B1~B8を作製した。例えば、電池B5の公称容量は、3350mAhである。 電池 Batteries B1 to B8 having different battery sizes (capacities) were thus manufactured. For example, the nominal capacity of the battery B5 is 3350 mAh.
 また、電解液に添加剤であるフタルイミドを加えない以外、電池B1~B8と同様にして、電池A1~A8を作製した。 Batteries A1 to A8 were produced in the same manner as batteries B1 to B8, except that phthalimide as an additive was not added to the electrolytic solution.
 上記で得られた電池A1~A8、B1~B8について、以下の評価を行った。なお、電池B5~B8が実施例であり、電池A1~A8、B1~B4が比較例である。 電池 The following evaluations were performed on the batteries A1 to A8 and B1 to B8 obtained above. The batteries B5 to B8 are examples, and the batteries A1 to A8 and B1 to B4 are comparative examples.
 [評価]
 上記で作製した電池を、60℃で2ヵ月間放置した後、20℃の環境下において、電圧が2.0Vに達するまで1kΩの定抵抗で放電し、そのときの容量を測定した。正極の設計容量(活物質の充填量に基づいて理論上求められる容量)に対する上記で測定された容量の割合(百分率)を、正極利用率として求めた。なお、リチウム一次電池では、通常、負極容量が正極容量よりも大きくなるように設計されている。
[Evaluation]
After leaving the battery prepared above at 60 ° C. for 2 months, the battery was discharged at a constant resistance of 1 kΩ in a 20 ° C. environment until the voltage reached 2.0 V, and the capacity at that time was measured. The ratio (percentage) of the capacity measured above to the design capacity of the positive electrode (the capacity theoretically determined based on the filling amount of the active material) was determined as the positive electrode utilization rate. In general, a lithium primary battery is designed so that the negative electrode capacity is larger than the positive electrode capacity.
 評価結果を表1に示す。なお、表1および後述の表2、4~8中の正極利用率の上昇幅は、添加剤の使用による正極利用率の上昇幅を指し、添加剤を添加した電池の正極利用率から、添加剤無添加以外は同じ条件で作製した電池の正極利用率を差し引いた値を指す。例えば、電池B5の正極利用率の上昇幅(6.3%)は、電池B5の正極利用率(92.4%)から電池A5の正極利用率(86.1%)を差し引いた値である。 Table 1 shows the evaluation results. The increase in the positive electrode utilization rate in Table 1 and Tables 2 and 4 to 8 described below indicates the increase in the positive electrode utilization rate due to the use of the additive. It refers to a value obtained by subtracting the positive electrode utilization rate of a battery manufactured under the same conditions except that no agent is added. For example, the increase in the positive electrode utilization rate of the battery B5 (6.3%) is a value obtained by subtracting the positive electrode utilization rate of the battery A5 (86.1%) from the positive electrode utilization rate of the battery B5 (92.4%). .
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 電池缶の内径が20mm以上である高容量の電池A5~A8では、正極の放電反応が不均一化し、正極利用率が大幅に低下した。 (4) In the high-capacity batteries A5 to A8 in which the inner diameter of the battery can was 20 mm or more, the discharge reaction of the positive electrode became non-uniform, and the positive electrode utilization was significantly reduced.
 電池缶の内径が20mm以上である高容量の電池B5~B8では、電解液にフタルイミドを添加することにより、正極の放電反応が均一化されたため、正極利用率が大幅に上昇し、高い正極利用率が得られた。 In the high-capacity batteries B5 to B8 having an inner diameter of the battery can of 20 mm or more, the addition of phthalimide to the electrolytic solution made the discharge reaction of the positive electrode uniform, so that the positive electrode utilization rate was significantly increased and the high positive electrode utilization rate was high. Rate was obtained.
 電池缶の内径が20mm未満である容量の小さい電池A1~A4では、電極群の径が小さく、電極群の径方向の電解液分布のばらつきが小さいため、電解液にフタルイミドを添加しなくても、高い正極利用率が得られた。このため、電池缶の内径が20mm未満である容量の小さい電池B1~B4では、電解液にフタルイミドを添加することにより、電池A1~A4よりも正極利用率が高められたが、フタルイミドの添加による正極利用率の上昇幅は小さかった。 In the small-capacity batteries A1 to A4 in which the inner diameter of the battery can is less than 20 mm, the diameter of the electrode group is small and the dispersion of the electrolyte solution in the radial direction of the electrode group is small, so that phthalimide is not added to the electrolyte solution. And a high positive electrode utilization rate was obtained. For this reason, in the batteries B1 to B4 having small capacities in which the inner diameter of the battery can is less than 20 mm, the utilization rate of the positive electrode is higher than that of the batteries A1 to A4 by adding phthalimide to the electrolytic solution. The increase in the positive electrode utilization was small.
 《実施例2》
 電解液中のフタルイミドの含有量を表2に示す値とした以外、電池B1と同様にして、電池C1~C7を作製し、評価した。電池C2~C6が実施例であり、電池C1、C7が比較例である。
<< Example 2 >>
Batteries C1 to C7 were prepared and evaluated in the same manner as the battery B1, except that the content of phthalimide in the electrolyte was changed to the value shown in Table 2. Batteries C2 to C6 are examples, and batteries C1 and C7 are comparative examples.
 評価結果を表2に示す。 Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 電解液中のフタルイミドの含有量が0.001質量%以上10質量%以下である高容量の電池B5、C2~C6では、正極利用率の上昇幅が大きく、高い正極利用率が得られた。 (4) In the high-capacity batteries B5 and C2 to C6 in which the content of phthalimide in the electrolytic solution was 0.001% by mass or more and 10% by mass or less, the increase in the positive electrode utilization rate was large, and a high positive electrode utilization rate was obtained.
 《実施例3》
 フタルイミド(添加剤a1)の代わりに、表3に示す添加剤a2~a4、b1、b2、c1~c4、d1、d2、e1、e2、f1、f2(上記の一般式(1)~(6)で表される化合物)を用いた。上記以外、電池B5と同様にして、電池D1~D15を作製し、評価した。電池D1~D15が実施例である。
<< Example 3 >>
Instead of phthalimide (additive a1), additives a2 to a4, b1, b2, c1 to c4, d1, d2, e1, e2, f1, and f2 shown in Table 3 (the above general formulas (1) to (6) ) Was used. Except for the above, batteries D1 to D15 were prepared and evaluated in the same manner as battery B5. Batteries D1 to D15 are examples.
 評価結果を表4に示す。 Table 4 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表3に示す各種添加剤を用いた電池D1~D15においても、電池A5と比べて、正極利用率が大幅に上昇し、高い正極利用率が得られた。 電池 Also in the batteries D1 to D15 using the various additives shown in Table 3, the utilization rate of the positive electrode was significantly increased as compared with the battery A5, and a high utilization rate of the positive electrode was obtained.
 《実施例4》
 正極の厚さを0.4mmとした以外、電池A1~A8、B1~B8と同様にして、電池E1~F8、F1~F8を作製し、評価した。電池F5~F8が実施例であり、電池E1~E8、F1~F4が比較例である。
<< Example 4 >>
Batteries E1 to F8 and F1 to F8 were fabricated and evaluated in the same manner as batteries A1 to A8 and B1 to B8, except that the thickness of the positive electrode was 0.4 mm. Batteries F5 to F8 are examples, and batteries E1 to E8 and F1 to F4 are comparative examples.
 正極の厚さを0.5mmとした以外、電池A1~A8、B1~B8と同様にして、電池G1~G8、H1~H8を作製し、評価した。電池H5~H8が実施例であり、電池G1~G8、H1~H4が比較例である。 電池 Batteries G1 to G8 and H1 to H8 were fabricated and evaluated in the same manner as batteries A1 to A8 and B1 to B8 except that the thickness of the positive electrode was 0.5 mm. Batteries H5 to H8 are examples, and batteries G1 to G8 and H1 to H4 are comparative examples.
 正極の厚さを2.0mmとした以外、電池A3~A8、B3~B8と同様にして、電池I3~I8、J3~J8を作製し、評価した。電池J5~J8が実施例であり、電池I3~I8、J3~J4が比較例である。 電池 Batteries I3 to I8 and J3 to J8 were prepared and evaluated in the same manner as batteries A3 to A8 and B3 to B8, except that the thickness of the positive electrode was 2.0 mm. Batteries J5 to J8 are examples, and batteries I3 to I8 and J3 to J4 are comparative examples.
 正極の厚さを2.5mmとした以外、電池A4~A8、B4~B8と同様にして、電池K4~K8、L4~L8を作製し、評価した。電池L5~L8が実施例であり、電池K4~K8、L4が比較例である。 電池 Batteries K4 to K8 and L4 to L8 were prepared and evaluated in the same manner as batteries A4 to A8 and B4 to B8 except that the thickness of the positive electrode was changed to 2.5 mm. Batteries L5 to L8 are examples, and batteries K4 to K8 and L4 are comparative examples.
 評価結果を表5~8に示す。なお、表1は、正極の厚さが1.0mmの場合を示す。 The evaluation results are shown in Tables 5 to 8. Table 1 shows the case where the thickness of the positive electrode is 1.0 mm.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 電池缶の内径が20mm以上であり、正極の厚さが0.5mm以上2.0mm以下である高容量の電池H5~H8、B5~B8、J5~J8では、電解液へのフタルイミドの添加による正極利用率の上昇幅が特に大きかった。 For high-capacity batteries H5 to H8, B5 to B8, and J5 to J8 in which the inner diameter of the battery can is 20 mm or more and the thickness of the positive electrode is 0.5 mm or more and 2.0 mm or less, phthalimide is added to the electrolyte. The increase in the positive electrode utilization was particularly large.
 本発明に係るリチウム一次電池は、例えば、高い電池性能が求められるスマートメータなどの電子機器の電源として好適に用いられる。 The lithium primary battery according to the present invention is suitably used, for example, as a power source for electronic devices such as smart meters that require high battery performance.
 1 正極
 1a 正極集電体
 2 負極
 3 セパレータ
 4 正極タブリード
 5 負極タブリード
 6 上部絶縁板
 7 下部絶縁板
 8 封口板
 9 電池缶
 10 リチウム一次電池
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 2 Negative electrode 3 Separator 4 Positive electrode tab lead 5 Negative electrode tab lead 6 Upper insulating plate 7 Lower insulating plate 8 Sealing plate 9 Battery can 10 Lithium primary battery

Claims (8)

  1.  帯状の正極、帯状の負極および帯状のセパレータを含み、前記正極と前記負極とが、前記セパレータを介して捲回された電極群と、
     非水溶媒および前記非水溶媒に溶解したリチウム塩を含む電解液と、
     前記電極群および前記電解液を収容する有底円筒形の電池缶と、
    を具備し、
     前記電解液は、フタルイミド、フタルイミジン、テトラヒドロフタルイミドおよびこれらの誘導体よりなる群から選択される少なくとも1種の添加剤を含み、
     前記電解液中の前記添加剤の含有量は、0.001質量%以上10質量%以下であり、
     前記電池缶の内径は、20mm以上である、リチウム一次電池。
    A band-shaped positive electrode, including a band-shaped negative electrode and a band-shaped separator, the positive electrode and the negative electrode, an electrode group wound via the separator,
    An electrolyte containing a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent,
    A cylindrical battery can with a bottom that contains the electrode group and the electrolytic solution,
    With
    The electrolytic solution contains at least one additive selected from the group consisting of phthalimide, phthalimidine, tetrahydrophthalimide and derivatives thereof,
    The content of the additive in the electrolytic solution is 0.001% by mass or more and 10% by mass or less,
    The lithium primary battery, wherein the inner diameter of the battery can is 20 mm or more.
  2.  前記添加剤は、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、X~Xは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子または炭素原子数が1~3のアルキル基であり、Yは、水素原子またはカリウム原子である。)で表される化合物である、請求項1に記載のリチウム一次電池。
    The additive has the general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), X 1 to X 4 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 1 Is a hydrogen atom or a potassium atom.) The lithium primary battery according to claim 1, wherein
  3.  前記添加剤は、一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、X~Xは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子または炭素原子数が1~3のアルキル基であり、Yは、水素原子または炭素原子数が1~3のアルキル基である。)で表される化合物である、請求項1に記載のリチウム一次電池。
    The additive has the general formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), X 5 to X 8 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 2 Is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.) The lithium primary battery according to claim 1, wherein
  4.  前記添加剤は、一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、X~X12は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子または炭素原子数が1~3のアルキル基であり、Yは、水素原子またはカリウム原子である。)で表される化合物である、請求項1に記載のリチウム一次電池。
    The additive has the general formula (3):
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (3), X 9 to X 12 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 3 Is a hydrogen atom or a potassium atom.) The lithium primary battery according to claim 1, wherein
  5.  前記添加剤は、一般式(4):
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)中、X13~X16は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子または炭素原子数が1~3のアルキル基であり、Yは、水素原子または炭素原子数が1~3のアルキル基である。)で表される化合物である、請求項1に記載のリチウム一次電池。
    The additive has the general formula (4):
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula (4), X 13 to X 16 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or an alkyl group having 1 to 3 carbon atoms, and Y 4 Is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.) The lithium primary battery according to claim 1, wherein
  6.  前記添加剤は、一般式(5):
    Figure JPOXMLDOC01-appb-C000005
    (一般式(5)中、Yは、水素原子またはカリウム原子である。)で表される化合物である、請求項1に記載のリチウム一次電池。
    The additive has the general formula (5):
    Figure JPOXMLDOC01-appb-C000005
    (In the general formula (5), Y 5 is hydrogen atom or a potassium atom.) Is a compound represented by the lithium primary battery according to claim 1.
  7.  前記添加剤は、一般式(6):
    Figure JPOXMLDOC01-appb-C000006
    (一般式(6)中、Yは、水素原子または炭素原子数が1~3のアルキル基である。)で表される化合物である、請求項1に記載のリチウム一次電池。
    The additive has the general formula (6):
    Figure JPOXMLDOC01-appb-C000006
    2. The lithium primary battery according to claim 1, wherein in the general formula (6), Y 6 is a compound represented by a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  8.  前記正極の厚さは、0.5mm以上2.0mm以下である、請求項1~7のいずれか1項に記載のリチウム一次電池。 The lithium primary battery according to any one of claims 1 to 7, wherein the thickness of the positive electrode is 0.5 mm or more and 2.0 mm or less.
PCT/JP2019/011054 2018-07-12 2019-03-18 Lithium primary battery WO2020012718A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-132582 2018-07-12
JP2018132582A JP2021157858A (en) 2018-07-12 2018-07-12 Lithium primary battery

Publications (1)

Publication Number Publication Date
WO2020012718A1 true WO2020012718A1 (en) 2020-01-16

Family

ID=69141367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011054 WO2020012718A1 (en) 2018-07-12 2019-03-18 Lithium primary battery

Country Status (2)

Country Link
JP (1) JP2021157858A (en)
WO (1) WO2020012718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207903A (en) * 2021-03-31 2022-03-18 宁德新能源科技有限公司 Electrolyte solution, electrochemical device, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270181A (en) * 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte battery
JP2009123549A (en) * 2007-11-15 2009-06-04 Panasonic Corp Lithium primary battery
WO2012063429A1 (en) * 2010-11-12 2012-05-18 パナソニック株式会社 Lithium primary battery
JP2015149140A (en) * 2014-02-05 2015-08-20 Fdk株式会社 Nonaqueous organic electrolytic solution for lithium primary battery, and lithium primary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270181A (en) * 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte battery
JP2009123549A (en) * 2007-11-15 2009-06-04 Panasonic Corp Lithium primary battery
WO2012063429A1 (en) * 2010-11-12 2012-05-18 パナソニック株式会社 Lithium primary battery
JP2015149140A (en) * 2014-02-05 2015-08-20 Fdk株式会社 Nonaqueous organic electrolytic solution for lithium primary battery, and lithium primary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207903A (en) * 2021-03-31 2022-03-18 宁德新能源科技有限公司 Electrolyte solution, electrochemical device, and electronic device
WO2022205172A1 (en) * 2021-03-31 2022-10-06 宁德新能源科技有限公司 Electrolyte, electrochemical apparatus, and electronic apparatus

Also Published As

Publication number Publication date
JP2021157858A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
TW533617B (en) Positive electrode and non-aqueous electrolyte cell
KR20160091864A (en) Nonaqueous electrolyte secondary battery
US20110250506A1 (en) Non-aqueous electrolyte secondary battery
JP2001185221A (en) Nonaqueous electrolyte battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP2009123549A (en) Lithium primary battery
WO2020026525A1 (en) Lithium primary battery
WO2003021707A1 (en) Nonaqueous electrolyte
WO2020012718A1 (en) Lithium primary battery
KR20130029328A (en) Non-aqueous electrolyte for electrochemical device and electrochemical device
JP2005293920A (en) Nonaqueous electrolyte battery
JP6986710B2 (en) Lithium primary battery and smart meter
JP2016192313A (en) Positive electrode material, nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JP7504675B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2007157538A (en) Battery
JP6523629B2 (en) Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
JP2004158362A (en) Organic electrolyte liquid battery
JP2010186667A (en) Coin cell
JP2001297768A (en) Positive electrode and nonaqueous secondary cell, and manufacturing method of the same
JP2016192314A (en) Positive electrode material, nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JP2006179234A (en) Lithium secondary battery
JP3468956B2 (en) Non-aqueous electrolyte secondary battery
WO2022176233A1 (en) Lithium primary battery and nonaqueous electrolyte solution used in same
JP2011192581A (en) Nonaqueous electrolyte for electrochemical device, and electrochemical device
JP2016195107A (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP