JP4111806B2 - Non-aqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Non-aqueous electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP4111806B2
JP4111806B2 JP2002330728A JP2002330728A JP4111806B2 JP 4111806 B2 JP4111806 B2 JP 4111806B2 JP 2002330728 A JP2002330728 A JP 2002330728A JP 2002330728 A JP2002330728 A JP 2002330728A JP 4111806 B2 JP4111806 B2 JP 4111806B2
Authority
JP
Japan
Prior art keywords
positive electrode
halogen
source
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002330728A
Other languages
Japanese (ja)
Other versions
JP2003229129A5 (en
JP2003229129A (en
Inventor
晋也 宮崎
伸道 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002330728A priority Critical patent/JP4111806B2/en
Publication of JP2003229129A publication Critical patent/JP2003229129A/en
Publication of JP2003229129A5 publication Critical patent/JP2003229129A5/ja
Application granted granted Critical
Publication of JP4111806B2 publication Critical patent/JP4111806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、正極活物質を主体とする正極と、負極と、非水電解質とを備える非水電解質二次電池及びその製造方法に関する。
【0002】
【従来の技術】
近年、コバルト酸リチウム等のリチウム含有複合酸化物を正極材料とする一方、リチウムイオンを吸蔵、放出し得るリチウム−アルミニウム合金、炭素材料等を負極材料とする非水電解液電池が、高容量化が可能な電池として注目されている。
【0003】
しかしながら、上記コバルト酸リチウムは充電状態での熱的安定性が良くないことが知られている。そこで、コバルト酸リチウムを作製する際に合成条件を変更し(例えば、焼成温度を上げる、焼成時間を長くする等)、コバルト酸リチウムの(110)面の結晶子サイズを900オングストローム以上に大きくするような方法が知られている。ところが、当該方法で合成したコバルト酸リチウムを用いた電池では、高温時に充放電サイクルを繰り返したり、充電状態で保存したりした場合に劣化が大きく、高温特性が悪くなるという課題を有していた。
【0004】
そこで、正極活物質を水中に分散後、回収した濾液のpHと高温特性とが相関関係にあるという点に着目し、コバルト酸リチウムを合成する際にLiFを添加することで上記濾液のpHを低下させ、高温特性を改善するような方法が提案されている(特願2001−100897号)。ここで、上記方法で高温特性を格段に改善するためには、濾液のpHを9.8未満となるまで低下させる必要があるが、このように濾液のpHを低下させるためには、正極活物質の総量に対するハロゲン(フッ素)の添加量が5質量%を越えるように多量に添加する必要が生じ、その結果、電池容量が低下するという課題を有していた。
【0005】
【発明が解決しようとする課題】
本発明は、以上の事情に鑑みなされたものであって、電池容量を低下させることなく高温特性を向上させることができる非水電解質二次電池及びその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の非水電解質二次電池は、正極活物質を主体とする正極と、負極と、非水電解質とを含み、上記正極活物質は、一般式LiCo1-x x 2(式中のMはV、Cr、Fe、Mn、Ni、Al、Tiからなる群より選ばれる少なくとも一種であり、xの値が、0.0001〜0.005の範囲)で表される化合物と、マグネシウムと、ハロゲンとを含む六方晶系のリチウム含有遷移金属複合酸化物であることを特徴とする。
【0007】
上記構成のように、正極活物質が、一般式LiCo1-x x 2で表される化合物と、添加物としてのマグネシウムとハロゲンとを含む場合は、添加物としてLiFを含む場合と比べて、少量の添加物によって濾液のpHを低下させることができるので、電池容量を低下させることなく、高温特性を確実に改善することができる。特に、一般式LiCo1-x x 2(式中のMはV、Cr、Fe、Mn、Ni、Al、Tiからなる群より選ばれる少なくとも一種であり、xの値が、0.0001〜0.005の範囲)で表される六方晶系のリチウム含有遷移金属複合酸化物の如く異種元素(V、Cr等)を添加して複合化したコバルト酸リチウムでは、特にpHが上昇し易いため、本発明の構成が有用である。ここで、xの値を0.0001〜0.005の範囲に規制するのは、xの値が0.0001未満になると、異種元素Mの添加効果を十分に発揮できないため、正極活物質の導電性が十分に高くならず、負荷特性を飛躍的に向上することができない一方、xの値が0.005を超えると、相対的にコバルトの量が減少するので、電池容量が低下するという理由によるものである。
【0008】
記のように高温特性を向上させることができる理由については、その詳細は不明であるが、以下の理由によるものと推測される。即ち、高温で充放電を繰り返した後、本発明の電池を調査した結果、電池内ガスの量が低減していることが認められた。これは、添加したハロゲンは主に正極活物質の表面に存在するため、正極活物質の表面が当該ハロゲンにより安定化して、電解液の分解によるガスの生成が減少したものと考えられる。また、マグネシウムを過剰に添加すると正極活物質の格子定数が増加する現象から推測するに、正極活物質の表面でマグネシウムと正極活物質とが一部複合化してリチウムの溶出が抑制されるといった理由によるものと考えられる。
【0009】
上記本発明の非水電解質二次電池は、さらに、上記正極活物質の総量に対する上記ハロゲンの量が0.0007〜5質量%の範囲に規制された構成とすることができる。
【0010】
このように規制するのは、ハロゲンの量が0.0007質量%未満になると、ハロゲンの添加効果が十分に発揮されないので、高温特性を飛躍的に向上させることができない一方、ハロゲンの量が5質量%を越えると、ハロゲンの量が多くなり過ぎて、電池容量が低下するからである。
【0013】
また、本発明の非水電解質二次電池の製造方法は、コバルト源として、V、Cr、Fe、Mn、Ni、Al、Tiから選ばれる少なくとも一種で複合化したコバルト源、リチウム源、マグネシウム源、及びハロゲン源を混合した後、これらを焼成して、マグネシウムとハロゲンとを含む、一般式LiCo 1-x x 2 (式中のMはV、Cr、Fe、Mn、Ni、Al、Tiから選ばれる少なくとも一種であり、 x の値が、0.0001〜0.005の範囲)で表される正極活物質としての六方晶系のリチウム含有遷移金属複合酸化物を作製する工程を含む、ことを特徴とする。
【0014】
このような工程を含む製造方法により、電池容量を低下させることなく高温特性が向上した非水電解質二次電池が作製できる。
【0015】
上記本発明の非水電解質二次電池の製造方法は、さらに、上記マグネシウム源、及びハロゲン源としてMgF2 を用いる構成とすることができる。
【0016】
また、上記本発明の非水電解質二次電池の製造方法は、さらに、上記マグネシウム源として、Mg、MgO、MgCl2、及びMgCO3 から成る群から選択される少なくとも一種を用い、上記ハロゲン源としてLiFを用いる構成とすることができる。
【0017】
【発明の実施の形態】
本発明の実施の形態を、図面を用いて説明する。図1に、本発明の一例である円筒形リチウム二次電池の断面図を模式的に示す。
〔正極の作製〕
出発原料としては、リチウム源には炭酸リチウム(Li2 CO3 )を用い、コバルト源には四酸化三コバルトをチタン(Ti)で複合化した(Co0.999 Ti 0.001 3 4 を用いた。この四酸化三コバルトをチタンで複合化したものは、酸溶液に溶解したコバルトとチタンとを複合水酸化物として沈殿させ、300℃で仮焼することで得た。次に、上記炭酸リチウムと四酸化三コバルトをチタンで複合化したものとを、Li/(Co+Ti)のモル比が1になるように秤量後、更に正極活物質の総量に対するフッ素の量が0.01質量%となるようにMgF2 を加えて、これらを混合した。次いで、この混合物を空気雰囲気下で焼成し、フッ素とマグネシウムとを含む六方晶系のLiCo0.999 Ti 0.001 2 の焼成体を得た後、これを乳鉢で平均粒径10μmまで粉砕して正極活物質とした。
【0018】
ここで、正極活物質の組成をICP(Inductively Coupled Plasma:プラズマ発光分析)により分析した。
【0019】
次に、上記正極活物質としてのフッ素とマグネシウムを含有するLiCo0.999 Ti 0.001 2 粉末を85質量部と、導電剤としての炭素粉末を10質量部、結着剤としてのポリフッ化ビニリデン粉末を5質量部とを混合し、これをN−メチルピロリドン(NMP)溶液と混合してスラリーを調製した。次いで、このスラリーを厚さ20μmの集電体(アルミニウム製)の両面にドクターブレード法により塗布して活物質層を形成した後、圧縮ローラーを用いて170μmに圧縮して、短辺の長さが55mmで、長辺の長さが500mmの正極1を作製した。
【0020】
〔負極の作製〕
先ず、天然黒鉛粉末を95質量部と、ポリフッ化ビニリデン粉末を5質量部とを混合し、これをNMP溶液と混合してスラリーを調製した。次に、このスラリーを厚さ18μmの集電体(銅製)の両面にドクターブレード法により塗布して活物質層を形成した後、圧縮ローラーを用いて155μmに圧縮して、短辺の長さが57mmで、長辺の長さが550mmの負極2を作製した。
【0021】
〔電解液の調製〕
エチレンカーボネートとジエチルカーボネートとの等体積混合溶媒に、LiPF6 を1mol/Lの割合で溶解することにより電解液を調製した。
【0022】
〔電池の作製〕
上記の正極1と負極2とをポリプロピレン製微多孔膜から成るセパレータ3を介して巻回して渦巻き電極体4を作製した後、この電極体を有筒円筒状の外装缶8の内部に挿入した。正極1は正極リード5を介して正極外部端子7に、また負極2は負極リード6を介して外装缶8に接続され、電池内部で生じた化学エネルギーを電気エネルギーとして外部へ取り出し得るようになっている。最後に、外装缶内に上記電解液を注入した後、外装缶の開口部を封口することにより円筒形の非水電解質二次電池(高さ:65mm、直径18mm)を作製した。
【0023】
〔その他の事項〕
(1)正極活物質作製時にマグネシウム源とハロゲン(フッ素、塩素、臭素、ヨウ素)源とを添加する際、添加物質としては上記MgF2 に限定するものではなく、MgCl2、MgBr2、及びMgI2を使用できる。さらに、マグネシウム源とハロゲン源とをそれぞれ添加しても良い。この場合、マグネシウム源として、Mg、MgO、MgCl2、及びMgCO3 が例示される。これらのマグネシウム源は、1種または2種以上を使用できる。また、ハロゲン源としてLiF、LiCl、LiBr、及びLiIが例示される。これらのハロゲン源は、1種または2種以上を使用できる。
【0024】
(2)負極材料としては上記天然黒鉛の他、リチウム金属、リチウム合金、或いは金属酸化物(スズ酸化物等)等が好適に用いられる。さらに、電解液の溶媒としては上記のものに限らず、プロピレンカーボネート、ビニレンカーボネート、γ−ブチロラクトンなどの比較的比誘電率が高い溶液と、ジメチルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソラン、2−メトキシテトラヒドロフラン、ジエチルエーテル等の低粘度低沸点溶媒とを適度な比率で混合した溶媒を用いることができる。また、電解液の電解質としては、上記LiPF6 の他、LiAsF6 、LiClO4 、LiBF4 、LiCF3 SO3 等を用いることができる。さらに、ポリマー電解質、ポリマー電解質に非水電解液を含浸させたようなゲル状電解質、固体電解質も用いることができる。
【0025】
【実施例】
〔実施例1〕
実施例1としては、上記発明の実施の形態に示す方法と同様の方法にて作製した電池を用いた。
このようにして作製した電池を、以下、本発明電池A1と称する。
【0026】
〔実施例2〜7〕
正極活物質の総量に対するハロゲン(フッ素)の含有量を、それぞれ0.0005質量%、0.0007質量%、0.001質量%、1質量%、5質量%、7質量%とする他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、それぞれ本発明電池A2〜A7と称する。
【0027】
〔比較例1〜6〕
添加ハロゲンとしてMgF2 の代わりにLiFを用いると共に、正極活物質の総量に対するハロゲン(フッ素)の含有量を、それぞれ0.0007質量%、0.001質量%、0.01質量%、1質量%、5質量%、7質量%とする他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、それぞれ比較電池X1〜X6と称する。
【0028】
〔実験〕
本発明電池A1〜A7及び比較電池X1〜X6において、正極活物質の総量に対するハロゲンの含有量(ハロゲン含有量)と、結晶子サイズと、格子定数a及び格子定数cと、正極活物質のpHと、平均放電電圧と、電池初期容量と、60℃でのサイクル容量維持率とを下記のようにして調べた。それらの結果を表1に示す。
【0029】
<ハロゲン含有量>
イオンクロマトグラフ法により分析した。
【0030】
<結晶子サイズ>
XRD(X−Ray Diffraction)測定を行い、正極活物質の(110)面の結晶子サイズを、以下の数1に示すシェラーの式により算出した。
〔数1〕
T=0.9λ/(B・cosθ)
(T:結晶子サイズ、λ:回折に用いたX線の波長、B:ピークの半値幅、θ:回折角度)。
【0031】
<格子定数>
XRD(X−Ray Diffraction)測定によって得られた回折角度を用いて最小二乗法により算出した。
【0032】
<正極活物質のpH>
イオン交換水150mlを200mlビーカーに入れて、これに正極活物質を2g加えた。次に、ビーカー中に攪拌子を入れ薄いフィルムでシールした後、30分攪拌した。次いで、攪拌した溶液をメンブレンフィルター{PTEF(ポリテトラフルオロエチレン)製で、孔径が0.1μm}にて吸引濾過し、濾液をISFET(Ion Sensitive Field Effect Transistor:イオン感応性電界トランジスター効果型)電極のpHメータにて測定した。
【0033】
<電池初期容量>
各電池を、60℃において、定電流充電(電流1500mAで充電終止電圧4.2Vまで充電)し、更に定電圧充電(電圧4.2Vで電流が30mAになるまで充電)した後、電流1500mAで電池電圧2.75Vまで放電した。この放電における電池容量を測定することにより、電池初期容量を求めた。
【0034】
<平均放電電圧>
上記電池初期容量の測定と同様の条件で充放電を行い、各電池の1サイクル目の放電カーブ(電圧 vs 放電容量)を積分することによって放電時のエネルギー値を算出した後、放電容量で除することによって平均放電電圧とした。
【0035】
<60℃サイクル容量維持率>
上記電池初期容量の測定と同様の条件で充放電を繰り返し行い、各電池の1サイクル目の放電容量(電池初期容量)と、300サイクル目の放電容量とを測定し、1サイクル目の放電容量に対する300サイクル目の放電容量の比率を60℃サイクル容量維持率とした。
【0036】
【表1】

Figure 0004111806
【0037】
上記表1から明らかなように、本発明電池A1、A3〜A7と比較電池X1〜比較電池X6とを比べた場合、ハロゲン含有量が同じであれば、平均放電電圧と電池初期容量とは略同等であるが、本発明電池A1、A3〜A7の方が比較電池X1〜比較電池X6より正極活物質のpHが低いため、60℃のサイクル容量維持率も高くなっていることが認められた。さらに、詳細に検討すると、MgF2 を0.0007質量%添加した本発明電池A3では、LiFを0.01〜7質量%添加した比較電池X3〜6と同等又はそれ以下の正極活物質のpHとなっており、この結果、60℃のサイクル容量維持率も高くなっていることが認められた。
【0038】
したがって、ハロゲンの添加においてはLiFを添加するよりMgF2 を添加する方が良いことが分かった。
【0039】
ただし、ハロゲン含有量が0.0005質量%の本発明電池A2では、正極活物質のpHの低下が不十分であるため、60℃のサイクル容量維持率も低下する一方、ハロゲン含有量が7質量%の本発明電池A7では、ハロゲンの過剰な添加によって電池初期容量が低下していることが認められた。これに対して、ハロゲン含有量が0.0007〜5質量%の本発明電池A1、A3〜A6ではこのような問題は生じなかった。したがって、ハロゲン含有量は0.0007〜5質量%であることが望ましいことが分かった。
【0040】
なお、ハロゲン含有量が7質量%の本発明電池A7では、格子定数aと格子定数cとが共に大きくなっていた。このことから、Mgは正極活物質の表面で一部複合化していると考えられる。
【0041】
また、本発明電池A1〜A7では、全て、結晶子サイズは900オングストロームを越えることが確認された。
【0042】
【発明の効果】
以上で説明したように本発明によれば、電池容量を低下させることなく高温特性を向上させることができるといった優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の一例である円筒形リチウム二次電池の断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 渦巻き電極体
5 正極リード
6 負極リード
7 正極外部端子
8 外装缶[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonaqueous electrolyte secondary battery including a positive electrode mainly composed of a positive electrode active material, a negative electrode, and a nonaqueous electrolyte, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte batteries using lithium-containing composite oxides such as lithium cobaltate as a positive electrode material, lithium-aluminum alloys capable of occluding and releasing lithium ions, and carbon materials as a negative electrode material have increased in capacity. Is attracting attention as a battery that can.
[0003]
However, it is known that the lithium cobaltate does not have good thermal stability in the charged state. Therefore, when producing lithium cobaltate, the synthesis conditions are changed (for example, the firing temperature is increased, the firing time is increased, etc.), and the crystallite size of the (110) plane of lithium cobaltate is increased to 900 angstroms or more. Such a method is known. However, a battery using lithium cobaltate synthesized by this method has a problem that the deterioration is large when the charge / discharge cycle is repeated at a high temperature or the battery is stored in a charged state, resulting in poor high temperature characteristics. .
[0004]
Therefore, after dispersing the positive electrode active material in water, paying attention to the fact that there is a correlation between the pH of the collected filtrate and the high temperature characteristics, the pH of the filtrate is adjusted by adding LiF when synthesizing lithium cobaltate. A method for reducing the temperature and improving the high-temperature characteristics has been proposed (Japanese Patent Application No. 2001-100897). Here, in order to significantly improve the high temperature characteristics by the above method, it is necessary to lower the pH of the filtrate to less than 9.8. In order to lower the pH of the filtrate in this way, the positive electrode active It was necessary to add a large amount so that the amount of halogen (fluorine) added exceeds 5% by mass with respect to the total amount of the substance, and as a result, there was a problem that the battery capacity was reduced.
[0005]
[Problems to be solved by the invention]
This invention is made | formed in view of the above situation, Comprising: It aims at providing the nonaqueous electrolyte secondary battery which can improve a high temperature characteristic, and its manufacturing method, without reducing battery capacity.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a nonaqueous electrolyte secondary battery of the present invention includes a positive electrode mainly composed of a positive electrode active material, a negative electrode, and a nonaqueous electrolyte. The positive electrode active material has a general formula of LiCo 1− x M x O 2 (M in the formula is at least one selected from the group consisting of V, Cr, Fe, Mn, Ni, Al, and Ti , and the value of x is in the range of 0.0001 to 0.005 ) A hexagonal lithium-containing transition metal composite oxide containing a compound represented by the formula: magnesium and halogen.
[0007]
When the positive electrode active material includes a compound represented by the general formula LiCo 1-x M x O 2 and magnesium and halogen as additives as in the above-described configuration, compared with a case where LiF is included as an additive. In addition, since the pH of the filtrate can be lowered with a small amount of additives, the high temperature characteristics can be reliably improved without lowering the battery capacity. In particular, the general formula LiCo 1-x M x O 2 (wherein M is at least one selected from the group consisting of V, Cr, Fe, Mn, Ni, Al, Ti , and the value of x is 0.0001). In the case of lithium cobaltate complexed by adding a different element (V, Cr, etc.) such as a hexagonal lithium-containing transition metal composite oxide represented by Therefore, the configuration of the present invention is useful. Here, the value of x is limited to the range of 0.0001 to 0.005 because the effect of adding the different element M cannot be sufficiently exhibited when the value of x is less than 0.0001. The conductivity is not sufficiently high and the load characteristics cannot be improved dramatically. On the other hand, if the value of x exceeds 0.005, the amount of cobalt is relatively reduced, so that the battery capacity is reduced. This is for a reason.
[0008]
The reason why it is possible to improve the high temperature properties as above SL, but the details are unknown, it is presumed to be due to the following reasons. That is, as a result of investigating the battery of the present invention after repeated charging and discharging at a high temperature, it was found that the amount of gas in the battery was reduced. This is presumably because the added halogen is mainly present on the surface of the positive electrode active material, so that the surface of the positive electrode active material is stabilized by the halogen and the generation of gas due to the decomposition of the electrolytic solution is reduced. In addition, it can be inferred from the phenomenon that the lattice constant of the positive electrode active material increases when magnesium is added excessively, but the reason is that magnesium and the positive electrode active material are partially combined on the surface of the positive electrode active material to suppress lithium elution. It is thought to be due to.
[0009]
The non-aqueous electrolyte secondary battery of the present invention may further have a configuration in which the amount of the halogen with respect to the total amount of the positive electrode active material is regulated within a range of 0.0007 to 5% by mass.
[0010]
The reason for this restriction is that when the halogen content is less than 0.0007% by mass, the effect of adding the halogen is not sufficiently exhibited, so that the high temperature characteristics cannot be dramatically improved, while the halogen content is 5%. This is because the amount of halogen is excessively large and the battery capacity is reduced when the mass% is exceeded.
[0013]
Further, the method for producing a non-aqueous electrolyte secondary battery of the present invention includes a cobalt source, a lithium source, and a magnesium source complexed with at least one selected from V, Cr, Fe, Mn, Ni, Al, and Ti as a cobalt source. , And a halogen source, and then calcining them to form a general formula LiCo 1-x M x O 2 containing magnesium and halogen (where M is V, Cr, Fe, Mn, Ni, Al, Including a step of producing a hexagonal lithium-containing transition metal composite oxide as a positive electrode active material that is at least one selected from Ti and the value of x is in the range of 0.0001 to 0.005) It is characterized by that.
[0014]
By the manufacturing method including such steps, a non-aqueous electrolyte secondary battery having improved high temperature characteristics can be produced without reducing the battery capacity.
[0015]
The manufacturing method of the nonaqueous electrolyte secondary battery of the present invention can further be configured to use MgF 2 as the magnesium source and the halogen source.
[0016]
The non-aqueous electrolyte secondary battery manufacturing method of the present invention further uses at least one selected from the group consisting of Mg, MgO, MgCl 2 , and MgCO 3 as the magnesium source, and uses the halogen source as the halogen source. A configuration using LiF can be adopted.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a cross-sectional view of a cylindrical lithium secondary battery which is an example of the present invention.
[Production of positive electrode]
As starting materials, lithium carbonate (Li 2 CO 3 ) was used as the lithium source, and (Co 0.999 Ti 0.001 ) 3 O 4 in which tricobalt tetroxide was compounded with titanium (Ti) was used as the cobalt source. This composite of tricobalt tetraoxide with titanium was obtained by precipitating cobalt and titanium dissolved in an acid solution as a composite hydroxide and calcining at 300 ° C. Next, after weighing the lithium carbonate and tricobalt tetroxide complexed with titanium so that the molar ratio of Li / (Co + Ti ) is 1, the amount of fluorine relative to the total amount of the positive electrode active material is and the MgF 2 added to a 0.01 mass%, were mixed together. Next, the mixture was fired in an air atmosphere, and hexagonal LiCo 0.999 Ti 0.001 O 2 containing fluorine and magnesium. After obtaining this fired body, it was pulverized with a mortar to an average particle size of 10 μm to obtain a positive electrode active material.
[0018]
Here, the composition of the positive electrode active material was analyzed by ICP (Inductively Coupled Plasma).
[0019]
Next, 85 parts by mass of LiCo 0.999 Ti 0.001 O 2 powder containing fluorine and magnesium as the positive electrode active material, 10 parts by mass of carbon powder as the conductive agent, and 5 polyvinylidene fluoride powder as the binder. The slurry was prepared by mixing with parts by mass and mixing with N-methylpyrrolidone (NMP) solution. Next, this slurry was applied to both sides of a current collector (made of aluminum) having a thickness of 20 μm by a doctor blade method to form an active material layer, and then compressed to 170 μm using a compression roller, and the length of the short side was The positive electrode 1 having a length of 55 mm and a long side of 500 mm was produced.
[0020]
(Production of negative electrode)
First, 95 parts by mass of natural graphite powder and 5 parts by mass of polyvinylidene fluoride powder were mixed, and this was mixed with an NMP solution to prepare a slurry. Next, this slurry was applied to both surfaces of a current collector (copper) having a thickness of 18 μm by a doctor blade method to form an active material layer, and then compressed to 155 μm using a compression roller, and the length of the short side was A negative electrode 2 having a length of 550 mm and a long side of 57 mm was produced.
[0021]
(Preparation of electrolyte)
An electrolytic solution was prepared by dissolving LiPF 6 at a ratio of 1 mol / L in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate.
[0022]
[Production of battery]
After winding the positive electrode 1 and the negative electrode 2 through a separator 3 made of a polypropylene microporous film to produce a spiral electrode body 4, the electrode body was inserted into an outer cylindrical can 8 having a cylindrical shape. . The positive electrode 1 is connected to the positive electrode external terminal 7 via the positive electrode lead 5, and the negative electrode 2 is connected to the outer can 8 via the negative electrode lead 6, so that chemical energy generated inside the battery can be taken out as electric energy to the outside. ing. Finally, after the electrolyte solution was injected into the outer can, the opening of the outer can was sealed to produce a cylindrical non-aqueous electrolyte secondary battery (height: 65 mm, diameter 18 mm).
[0023]
[Other matters]
(1) When a magnesium source and a halogen (fluorine, chlorine, bromine, iodine) source are added at the time of preparing a positive electrode active material, the additive material is not limited to the above MgF 2 , but MgCl 2 , MgBr 2 , and MgI 2 can be used. Further, a magnesium source and a halogen source may be added respectively. In this case, examples of the magnesium source include Mg, MgO, MgCl 2 , and MgCO 3 . These magnesium sources can use 1 type (s) or 2 or more types. Examples of the halogen source include LiF, LiCl, LiBr, and LiI. These halogen sources can use 1 type (s) or 2 or more types.
[0024]
(2) As the negative electrode material, lithium metal, lithium alloy, metal oxide (tin oxide, etc.), and the like are suitably used in addition to the above natural graphite. Furthermore, the solvent of the electrolytic solution is not limited to the above, but a solution having a relatively high dielectric constant such as propylene carbonate, vinylene carbonate, γ-butyrolactone, dimethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, 1,2-dimethoxy A solvent prepared by mixing a low-viscosity low-boiling solvent such as ethane, 1,3-dioxolane, 2-methoxytetrahydrofuran, and diethyl ether in an appropriate ratio can be used. In addition to LiPF 6 , LiAsF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3, etc. can be used as the electrolyte of the electrolytic solution. Furthermore, a polymer electrolyte, a gel electrolyte obtained by impregnating a polymer electrolyte with a non-aqueous electrolyte, and a solid electrolyte can also be used.
[0025]
【Example】
[Example 1]
As Example 1, a battery manufactured by a method similar to the method described in the embodiment of the present invention was used.
The battery thus produced is hereinafter referred to as the present invention battery A1.
[0026]
[Examples 2 to 7]
The halogen (fluorine) content with respect to the total amount of the positive electrode active material is 0.0005 mass%, 0.0007 mass%, 0.001 mass%, 1 mass%, 5 mass%, and 7 mass%, respectively. A battery was fabricated in the same manner as in Example 1 above.
The batteries thus produced are hereinafter referred to as present invention batteries A2 to A7, respectively.
[0027]
[Comparative Examples 1-6]
LiF is used as the added halogen instead of MgF 2 , and the halogen (fluorine) content with respect to the total amount of the positive electrode active material is 0.0007 mass%, 0.001 mass%, 0.01 mass%, and 1 mass%, respectively. A battery was fabricated in the same manner as in Example 1 except that the content was 5% by mass and 7% by mass.
The batteries thus produced are hereinafter referred to as comparative batteries X1 to X6, respectively.
[0028]
[Experiment]
In the present invention batteries A1 to A7 and comparative batteries X1 to X6, the halogen content (halogen content), the crystallite size, the lattice constant a and the lattice constant c, and the pH of the positive electrode active material relative to the total amount of the positive electrode active material The average discharge voltage, the initial battery capacity, and the cycle capacity retention rate at 60 ° C. were examined as follows. The results are shown in Table 1.
[0029]
<Halogen content>
Analysis was performed by ion chromatography.
[0030]
<Crystallite size>
XRD (X-Ray Diffraction) measurement was performed, and the crystallite size of the (110) plane of the positive electrode active material was calculated by the Scherrer equation shown in the following equation 1.
[Equation 1]
T = 0.9λ / (B · cos θ)
(T: crystallite size, λ: wavelength of X-ray used for diffraction, B: half width of peak, θ: diffraction angle).
[0031]
<Lattice constant>
It calculated by the least square method using the diffraction angle obtained by XRD (X-Ray Diffraction) measurement.
[0032]
<PH of positive electrode active material>
150 ml of ion-exchanged water was placed in a 200 ml beaker, and 2 g of a positive electrode active material was added thereto. Next, a stir bar was placed in a beaker and sealed with a thin film, and then stirred for 30 minutes. Next, the stirred solution is suction filtered through a membrane filter {PTEF (polytetrafluoroethylene), having a pore size of 0.1 μm}, and the filtrate is an ISFET (Ion Sensitive Field Effect Transistor) electrode. Measured with a pH meter.
[0033]
<Battery initial capacity>
Each battery was charged at a constant current at 60 ° C. (charged at a current of 1500 mA to a charge end voltage of 4.2 V), and further charged at a constant voltage (charged at a voltage of 4.2 V until the current reached 30 mA), and then at a current of 1500 mA. The battery voltage was discharged to 2.75V. The battery initial capacity was determined by measuring the battery capacity in this discharge.
[0034]
<Average discharge voltage>
Charge / discharge is performed under the same conditions as the measurement of the initial capacity of the battery, and the energy value at the time of discharge is calculated by integrating the discharge curve (voltage vs. discharge capacity) of the first cycle of each battery, and then divided by the discharge capacity. The average discharge voltage was obtained.
[0035]
<60 ° C cycle capacity maintenance rate>
Charging / discharging is repeated under the same conditions as the measurement of the battery initial capacity, and the first cycle discharge capacity (battery initial capacity) and the 300th cycle discharge capacity of each battery are measured. The ratio of the discharge capacity at the 300th cycle with respect to was defined as the 60 ° C. cycle capacity retention rate.
[0036]
[Table 1]
Figure 0004111806
[0037]
As is apparent from Table 1 above, when the batteries A1, A3 to A7 of the present invention and the comparative batteries X1 to X6 are compared, the average discharge voltage and the initial battery capacity are approximately the same if the halogen content is the same. Although equivalent, the batteries A1, A3 to A7 of the present invention have a lower positive electrode active material pH than the comparative batteries X1 to X6, and thus the cycle capacity maintenance rate at 60 ° C. is also increased. . Further, when examined in detail, in the battery A3 of the present invention to which 0.0007% by mass of MgF 2 was added, the pH of the positive electrode active material equal to or lower than that of the comparative batteries X3 to 6 to which 0.01 to 7% by mass of LiF was added. As a result, it was recognized that the cycle capacity maintenance rate at 60 ° C. was also increased.
[0038]
Therefore, it was found that it is better to add MgF 2 than to add LiF in the addition of halogen.
[0039]
However, in the present invention battery A2 having a halogen content of 0.0005% by mass, since the pH of the positive electrode active material is not sufficiently lowered, the cycle capacity retention rate at 60 ° C. is also reduced, while the halogen content is 7% by mass. % Of the present invention battery A7 was found to have a reduced initial battery capacity due to excessive addition of halogen. On the other hand, the present invention batteries A1, A3 to A6 having a halogen content of 0.0007 to 5% by mass did not cause such a problem. Therefore, it was found that the halogen content is preferably 0.0007 to 5% by mass.
[0040]
In the battery A7 of the present invention having a halogen content of 7% by mass, both the lattice constant a and the lattice constant c were large. From this, it is considered that Mg is partially combined on the surface of the positive electrode active material.
[0041]
In all of the batteries A1 to A7 of the present invention, it was confirmed that the crystallite size exceeded 900 angstroms.
[0042]
【The invention's effect】
As described above, according to the present invention, there is an excellent effect that the high temperature characteristics can be improved without reducing the battery capacity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cylindrical lithium secondary battery which is an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Spiral electrode body 5 Positive electrode lead 6 Negative electrode lead 7 Positive electrode external terminal 8 Exterior can

Claims (5)

正極活物質を主体とする正極と、負極と、非水電解質とを含む非水電解質二次電池において、
上記正極活物質は、
一般式LiCo1-xx2(式中のMはV、Cr、Fe、Mn、Ni、Al、Tiから選ばれる少なくとも一種であり、xの値が、0.0001〜0.005の範囲)で表される化合物と、
マグネシウムと、
ハロゲンと、
を含む六方晶系のリチウム含有遷移金属複合酸化物である、
非水電解質二次電池。
In a non-aqueous electrolyte secondary battery including a positive electrode mainly composed of a positive electrode active material, a negative electrode, and a non-aqueous electrolyte,
The positive electrode active material is
General formula LiCo 1-x M x O 2 (wherein M is at least one selected from V, Cr, Fe, Mn, Ni, Al, Ti, and the value of x is 0.0001 to 0.005) Range), and
Magnesium and
Halogen,
A hexagonal lithium-containing transition metal composite oxide containing
Non-aqueous electrolyte secondary battery.
上記正極活物質の総量に対する上記ハロゲンの量が、0.0007〜5質量%の範囲である、請求項1記載の非水電解質二次電池。  The nonaqueous electrolyte secondary battery according to claim 1, wherein an amount of the halogen with respect to a total amount of the positive electrode active material is in a range of 0.0007 to 5 mass%. コバルト源として、V、Cr、Fe、Mn、Ni、Al、Tiから選ばれる少なくとも一種で複合化したコバルト源、リチウム源、マグネシウム源、及びハロゲン源を混合した後、これらを焼成して、マグネシウムとハロゲンとを含む、一般式LiCo 1-x x 2 (式中のMはV、Cr、Fe、Mn、Ni、Al、Tiから選ばれる少なくとも一種であり、 x の値が、0.0001〜0.005の範囲)で表される正極活物質としての六方晶系のリチウム含有遷移金属複合酸化物を作製する工程を含む、
非水電解質二次電池の製造方法。
As a cobalt source, a cobalt source compounded with at least one selected from V, Cr, Fe, Mn, Ni, Al, and Ti, a lithium source, a magnesium source, and a halogen source are mixed, and then these are fired to obtain magnesium. And a halogen-containing general formula LiCo 1-x M x O 2 (wherein M is at least one selected from V, Cr, Fe, Mn, Ni, Al, Ti, and the value of x is 0. Including a step of producing a hexagonal lithium-containing transition metal composite oxide as a positive electrode active material represented by a range of 0001 to 0.005) .
A method for producing a non-aqueous electrolyte secondary battery.
上記マグネシウム源、及びハロゲン源としてMgF2 を用いる、請求項記載の非水電解質二次電池の製造方法。The manufacturing method of the non-aqueous electrolyte secondary battery according to claim 3 , wherein MgF 2 is used as the magnesium source and the halogen source. 上記マグネシウム源として、Mg、MgO、MgCl2、及びMgCO3 から成る群から選択される少なくとも一種を用い、上記ハロゲン源としてLiFを用いる、請求項記載の非水電解質二次電池の製造方法。The method for producing a nonaqueous electrolyte secondary battery according to claim 3 , wherein at least one selected from the group consisting of Mg, MgO, MgCl 2 , and MgCO 3 is used as the magnesium source, and LiF is used as the halogen source.
JP2002330728A 2001-11-30 2002-11-14 Non-aqueous electrolyte secondary battery and manufacturing method thereof Expired - Lifetime JP4111806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330728A JP4111806B2 (en) 2001-11-30 2002-11-14 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001367978 2001-11-30
JP2001-367978 2001-11-30
JP2002330728A JP4111806B2 (en) 2001-11-30 2002-11-14 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003229129A JP2003229129A (en) 2003-08-15
JP2003229129A5 JP2003229129A5 (en) 2005-06-23
JP4111806B2 true JP4111806B2 (en) 2008-07-02

Family

ID=27759609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330728A Expired - Lifetime JP4111806B2 (en) 2001-11-30 2002-11-14 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4111806B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170145B2 (en) * 2003-05-19 2008-10-22 日本化学工業株式会社 Method for producing positive electrode active material for lithium secondary battery
JP2005225734A (en) * 2004-02-16 2005-08-25 Nippon Chem Ind Co Ltd Fluorine-containing lithium cobalt complex oxide and its manufacturing method
JP4291195B2 (en) 2004-03-30 2009-07-08 宇部興産株式会社 Nonaqueous electrolyte secondary battery
JP5134292B2 (en) * 2006-11-17 2013-01-30 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4715830B2 (en) * 2007-10-19 2011-07-06 ソニー株式会社 Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
KR20120061943A (en) 2009-12-22 2012-06-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
CN102792496B (en) 2010-02-05 2016-03-23 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5313392B2 (en) 2010-03-04 2013-10-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US20130143121A1 (en) 2010-12-03 2013-06-06 Jx Nippon Mining & Metals Corporation Positive Electrode Active Material For Lithium-Ion Battery, A Positive Electrode For Lithium-Ion Battery, And Lithium-Ion Battery
JP5808316B2 (en) 2011-01-21 2015-11-10 Jx日鉱日石金属株式会社 Method for producing positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
EP2693536B1 (en) 2011-03-31 2017-05-03 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR101729824B1 (en) * 2012-09-28 2017-04-24 제이엑스금속주식회사 Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
US11094927B2 (en) * 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
CN111933906A (en) 2017-06-26 2020-11-13 株式会社半导体能源研究所 Method for producing positive electrode active material
DE112019003138T5 (en) * 2018-06-22 2021-03-04 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, positive electrode, secondary battery and manufacturing method of positive electrode
KR20230010816A (en) * 2018-08-03 2023-01-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material and manufacturing method of positive electrode active material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3777988B2 (en) * 2001-01-23 2006-05-24 日亜化学工業株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
JP3959333B2 (en) * 2001-11-20 2007-08-15 日本化学工業株式会社 Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery

Also Published As

Publication number Publication date
JP2003229129A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
JP4111806B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR100916088B1 (en) Nonaqueous Electrolytic Secondary Battery and Method of Manufacturing the Same
JP4794866B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP3625680B2 (en) Lithium secondary battery
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP5036100B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP7412264B2 (en) Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
JP2009217981A (en) Non-aqueous electrolyte secondary battery
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JP2004146363A (en) Nonaqueous electrolyte secondary battery
JP4274801B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4788075B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP7233011B2 (en) Positive electrode active material and secondary battery
JP5235307B2 (en) Nonaqueous electrolyte secondary battery
JP2001319653A (en) Non-aqueous secondary battery
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2002270181A (en) Non-aqueous electrolyte battery
KR20150116222A (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP2003068300A (en) Positive electrode active material for use in lithium secondary battery and lithium secondary battery using the same
JP2004362934A (en) Positive electrode material and battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP2003238162A (en) Lithium manganese composite oxide powder and its manufacturing method
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080408

R151 Written notification of patent or utility model registration

Ref document number: 4111806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

EXPY Cancellation because of completion of term