JP4186507B2 - Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same - Google Patents

Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same Download PDF

Info

Publication number
JP4186507B2
JP4186507B2 JP2002132603A JP2002132603A JP4186507B2 JP 4186507 B2 JP4186507 B2 JP 4186507B2 JP 2002132603 A JP2002132603 A JP 2002132603A JP 2002132603 A JP2002132603 A JP 2002132603A JP 4186507 B2 JP4186507 B2 JP 4186507B2
Authority
JP
Japan
Prior art keywords
carbon
composite oxide
active material
iron composite
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002132603A
Other languages
Japanese (ja)
Other versions
JP2003034534A (en
Inventor
昌郎 神崎
要二 竹内
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2002132603A priority Critical patent/JP4186507B2/en
Publication of JP2003034534A publication Critical patent/JP2003034534A/en
Application granted granted Critical
Publication of JP4186507B2 publication Critical patent/JP4186507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compounds Of Iron (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムの吸蔵・脱離現象を利用したリチウム二次電池を構成することのできる正極活物質用炭素含有リチウム鉄複合酸化物に関し、またその製造方法に関する。
【0002】
【従来の技術】
パソコン、ビデオカメラ、携帯電話等の小型化に伴い、情報関連機器、通信機器の分野では、これらの機器に用いる電源として、高エネルギー密度であるという理由から、リチウム二次電池が実用化され広く普及するに至っている。また一方で、自動車の分野においても、環境問題、資源問題から電気自動車の開発が急がれており、この電気自動車用の電源としても、リチウム二次電池が検討されている。
【0003】
現在、リチウム二次電池の正極活物質には、4V級の二次電池を構成できるものとして、LiCoO2、LiNiO2、LiMn24等のリチウム遷移金属複合酸化物が好んで用いられており、特に、LiCoO2は、合成が容易でかつ取り扱いも比較的容易であることに加え、充放電サイクル特性において優れることから、LiCoO2を正極活物質に使用する二次電池が主流となっている。
【0004】
ところが、コバルト等は資源量として少なく、LiCoO2等を正極活物質に使用した二次電池では、電気自動車用電池をにらんだ将来の量産化、大型化に対応しにくく、また価格的にも極めて高価なものにならざるを得ない。そこでコバルト等に代えて、資源として豊富であり、かつ安価な鉄を構成元素として含む、リチウム鉄複合酸化物を正極活物質に採用する試みがされている。
【0005】
その試みの一つとして、例えば、特開平9−134725号公報に、オリビン構造を有するLiFePO4、LiFeVO4等を正極活物質として用いたリチウム二次電池が示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、本発明者が追試したところ、上述の公報に記載されているようなオリビン構造リチウム鉄複合酸化物を正極活物質として用いたリチウム二次電池では、充分な容量を得ることができなかった。すなわち、実用的な充放電密度で充放電した場合に、活物質放電容量としては90mAh/g以上が必要であると考えるが、上記リチウム鉄複合酸化物を正極活物質として用いた場合には、その活物質放電容量を得ることは困難であった。さらに、上記LiFePO4等を正極活物質として用いたリチウム二次電池は、充放電を繰り返すことにより活物質放電容量が低下する、いわゆるサイクル劣化も大きいことがわかった。
【0007】
本発明は、上記実状に鑑みてなされたものであり、活物質放電容量が大きく、かつ、充放電を繰り返してもその容量を維持できるといういわゆるサイクル特性の良好なリチウム二次電池を構成することのできる正極活物質用リチウム鉄複合酸化物を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明のリチウム二次電池正極活物質用炭素含有リチウム鉄複合酸化物は、基本組成をLiFePOとするオリビン構造リチウム鉄複合酸化物の粒子に炭素物質微粒子が複合化してなり、炭素物質微粒子の平均粒子径は5nm以上100nm以下であり、炭素物質微粒子の炭素原子と、リチウム原子とのモル比は0.02〜0.2であり、リチウム鉄複合酸化物は、組成式LiFe 1−x PO (MはMn、Mg、Ni、Co、Cu、Zn、Geから選ばれる少なくとも1種;0.02≦x≦0.2)で表されるものであることを特徴とする。
【0009】
本発明の炭素含有リチウム鉄複合酸化物のベースとなるリチウム鉄複合酸化物は、結晶構造が斜方晶系のオリビン構造となるものであり、その空間群はPmnbで表される。オリビン構造とは酸素の六方最密充填を基本とし、その四面体サイトにリンが、八面体サイトにリチウムと鉄がともに位置する構造である。そして、そのリチウム鉄複合酸化物の粒子に炭素物質微粒子をとりこむことで、リチウム鉄複合酸化物と炭素物質微粒子とが複合化する。複合化とは、リチウム鉄複合酸化物の粒子の中に炭素物質微粒子が分散している状態であり、ナノメートルオーダーの炭素物質微粒子がリチウム鉄複合酸化物の粒子に分散していることから、いわゆるリチウム鉄複合酸化物と炭素物質微粒子とのナノコンポジット化が実現される。このように、リチウム鉄複合酸化物の粒子に炭素物質微粒子が複合化しているため、より多くの導電パスが形成され、内部抵抗は小さくなる。
【0010】
また、後に詳しく説明するが、炭素物質微粒子の複合化は、このリチウム鉄複合酸化物の合成の際に、原料混合物に炭素物質微粒子を添加して行う。炭素物質微粒子の添加により、リチウム鉄複合酸化物の合成の際の還元雰囲気が保持されることとなり、Fe2+からFe3+への酸化が抑制され、また、リチウム鉄複合酸化物の粒成長や焼結も抑制される。
【0011】
例えば、基本組成をLiFePO4とするリチウム鉄複合酸化物を正極活物質として用いた場合には、充電の際にFe2+からFe3+への酸化が必須となる。したがって、リチウム鉄複合酸化物の合成の際にFe2+の酸化が抑制されることは、二次電池の容量の増加につながる。また、リチウム鉄複合酸化物の粒成長や焼結が抑制され、合成される炭素含有リチウム鉄複合酸化物粒子の粒子径は比較的小さいものとなる。その結果、リチウムイオンの拡散距離は短くなり、リチウムイオンの吸蔵・脱離の反応が活性化するため、二次電池の容量は大きくなる。
【0012】
したがって、本発明の炭素含有リチウム鉄複合酸化物は、活物質容量が大きく、かつ、充放電を繰り返してもその容量を維持できるといういわゆるサイクル特性の良好なリチウム二次電池を構成することのできる正極活物質となる。
【0013】
また、本発明の炭素含有リチウム鉄複合酸化物は、その製造方法を特に限定するものではないが、本発明の製造方法によれば、より簡便に製造することができる。その本発明の炭素含有リチウム鉄複合酸化物の製造方法は、リチウム化合物と、鉄化合物と、リン含有アンモニウム塩と、炭素物質微粒子とを混合して混合物を得る原料混合工程と、該混合物を600℃以上750℃以下の温度で焼成する焼成工程とを含んでなることが好ましい
【0014】
炭素物質微粒子を各原料と混合して焼成するため、炭素物質微粒子はリチウム鉄複合酸化物の内部まで取り込まれ、略均一に分散する。また、各原料を混合して焼成するという極めて簡便な工程で、炭素含有リチウム鉄複合酸化物を得ることができる。したがって、本発明の炭素含有リチウム鉄複合酸化物の製造方法は、上記活物質容量が大きく、かつ、サイクル劣化の少ない炭素含有リチウム鉄複合酸化物を簡便に製造する方法となる。
【0015】
【発明の実施の形態】
以下に、本発明のリチウム二次電池正極活物質用炭素含有リチウム鉄複合酸化物、およびその製造方法について、それらの実施形態を詳細に説明する。また、本発明の炭素含有リチウム鉄複合酸化物の利用形態であるリチウム二次電池についても説明する。
【0016】
〈炭素含有リチウム鉄複合酸化物〉
本発明のリチウム二次電池正極活物質用炭素含有リチウム鉄複合酸化物は、基本組成をLiFePO4とするオリビン構造リチウム鉄複合酸化物の粒子に炭素物質微粒子が複合化してなるものである。
【0017】
「基本組成を〜とする」とは、その組成式で表される組成のものだけでなく、例えば、結晶構造におけるFeのサイトの一部をCo、Ni、Mn、Mg、Cu、Zn、Ge等の他の元素で置換した組成のものをも含むことを意味する。さらに、その化学量論組成のものだけでなく、一部の元素が欠損等した非化学量論組成のものをも含むことを意味する。
【0018】
例えば、Mn、Mg、Ni、Co、Cu、Zn、Geは、Feと略同等のイオン半径を有し、かつFeとは異なる電位で酸化還元するものである。そのため、Feサイトの一部をこれらの元素の1種以上で置換することにより、リチウム鉄複合酸化物の結晶構造の安定化を図ることができる。したがって、リチウム鉄複合酸化物は、Feのサイトの一部を他の元素Mで置換した、組成式LiFe1-xxPO4(MはMn、Mg、Ni、Co、Cu、Zn、Geから選ばれる少なくとも1種)で表されるものとすることが望ましい。特に、資源的にも豊富で安価であるという理由から、置換元素MはMnとすることが望ましい。
【0019】
Feサイトの一部をMn、Mg、Ni、Co、Cu、Zn、Geから選ばれる少なくとも1種以上の元素で置換する場合には、その置換割合、つまり上記組成式におけるxの値は、0.02≦x≦0.2とすることが望ましい。xが0.02未満の場合は、置換効果が少なく充分に結晶構造の安定化を図ることができないからであり、また、xが0.2を超える場合は、置換割合が多いため、初期放電容量が充分に得られないからである。また、より容量が大きく、サイクル特性の良好な電池を構成することを考慮した場合には、0.05≦x≦0.15の範囲とするのがさらに望ましい。
【0020】
また、本発明の炭素含有リチウム鉄複合酸化物のベースとなるリチウム鉄複合酸化物は、上述のように、その結晶構造が斜方晶系のオリビン構造となるものであり、その空間群はPmnbで表される。つまり、酸素の六方最密充填を基本とし、その四面体サイトにリンが、八面体サイトにリチウムと鉄がともに位置する構造を有するものである。
【0021】
上記リチウム鉄複合酸化物に複合化する炭素物質微粒子は、その炭素物質の種類を特に制限するものではない。例えば、天然黒鉛、球状あるいは繊維状の人造黒鉛等の黒鉛質材料や、コークス等の易黒鉛化性炭素、フェノール樹脂焼成体等の難黒鉛化性炭素等の炭素質材料を挙げることができる。これらの微粒子を単独であるいは2種以上を混合して用いることができる。なかでも、リチウム鉄複合酸化物中における分散性や、導電性向上の効果を考慮する場合には、カーボンブラックを用いることが望ましい。この場合は、炭化水素系のガスを燃焼して微粒子化すればよい。
【0022】
炭素物質微粒子の平均粒子径は、特に限定されるものではないが、リチウム鉄複合酸化物の粒子に複合化するという観点から、5nm以上100nm以下であることが望ましい。平均粒子径が5nm未満の場合には、上記範囲内のものと比較してリチウム鉄複合酸化物を合成する際の反応性が低下するからであり、また、100nmを超えると、上記範囲内のものと比較して分散性が低く、導電性向上の効果が小さいからである。
【0023】
また、炭素物質微粒子の炭素原子と、リチウム原子とのモル比、すなわち、炭素含有リチウム鉄複合酸化物に含まれる炭素原子と、炭素含有リチウム鉄複合酸化物に含まれるリチウム原子とのモル比は、0.02〜0.2であることが望ましい。0.02未満の場合には、炭素原子の量が少ないため、上記範囲内のものと比較して、炭素物質微粒子の複合化による上述した効果が小さいからであり、0.2を超えると、上記範囲内のものと比較して、リチウム鉄複合酸化物を合成する際の反応性が低下し、また、活物質放電容量が小さくなるからである。
【0024】
本発明の炭素含有リチウム鉄複合酸化物は、その粒子の平均粒子径が特に限定されるものではない。特に、リチウムイオンの吸蔵・脱離の反応をスムーズに行わせ、実用的な充放電密度で充放電した場合に、充分な活物質放電容量を得るということを考慮した場合には、5μm以下とすることが望ましい。また、電極の作製を容易にするという観点から、0.2μm以上とすることが望ましい。
【0025】
なお、炭素含有リチウム鉄複合酸化物の粒子の平均粒子径は、それぞれの粒子の粒子径の平均値であり、それぞれの粒子径は、例えば、走査型電子顕微鏡(SEM)を利用して測定することができる。具体的には、走査型電子顕微鏡(SEM)を利用して炭素含有リチウム鉄複合酸化物粒子の最長径と最短径を測定し、それら2つの値の平均値をその1つの粒子の粒子径として採用すればよい。
【0026】
〈炭素含有リチウム鉄複合酸化物の製造方法〉
本発明の炭素含有リチウム鉄複合酸化物は、その製造方法を特に限定するものではないが、本発明の製造方法によれば、より簡便に製造することができる。その本発明の炭素含有リチウム鉄複合酸化物の製造方法は、原料を混合して混合物を得る原料混合工程と、該混合物を所定の温度で焼成する焼成工程とからなる方法である。
【0027】
(1)原料混合工程
本発明の炭素含有リチウム鉄複合酸化物の製造方法における原料混合工程は、リチウム化合物と、鉄化合物と、リン含有アンモニウム塩と、炭素物質微粒子とを混合して混合物を得る工程である。
【0028】
リチウム源となるリチウム化合物としては、Li2CO3、Li(OH)、Li(OH)・H2O、LiNO3等を用いることができる。特に、吸湿性が低いという理由からLi2CO3を用いることが望ましい。
【0029】
鉄源となる鉄化合物としては、鉄の価数が2価である化合物として、FeC24・2H2O、FeCl2等を用いることができる。特に、焼成時に発生するガスの腐食性が低いという理由からFeC24・2H2Oを用いることが望ましい。
【0030】
リン源となるリン含有アンモニウム塩としては、NH42PO4、(NH42HPO4等を用いることができる。特に、比較的吸湿性が低く、腐食性ガスの発生量が少ないという理由からNH42PO4を用いることが望ましい。
【0031】
なお、アンモニアを発生しないという理由から、アンモニア塩を含まない化合物を用いて、リチウム源およびリン源とすることもできる。その場合には、リチウム化合物およびリン含有アンモニウム塩の代わりに、Li:Pが1:1で含まれるような、LiH2PO4等の化合物を用いればよい。
【0032】
炭素物質微粒子としては、上述した炭素物質の微粒子を用いればよく、特に、リチウム鉄複合酸化物中における分散性や、導電性向上の効果を考慮する場合には、カーボンブラックを用いることが望ましい。なお、Feのサイトの一部をCo、Ni、Mn、Mg、Cu、Zn、Ge等の他の元素で置換する場合には、置換元素を含む化合物を上記化合物と同様に混合すればよい。置換元素を含む化合物として、例えば、MnCO3、MgO、NiO、CoO、CuO、ZnO、GeO2等を用いることができる。
【0033】
上記の原料は、いずれも粉末状のものを用いればよく、それらの混合は、通常の粉体の混合に用いられている方法で行えばよい。具体的には、例えば、ボールミル、ミキサー、乳鉢等を用いて混合すればよい。なお、それぞれの原料の混合割合は、製造しようとする炭素含有リチウム鉄複合酸化物の組成に応じた割合とすればよい。
【0034】
(2)焼成工程
焼成工程は、原料混合工程で得られた混合物を600℃以上750℃以下の温度で焼成する工程である。焼成は、鉄が3価に酸化されるのを防ぐため、不活性雰囲気下、または還元雰囲気下、具体的には、例えば、アルゴン気流中あるいは窒素気流中等にて行えばよい。
【0035】
焼成温度は、600℃以上750℃以下とする。焼成温度が600℃未満であると、反応が充分に進行せず、目的とする斜方晶のもの以外の副相が生成し、リチウム鉄複合酸化物の結晶性が悪くなるからである。反対に、750℃を超えると、リチウム鉄複合酸化物の粒子が成長し、その粒子径が大きくなるからである。特に、入出力特性の向上、高容量の確保という点を考慮すれば、620℃以上700℃以下とすることが望ましい。なお、焼成時間は焼成が完了するのに充分な時間であればよく、通常、6時間程度行えばよい。
【0036】
〈リチウム二次電池〉
本発明の炭素含有リチウム鉄複合酸化物の利用形態であるリチウム二次電池の実施形態について説明する。一般にリチウム二次電池は、リチウムイオンを吸蔵・放出する正極および負極と、この正極と負極との間に挟装されるセパレータと、正極と負極の間をリチウムイオンを移動させる非水電解液とから構成される。本実施形態の二次電池もこの構成に従えばよい。以下の説明は、これらの構成要素のそれぞれについて行うこととする。
【0037】
正極は、リチウムイオンを吸蔵・脱離できる正極活物質に導電材および結着剤を混合し、必要に応じ適当な溶媒を加えて、ペースト状の正極合材としたものを、アルミニウム等の金属箔製の集電体表面に塗布、乾燥し、その後プレスによって活物質密度を高めることによって形成する。
【0038】
本実施形態では、正極活物質として上記炭素含有リチウム鉄複合酸化物を用いる。なお、本発明の炭素含有リチウム鉄複合酸化物は、その組成、粒子径、炭素物質微粒子の種類等により種々の炭素含有リチウム鉄複合酸化物が存在する。したがって、それらの1種を正極活物質として用いるものであってもよく、また、2種以上を混合して用いるものであってもよい。さらに、本発明の炭素含有リチウム鉄複合酸化物と既に公知の正極活物質材料とを混合して正極活物質とする構成を採用することもできる。
【0039】
正極に用いる導電材は、正極活物質層の電気伝導性を確保するためのものであり、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質粉状体の1種又は2種以上を混合したものを用いることができる。結着剤は、活物質粒子を繋ぎ止める役割を果たすもので、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。これら活物質、導電材、結着剤を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。
【0040】
正極に対向させる負極は、金属リチウム、リチウム合金等を、シート状にして、あるいはシート状にしたものをニッケル、ステンレス等の集電体網に圧着して形成することができる。しかし、デンドライトの析出等を考慮し、安全性に優れたリチウム二次電池とするために、リチウムを吸蔵・脱離できる炭素物質を活物質とする負極を用いることが望ましい。使用できる炭素物質としては、天然あるいは人造の黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の粉状体が挙げられる。この場合は、負極活物質に結着剤を混合し、適当な溶媒を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布乾燥して形成する。なお、炭素物質を負極活物質とした場合、正極同様、負極結着剤としてはポリフッ化ビニリデン等の含フッ素樹脂等を、溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
【0041】
正極と負極の間に挟装されるセパレータは、正極と負極とを隔離しつつ電解液を保持してイオンを通過させるものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
【0042】
非水電解液は、有機溶媒に電解質を溶解させたもので、有機溶媒としては、非プロトン性有機溶媒、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン等の1種またはこれらの2種以上の混合液を用いることができる。また、溶解させる電解質としては、溶解させることによりリチウムイオンを生じるLiI、LiClO4、LiAsF6、LiBF4、LiPF6等を用いることができる。
【0043】
なお、上記セパレータおよび非水電解液という構成に代えて、ポリエチレンオキシド等の高分子量ポリマーとLiClO4やLiN(CF3SO22等のリチウム塩を使用した高分子固体電解質を用いることもでき、また、上記非水電解液をポリアクリロニトリル等の固体高分子マトリクスにトラップさせたゲル電解質を用いることもできる。
【0044】
以上のものから構成されるリチウム二次電池であるが、その形状はコイン型、積層型、円筒型等の種々のものとすることができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極および負極から外部に通ずる正極端子および負極端子までの間をそれぞれ導通させるようにして、この電極体を非水電解液とともに電池ケースに密閉して電池を完成させることができる。
【0045】
〈他の実施形態の許容〉
以上、本発明の炭素含有リチウム鉄複合酸化物およびその製造方法の実施形態について説明したが、上述した実施形態は一実施形態にすぎず、本発明の炭素含有リチウム鉄複合酸化物およびその製造方法は、上記実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の形態で実施することができる。
【0046】
【実施例】
上記実施形態に基づいて、炭素原子の含有割合が異なる種々の炭素含有リチウム鉄複合酸化物を製造した。そして、製造した種々の炭素含有リチウム鉄複合酸化物を正極活物質としてリチウム二次電池を作製し、それらの活物質充放電容量を測定することにより、電池特性を評価した。ここで、活物質充放電容量とは、炭素物質微粒子を除いた正極活物質の単位重量あたりの充放電容量を意味する。以下、詳しく説明する。
【0047】
〈炭素含有リチウム鉄複合酸化物の製造〉
炭素原子の含有割合が異なる炭素含有リチウム鉄複合酸化物(LiFe1-xMnxPO4:Cy、x=0.15、y=0、0.02、0.05、0.1)を種々製造した。リチウム源およびリン源としてLiH2PO4を、鉄源としてFeC24・2H2Oを、置換元素源としてMnCO3を、炭素物質微粒子としてカーボンブラックをそれぞれ用いた。なお、カーボンブラックは平均粒子径が24nmのものを用いた。まず、FeC24・2H2OとMnCO3とを、それぞれFe:Mnがモル比で、0.85:0.15の割合となるように混合した。このFeC24・2H2OとMnCO3との混合物に、LiH2PO4と、カーボンブラックとを、Li:(Fe+Mn):Cがモル比で1:1:0、0.02、0.05、0.1となるようにそれぞれ混合した。なお、混合には自動乳鉢を用いた。これらの各混合物を、アルゴン気流中、650℃で6時間焼成した。そして、得られた各炭素含有リチウム鉄複合酸化物を解砕して、正極活物質となる粉末状の炭素含有リチウム鉄複合酸化物とした。炭素含有リチウム鉄複合酸化物の平均粒子径は、1μmであった。
【0048】
〈リチウム二次電池の作製〉
上記各炭素含有リチウム鉄複合酸化物を正極活物質に用いて、リチウム二次電池を作製した。正極は、まず、正極活物質となるそれぞれの炭素含有リチウム鉄複合酸化物77重量部に、導電材としてのカーボンブラックを15重量部、結着剤としてのポリフッ化ビニリデンを8重量部混合し、溶剤として適量のN−メチル−2−ピロリドンを添加して、ペースト状の正極合材を調製した。次いで、このペースト状の正極合材を厚さ20μmのアルミニウム箔集電体の両面に塗布し、乾燥させ、その後ロールプレスにて圧縮し、シート状の正極を作製した。このシート状の正極を54mm×450mmの大きさに裁断して用いた。
【0049】
対向させる負極は、黒鉛化メソカーボンマイクロビーズ(黒鉛化MCMB)を活物質として用いた。まず、活物質となる黒鉛化MCMBの92重量部に、結着剤としてのポリフッ化ビニリデンを8重量部混合し、溶剤として適量のN−メチル−2−ピロリドンを添加し、ペースト状の負極合材を調製し、次いで、このペースト状の負極合材を厚さ10μmの銅箔集電体の両面に塗布し、乾燥させ、その後ロールプレスにて圧縮し、シート状の負極を作製した。このシート状の負極を56mm×500mmの大きさに裁断して用いた。
【0050】
上記それぞれ正極および負極を、それらの間に厚さ25μm、幅58mmのポリエチレン製セパレータを挟んで捲回し、ロール状の電極体を形成した。そして、その電極体を18650型円筒形電池ケース(外径18mmφ、長さ65mm)に挿設し、非水電解液を注入し、その電池ケースを密閉して円筒型リチウム二次電池を作製した。なお、非水電解液は、エチレンカーボネートとジエチルカーボネートとを体積比で3:7に混合した混合溶媒に、LiPF6を1Mの濃度で溶解したものを用いた。
【0051】
〈電池特性の評価〉
(1)充放電容量の測定および充放電効率の算出
作製した各リチウム二次電池における活物質充電容量を測定した。20℃の温度条件下で、電流密度0.2mA/cm2の定電流で充電上限電圧4.0Vまで充電を行って、各二次電池の充電容量を測定した。その充電容量の値から、炭素物質微粒子を除いた正極活物質1gあたりの充電容量、すなわち活物質充電容量を求めた。次いで、電流密度0.2mA/cm2の定電流で放電下限電圧2.6Vまで放電を行って、各二次電池の放電容量を測定した。その放電容量の値から、活物質放電容量を求めた。そして、各二次電池における活物質充電容量および活物質放電容量の値から、式[充放電効率(%)=活物質放電容量/活物質充電容量×100]により充放電効率(%)を算出した。各二次電池の活物質充電容量および充放電効率の値を図1に示す。なお、図1には、炭素微粒子を複合化せず、かつMnによる置換割合を0.1として上記同様に製造したリチウム鉄複合酸化物を正極活物質として用いたリチウム二次電池の値も併せて示す。
【0052】
図1からわかるように、炭素物質微粒子の複合化割合、つまり炭素の含有割合が大きくなるにつれて、活物質充電容量は増加した。また、充放電効率も炭素の含有割合が大きくなるにつれて増加した。これは、リチウム鉄複合酸化物の合成の際に炭素物質微粒子が混合されたことにより、Fe2+の酸化が抑制されたため、Fe3+への酸化が必須となる充電時の容量が増加したものと考えられる。また、リチウム鉄複合酸化物の粒成長や焼結も抑制され、かつ、炭素物質微粒子の存在によりより多くの導電パスが形成されたため、リチウムイオンの吸蔵・脱離の反応が活性化し、二次電池の放電容量も大きくなり、充放電効率が向上したと考えられる。なお、MnによるFeサイトの置換割合が大きい方が、若干ではあるが、充電容量、充放電効率ともに増加した。これは、Feで置換することにより、結晶構造の安定化を図ることができたためと考えられる。以上より、本発明の炭素含有リチウム鉄複合酸化物を正極活物質に用いたリチウム二次電池は、活物質容量が大きいことが確認できた。
【0053】
(2)充放電サイクル試験およびサイクル特性の評価
次に、作製した二次電池のうち、炭素物質微粒子の複合化割合が0.02である本発明の炭素含有リチウム鉄複合酸化物を使用した二次電池、炭素物質微粒子を複合化しないリチウム鉄複合酸化物を使用した二次電池に対し、充放電サイクル試験を行った。充放電サイクル試験は、電池の実使用温度範囲の上限と目される60℃の温度条件下で、電流密度1.0mA/cm2の定電流で充電上限電圧4.0Vまで充電を行い、次いで電流密度1.0mA/cm2の定電流で放電下限電圧2.6Vまで放電を行う充放電を1サイクルとし、このサイクルを合計500サイクル行うものとした。そして、各サイクルごとに、それぞれのリチウム二次電池について放電容量を測定し、活物質放電容量を求めた。図2に充放電サイクル試験における各二次電池の活物質放電容量の変化を示す。なお、上記同様、Mnによる置換割合が0.1であるリチウム鉄複合酸化物を正極活物質として用いたリチウム二次電池の活物質放電容量の変化も併せて示す。
【0054】
図2から、サイクルを経るにつれ、各二次電池の活物質放電容量は低下する。しかし、本発明の炭素含有リチウム鉄複合酸化物を使用した二次電池は、炭素を複合化していないリチウム鉄複合酸化物を使用した二次電池と比較して、初期の活物質放電容量の値が大きいだけでなく、活物質放電容量の低下も小さいものとなった。すなわち、本発明の炭素含有リチウム鉄複合酸化物を使用した二次電池の初期活物質放電容量は88mAh/g、500サイクル後の容量維持率は約84%と高い値であったのに対し、炭素物質微粒子を複合化しないリチウム鉄複合酸化物を使用した二次電池の初期活物質放電容量は80mAh/g、容量維持率は、約77%であった。また、MnによるFeサイトの置換割合が大きい方が、初期の活物質放電容量の値は大きく、活物質放電容量の低下は小さかった。これは、上記同様、Feで置換することにより、結晶構造の安定化を図ることができたためと考えられる。
【0055】
したがって、本発明の炭素含有リチウム鉄複合酸化物を正極活物質に用いたリチウム二次電池は、活物質放電容量が大きく、かつ、高温下でサイクルを繰り返しても容量の低下が少ないサイクル特性に優れたリチウム二次電池となることが確認できた。
【0056】
【発明の効果】
本発明の炭素含有リチウム鉄複合酸化物は、オリビン構造のリチウム鉄複合酸化物の粒子に炭素物質微粒子が複合化してなるものである。本発明の炭素含有リチウム鉄複合酸化物を正極活物質に用いてリチウム二次電池を構成すれば、活物質容量が大きく、かつ、サイクルを繰り返しても容量の低下が少ないサイクル特性に優れたリチウム二次電池を得ることができる。また、本発明の炭素含有リチウム鉄複合酸化物の製造方法によれば、上記活物質容量が大きく、かつ、サイクル劣化の少ない炭素含有リチウム鉄複合酸化物を簡便に製造することができる。
【図面の簡単な説明】
【図1】 炭素含有割合の異なるリチウム鉄複合酸化物を正極活物質として用いた二次電池の活物質充電容量および充放電効率の値を示す。
【図2】 充放電サイクル試験における各二次電池の活物質放電容量の変化を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon-containing lithium iron composite oxide for a positive electrode active material capable of constituting a lithium secondary battery utilizing a lithium occlusion / desorption phenomenon, and also relates to a method for producing the same.
[0002]
[Prior art]
With the miniaturization of personal computers, video cameras, mobile phones, etc., in the fields of information-related equipment and communication equipment, lithium secondary batteries have been put into practical use because of their high energy density as the power source used for these equipment. It has become widespread. On the other hand, in the field of automobiles, the development of electric vehicles has been urgently caused by environmental problems and resource problems, and lithium secondary batteries have been studied as power sources for the electric vehicles.
[0003]
At present, as a positive electrode active material of a lithium secondary battery, LiCoO can be used as a secondary battery of 4V class.2, LiNiO2, LiMn2OFourLithium transition metal composite oxides such as LiCoO are particularly preferred.2In addition to being easy to synthesize and relatively easy to handle, LiCoO is excellent in charge / discharge cycle characteristics.2Rechargeable batteries using as the positive electrode active material are the mainstream.
[0004]
However, cobalt and other resources are small, and LiCoO2In the secondary battery using the positive electrode active material as a positive electrode active material, it is difficult to cope with future mass production and enlargement in view of the battery for electric vehicles, and the price must be extremely expensive. Therefore, in place of cobalt or the like, an attempt has been made to employ lithium iron composite oxide, which is abundant as a resource and contains inexpensive iron as a constituent element, as a positive electrode active material.
[0005]
As one of the attempts, for example, JP-A-9-134725 discloses LiFePO having an olivine structure.FourLiFeVOFourA lithium secondary battery using the above as a positive electrode active material is shown.
[0006]
[Problems to be solved by the invention]
However, as a result of a further trial by the present inventors, a lithium secondary battery using the olivine-structure lithium iron composite oxide as described in the above-mentioned publication as a positive electrode active material could not obtain a sufficient capacity. . That is, when charging / discharging at a practical charge / discharge density, it is considered that an active material discharge capacity of 90 mAh / g or more is necessary, but when the lithium iron composite oxide is used as a positive electrode active material, It was difficult to obtain the active material discharge capacity. Further, the LiFePOFourIt has been found that lithium secondary batteries using the above as the positive electrode active material have a large so-called cycle deterioration in which the active material discharge capacity is reduced by repeated charge and discharge.
[0007]
The present invention has been made in view of the above-described circumstances, and constitutes a lithium secondary battery having a good active cycle discharge capacity, which has a large active material discharge capacity and can maintain the capacity even after repeated charge and discharge. An object of the present invention is to provide a lithium iron composite oxide for a positive electrode active material that can be used.
[0008]
[Means for Solving the Problems]
  The carbon-containing lithium iron composite oxide for a positive electrode active material of a lithium secondary battery according to the present invention has a basic composition of LiFePO4The olivine-structured lithium iron composite oxide particlesThe carbon material fine particles have an average particle size of 5 nm or more and 100 nm or less, the molar ratio between carbon atoms and lithium atoms of the carbon material fine particles is 0.02 to 0.2, and the lithium iron composite oxide has a composition Formula LiFe 1-x M x PO 4 (M is represented by at least one selected from Mn, Mg, Ni, Co, Cu, Zn, and Ge; 0.02 ≦ x ≦ 0.2)It is characterized by that.
[0009]
The lithium iron composite oxide serving as the base of the carbon-containing lithium iron composite oxide of the present invention has an orthorhombic olivine structure in crystal structure, and the space group is represented by Pmnb. The olivine structure is based on the hexagonal close-packed packing of oxygen, in which phosphorus is located at the tetrahedral site and both lithium and iron are located at the octahedral site. Then, by incorporating the carbon material fine particles into the lithium iron composite oxide particles, the lithium iron composite oxide and the carbon material fine particles are combined. Compounding is a state in which carbon material fine particles are dispersed in lithium iron composite oxide particles, and nanometer-order carbon material fine particles are dispersed in lithium iron composite oxide particles. A nanocomposite of a so-called lithium iron composite oxide and carbon material fine particles is realized. As described above, since the carbon fine particles are combined with the lithium iron composite oxide particles, more conductive paths are formed, and the internal resistance is reduced.
[0010]
As will be described in detail later, the carbon material fine particles are compounded by adding the carbon material fine particles to the raw material mixture when synthesizing the lithium iron composite oxide. By adding the carbon fine particles, the reducing atmosphere during the synthesis of the lithium iron composite oxide is maintained, and Fe2+To Fe3+Oxidation is suppressed, and grain growth and sintering of the lithium iron composite oxide are also suppressed.
[0011]
For example, if the basic composition is LiFePOFourWhen the lithium iron composite oxide is used as the positive electrode active material, Fe2+To Fe3+Oxidation to is essential. Therefore, during the synthesis of lithium iron composite oxide, Fe2+Suppression of the oxidation of the secondary battery leads to an increase in the capacity of the secondary battery. Further, grain growth and sintering of the lithium iron composite oxide are suppressed, and the particle diameter of the synthesized carbon-containing lithium iron composite oxide particles becomes relatively small. As a result, the lithium ion diffusion distance is shortened, and the lithium ion storage / desorption reaction is activated, thereby increasing the capacity of the secondary battery.
[0012]
Therefore, the carbon-containing lithium iron composite oxide of the present invention can constitute a lithium secondary battery with a good active characteristic and a so-called cycle characteristic in which the capacity can be maintained even after repeated charge and discharge. It becomes a positive electrode active material.
[0013]
  Moreover, the carbon-containing lithium iron composite oxide of the present invention is not particularly limited in its production method, but can be more easily produced according to the production method of the present invention. The method for producing a carbon-containing lithium iron composite oxide of the present invention includes a raw material mixing step of mixing a lithium compound, an iron compound, a phosphorus-containing ammonium salt, and carbon material fine particles to obtain a mixture, And a baking step of baking at a temperature of 750 ° C. to 750 ° C.Is preferred.
[0014]
Since the carbon material fine particles are mixed and fired with each raw material, the carbon material fine particles are taken into the lithium iron composite oxide and dispersed substantially uniformly. Further, the carbon-containing lithium iron composite oxide can be obtained by an extremely simple process of mixing and firing the respective raw materials. Therefore, the method for producing a carbon-containing lithium iron composite oxide of the present invention is a method for easily producing the carbon-containing lithium iron composite oxide having a large active material capacity and little cycle deterioration.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Below, those embodiments are described in detail about the carbon content lithium iron complex oxide for lithium secondary battery positive electrode active materials of the present invention, and its manufacturing method. Moreover, the lithium secondary battery which is a utilization form of the carbon containing lithium iron complex oxide of this invention is also demonstrated.
[0016]
<Carbon-containing lithium iron composite oxide>
The carbon-containing lithium iron composite oxide for a positive electrode active material of a lithium secondary battery according to the present invention has a basic composition of LiFePOFourThe olivine structure lithium iron composite oxide particles are combined with carbon material fine particles.
[0017]
“The basic composition is assumed to be” means not only the composition represented by the composition formula, but, for example, a part of the Fe site in the crystal structure is Co, Ni, Mn, Mg, Cu, Zn, Ge. It is meant to include those having compositions substituted with other elements such as. Furthermore, it means that not only the stoichiometric composition but also a non-stoichiometric composition in which some elements are deficient.
[0018]
For example, Mn, Mg, Ni, Co, Cu, Zn, and Ge have an ionic radius substantially the same as that of Fe, and are oxidized and reduced at a potential different from that of Fe. Therefore, the crystal structure of the lithium iron composite oxide can be stabilized by replacing a part of the Fe site with one or more of these elements. Accordingly, the lithium iron composite oxide has a composition formula LiFe in which part of the Fe site is replaced with another element M.1-xMxPOFourIt is desirable that M is represented by at least one selected from Mn, Mg, Ni, Co, Cu, Zn, and Ge. In particular, the substitution element M is desirably Mn because it is abundant in terms of resources and is inexpensive.
[0019]
When a part of the Fe site is substituted with at least one element selected from Mn, Mg, Ni, Co, Cu, Zn, and Ge, the substitution ratio, that is, the value of x in the above composition formula is 0. .02 ≦ x ≦ 0.2 is desirable. This is because when x is less than 0.02, the substitution effect is small and the crystal structure cannot be sufficiently stabilized, and when x exceeds 0.2, the substitution rate is large, so that the initial discharge. This is because sufficient capacity cannot be obtained. In consideration of constituting a battery having a larger capacity and good cycle characteristics, it is more desirable that the range is 0.05 ≦ x ≦ 0.15.
[0020]
Further, as described above, the lithium iron composite oxide that is the base of the carbon-containing lithium iron composite oxide of the present invention has an orthorhombic olivine structure as described above, and its space group is Pmnb. It is represented by That is, it is based on the hexagonal close-packed packing of oxygen, and has a structure in which phosphorus is located at the tetrahedral site and both lithium and iron are located at the octahedral site.
[0021]
The carbon material fine particles to be compounded with the lithium iron composite oxide are not particularly limited in the type of the carbon material. Examples thereof include carbonaceous materials such as natural graphite, spherical or fibrous artificial graphite and the like, graphitizable carbon such as coke, and non-graphitizable carbon such as a phenol resin fired body. These fine particles can be used alone or in admixture of two or more. Among these, it is desirable to use carbon black when considering the dispersibility in the lithium iron composite oxide and the effect of improving the conductivity. In this case, hydrocarbon gas may be burned to form fine particles.
[0022]
The average particle diameter of the carbon material fine particles is not particularly limited, but is preferably 5 nm or more and 100 nm or less from the viewpoint of being compounded with lithium iron composite oxide particles. This is because when the average particle size is less than 5 nm, the reactivity when synthesizing the lithium iron composite oxide is lower than that in the above range, and when it exceeds 100 nm, it is within the above range. This is because the dispersibility is lower than that of the material and the effect of improving the conductivity is small.
[0023]
In addition, the molar ratio between the carbon atom and the lithium atom in the carbon fine particles, that is, the molar ratio between the carbon atom contained in the carbon-containing lithium iron composite oxide and the lithium atom contained in the carbon-containing lithium iron composite oxide is 0.02-0.2 is desirable. When the amount is less than 0.02, the amount of carbon atoms is small, and therefore the above-described effect of the composite of the carbon fine particles is small as compared with those within the above range. This is because the reactivity when synthesizing the lithium iron composite oxide is reduced and the active material discharge capacity is reduced as compared with those within the above range.
[0024]
The average particle diameter of the particles of the carbon-containing lithium iron composite oxide of the present invention is not particularly limited. In particular, when taking into account that a sufficient active material discharge capacity is obtained when charging / discharging at a practical charge / discharge density is performed, the lithium ion occlusion / desorption reaction is performed smoothly. It is desirable to do. Further, from the viewpoint of facilitating the production of the electrode, it is desirable that the thickness is 0.2 μm or more.
[0025]
The average particle diameter of the carbon-containing lithium iron composite oxide particles is an average value of the particle diameters of the respective particles, and each particle diameter is measured using, for example, a scanning electron microscope (SEM). be able to. Specifically, the longest and shortest diameters of carbon-containing lithium iron composite oxide particles are measured using a scanning electron microscope (SEM), and the average value of these two values is used as the particle diameter of the one particle. Adopt it.
[0026]
<Method for producing carbon-containing lithium iron composite oxide>
The carbon-containing lithium iron composite oxide of the present invention is not particularly limited in its production method, but can be more easily produced according to the production method of the present invention. The method for producing a carbon-containing lithium iron composite oxide of the present invention is a method comprising a raw material mixing step of mixing raw materials to obtain a mixture, and a firing step of firing the mixture at a predetermined temperature.
[0027]
(1) Raw material mixing process
The raw material mixing step in the method for producing a carbon-containing lithium iron composite oxide of the present invention is a step of obtaining a mixture by mixing a lithium compound, an iron compound, a phosphorus-containing ammonium salt, and carbon substance fine particles.
[0028]
Lithium compounds that serve as lithium sources include Li2COThree, Li (OH), Li (OH) · H2O, LiNOThreeEtc. can be used. In particular, because of its low hygroscopicity, Li2COThreeIt is desirable to use
[0029]
As an iron compound as an iron source, a compound in which the valence of iron is divalent is FeC.2OFour・ 2H2O, FeCl2Etc. can be used. In particular, FeC because of the low corrosiveness of the gas generated during firing.2OFour・ 2H2It is desirable to use O.
[0030]
Examples of phosphorus-containing ammonium salts that serve as phosphorus sources include NH.FourH2POFour, (NHFour)2HPOFourEtc. can be used. In particular, NH is relatively low in hygroscopicity and has a low generation amount of corrosive gas.FourH2POFourIt is desirable to use
[0031]
In addition, since it does not generate | occur | produce ammonia, it can also be set as a lithium source and a phosphorus source using the compound which does not contain an ammonia salt. In that case, LiH such that Li: P is contained 1: 1 instead of lithium compound and phosphorus-containing ammonium salt.2POFourOr the like.
[0032]
As the carbon material fine particles, the carbon material fine particles described above may be used. In particular, when considering the dispersibility in the lithium iron composite oxide and the effect of improving the conductivity, it is desirable to use carbon black. When a part of the Fe site is replaced with another element such as Co, Ni, Mn, Mg, Cu, Zn, or Ge, a compound containing the replacement element may be mixed similarly to the above compound. As a compound containing a substitution element, for example, MnCOThreeMgO, NiO, CoO, CuO, ZnO, GeO2Etc. can be used.
[0033]
Any of the above-mentioned raw materials may be used in the form of powder, and mixing thereof may be performed by a method used for normal powder mixing. Specifically, it may be mixed using, for example, a ball mill, a mixer, a mortar or the like. In addition, what is necessary is just to let the mixing ratio of each raw material be a ratio according to the composition of the carbon containing lithium iron complex oxide to be manufactured.
[0034]
(2) Firing process
The firing step is a step of firing the mixture obtained in the raw material mixing step at a temperature of 600 ° C. or higher and 750 ° C. or lower. Firing may be performed in an inert atmosphere or a reducing atmosphere, specifically, for example, in an argon stream or a nitrogen stream to prevent iron from being oxidized to trivalent.
[0035]
The firing temperature is 600 ° C. or higher and 750 ° C. or lower. When the firing temperature is less than 600 ° C., the reaction does not proceed sufficiently, a subphase other than the intended orthorhombic crystal is generated, and the crystallinity of the lithium iron composite oxide is deteriorated. On the other hand, if the temperature exceeds 750 ° C., the lithium iron composite oxide particles grow and the particle diameter increases. In particular, in view of improving input / output characteristics and securing a high capacity, it is desirable to set the temperature to 620 ° C. or higher and 700 ° C. or lower. Note that the firing time may be a time sufficient to complete the firing, and is usually performed for about 6 hours.
[0036]
<Lithium secondary battery>
An embodiment of a lithium secondary battery that is a form of utilization of the carbon-containing lithium iron composite oxide of the present invention will be described. Generally, a lithium secondary battery includes a positive electrode and a negative electrode that occlude and release lithium ions, a separator that is sandwiched between the positive electrode and the negative electrode, a non-aqueous electrolyte that moves lithium ions between the positive electrode and the negative electrode, Consists of The secondary battery of this embodiment may follow this configuration. The following description will be given for each of these components.
[0037]
For the positive electrode, a conductive material and a binder are mixed with a positive electrode active material capable of inserting and extracting lithium ions, and an appropriate solvent is added as necessary to form a paste-like positive electrode mixture, such as a metal such as aluminum. It is formed by applying and drying on the surface of the current collector made of foil and then increasing the active material density by pressing.
[0038]
In this embodiment, the above carbon-containing lithium iron composite oxide is used as the positive electrode active material. The carbon-containing lithium iron composite oxide of the present invention includes various carbon-containing lithium iron composite oxides depending on the composition, particle diameter, type of carbon fine particles, and the like. Therefore, one of them may be used as the positive electrode active material, or a mixture of two or more may be used. Furthermore, it is also possible to employ a configuration in which the carbon-containing lithium iron composite oxide of the present invention and a known positive electrode active material are mixed to form a positive electrode active material.
[0039]
The conductive material used for the positive electrode is for ensuring the electrical conductivity of the positive electrode active material layer, and is a mixture of one or more carbon material powders such as carbon black, acetylene black, and graphite. Can be used. The binder plays a role of anchoring the active material particles, and a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and a thermoplastic resin such as polypropylene and polyethylene can be used. An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active material, conductive material, and binder.
[0040]
The negative electrode opposed to the positive electrode can be formed by pressing metal lithium, a lithium alloy, or the like into a sheet shape or a sheet-like shape to a current collector network such as nickel or stainless steel. However, in consideration of the precipitation of dendrites and the like, in order to obtain a lithium secondary battery excellent in safety, it is desirable to use a negative electrode using a carbon material capable of inserting and extracting lithium as an active material. Examples of the carbon material that can be used include natural or artificial graphite, a fired organic compound such as a phenol resin, and a powdery material such as coke. In this case, a binder is mixed with the negative electrode active material, and a negative electrode mixture made into a paste by adding an appropriate solvent is applied to the surface of a metal foil current collector such as copper and dried. When the carbon material is a negative electrode active material, as with the positive electrode, a fluorine-containing resin such as polyvinylidene fluoride is used as the negative electrode binder, and an organic solvent such as N-methyl-2-pyrrolidone is used as the solvent. it can.
[0041]
The separator sandwiched between the positive electrode and the negative electrode retains the electrolytic solution while isolating the positive electrode and the negative electrode and allows ions to pass through. A thin microporous film such as polyethylene or polypropylene can be used.
[0042]
The non-aqueous electrolyte is obtained by dissolving an electrolyte in an organic solvent. Examples of the organic solvent include aprotic organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, and tetrahydrofuran. , Dioxolane, methylene chloride or the like, or a mixture of two or more thereof can be used. Further, as the electrolyte to be dissolved, LiI and LiClO that generate lithium ions when dissolved are used.Four, LiAsF6, LiBFFour, LiPF6Etc. can be used.
[0043]
Instead of the separator and the non-aqueous electrolyte, a high molecular weight polymer such as polyethylene oxide and LiClO are used.FourAnd LiN (CFThreeSO2)2It is also possible to use a solid polymer electrolyte using a lithium salt such as a gel electrolyte, or a gel electrolyte obtained by trapping the non-aqueous electrolyte in a solid polymer matrix such as polyacrylonitrile.
[0044]
Although it is a lithium secondary battery comprised from the above, the shape can be made into various things, such as a coin type, a laminated type, and a cylindrical type. Regardless of which shape is adopted, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the electrode body is electrically connected between the positive electrode and the negative electrode and the positive electrode terminal and the negative electrode terminal. Can be sealed in a battery case together with a non-aqueous electrolyte to complete the battery.
[0045]
<Acceptance of other embodiments>
As mentioned above, although embodiment of the carbon containing lithium iron complex oxide of this invention and its manufacturing method was described, embodiment mentioned above is only one Embodiment, The carbon containing lithium iron complex oxide of this invention, and its manufacturing method In addition to the above-described embodiment, it can be implemented in various forms with various modifications and improvements based on the knowledge of those skilled in the art.
[0046]
【Example】
Based on the said embodiment, the various carbon containing lithium iron complex oxide from which the content rate of a carbon atom differs was manufactured. And the lithium secondary battery was produced using the produced various carbon containing lithium iron complex oxide as a positive electrode active material, and the battery characteristic was evaluated by measuring those active material charging / discharging capacities. Here, the active material charge / discharge capacity means the charge / discharge capacity per unit weight of the positive electrode active material excluding the carbon material fine particles. This will be described in detail below.
[0047]
<Production of carbon-containing lithium iron composite oxide>
Carbon-containing lithium iron composite oxides (LiFe with different carbon atom content ratios)1-xMnxPOFour: Cy, X = 0.15, y = 0, 0.02, 0.05, 0.1). LiH as a lithium and phosphorus source2POFourAs an iron source2OFour・ 2H2O as a substitution element source MnCOThreeCarbon black was used as the carbon material fine particles. Carbon black having an average particle diameter of 24 nm was used. First, FeC2OFour・ 2H2O and MnCOThreeWere mixed so that the molar ratio of Fe: Mn was 0.85: 0.15. This FeC2OFour・ 2H2O and MnCOThreeLiH2POFourAnd carbon black were mixed such that the molar ratio of Li: (Fe + Mn): C was 1: 1: 0, 0.02, 0.05, 0.1. An automatic mortar was used for mixing. Each of these mixtures was fired at 650 ° C. for 6 hours in an argon stream. And each obtained carbon containing lithium iron complex oxide was crushed and it was set as the powdery carbon containing lithium iron complex oxide used as a positive electrode active material. The average particle size of the carbon-containing lithium iron composite oxide was 1 μm.
[0048]
<Production of lithium secondary battery>
A lithium secondary battery was fabricated using each of the carbon-containing lithium iron composite oxides as a positive electrode active material. First, the positive electrode was prepared by mixing 15 parts by weight of carbon black as a conductive material and 8 parts by weight of polyvinylidene fluoride as a binder with 77 parts by weight of each carbon-containing lithium iron composite oxide serving as a positive electrode active material, An appropriate amount of N-methyl-2-pyrrolidone was added as a solvent to prepare a paste-like positive electrode mixture. Subsequently, this paste-like positive electrode mixture was applied to both surfaces of an aluminum foil current collector having a thickness of 20 μm, dried, and then compressed by a roll press to produce a sheet-like positive electrode. This sheet-like positive electrode was cut into a size of 54 mm × 450 mm and used.
[0049]
As the negative electrode to be opposed, graphitized mesocarbon microbeads (graphitized MCMB) were used as an active material. First, 92 parts by weight of graphitized MCMB as an active material was mixed with 8 parts by weight of polyvinylidene fluoride as a binder, an appropriate amount of N-methyl-2-pyrrolidone was added as a solvent, and a paste-like negative electrode composite was added. Then, the paste-like negative electrode mixture was applied to both sides of a 10 μm thick copper foil current collector, dried, and then compressed by a roll press to prepare a sheet-like negative electrode. This sheet-like negative electrode was cut into a size of 56 mm × 500 mm and used.
[0050]
Each of the positive electrode and the negative electrode was wound with a polyethylene separator having a thickness of 25 μm and a width of 58 mm interposed therebetween to form a roll-shaped electrode body. Then, the electrode body was inserted into a 18650 type cylindrical battery case (outer diameter 18 mmφ, length 65 mm), a non-aqueous electrolyte was injected, and the battery case was sealed to produce a cylindrical lithium secondary battery. . The non-aqueous electrolyte is LiPF in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 3: 7.6Was dissolved at a concentration of 1M.
[0051]
<Evaluation of battery characteristics>
(1) Measurement of charge / discharge capacity and calculation of charge / discharge efficiency
The active material charge capacity in each produced lithium secondary battery was measured. Under a temperature condition of 20 ° C., a current density of 0.2 mA / cm2The secondary battery was charged to a charge upper limit voltage of 4.0 V at a constant current of ≦ 5 to measure the charge capacity of each secondary battery. From the value of the charge capacity, the charge capacity per 1 g of the positive electrode active material excluding the carbon material fine particles, that is, the active material charge capacity was determined. Then, current density 0.2mA / cm2The secondary battery was discharged at a constant current of up to a discharge lower limit voltage of 2.6 V, and the discharge capacity of each secondary battery was measured. The active material discharge capacity was obtained from the value of the discharge capacity. The charge / discharge efficiency (%) is calculated from the values of the active material charge capacity and the active material discharge capacity in each secondary battery by the formula [charge / discharge efficiency (%) = active material discharge capacity / active material charge capacity × 100]. did. The values of the active material charge capacity and charge / discharge efficiency of each secondary battery are shown in FIG. FIG. 1 also shows the values of a lithium secondary battery using as a positive electrode active material a lithium iron composite oxide produced in the same manner as described above, with carbon fine particles not compounded and the substitution ratio with Mn being 0.1. Show.
[0052]
As can be seen from FIG. 1, the active material charge capacity increased as the composite ratio of the carbon substance fine particles, that is, the carbon content ratio increased. The charge / discharge efficiency also increased as the carbon content increased. This is because the carbon fine particles were mixed during the synthesis of the lithium iron composite oxide.2+Since the oxidation of iron was suppressed, Fe3+It is thought that the capacity at the time of charging, in which oxidation to benzene is essential, increased. In addition, the growth and sintering of lithium iron composite oxide was suppressed, and more conductive paths were formed due to the presence of fine carbon material particles. It is thought that the discharge capacity of the battery also increased and the charge / discharge efficiency was improved. In addition, although the one where the substitution ratio of the Fe site by Mn was large, both the charge capacity and the charge / discharge efficiency increased. This is considered to be because the crystal structure was stabilized by substituting with Fe. From the above, it was confirmed that the lithium secondary battery using the carbon-containing lithium iron composite oxide of the present invention as the positive electrode active material has a large active material capacity.
[0053]
(2) Charge / discharge cycle test and evaluation of cycle characteristics
Next, among the produced secondary batteries, the secondary battery using the carbon-containing lithium iron composite oxide of the present invention in which the composite ratio of the carbon substance fine particles is 0.02, lithium iron not composited with the carbon substance fine particles A charge / discharge cycle test was performed on the secondary battery using the composite oxide. The charge / discharge cycle test is performed at a current density of 1.0 mA / cm under a temperature condition of 60 ° C., which is regarded as the upper limit of the actual use temperature range of the battery.2The battery is charged to a charge upper limit voltage of 4.0 V with a constant current of 1.0 mA / cm2The charge / discharge for discharging to a discharge lower limit voltage of 2.6 V at a constant current of 1 cycle was defined as one cycle, and this cycle was performed for a total of 500 cycles. Then, for each cycle, the discharge capacity of each lithium secondary battery was measured to obtain the active material discharge capacity. FIG. 2 shows changes in the active material discharge capacity of each secondary battery in the charge / discharge cycle test. In addition, the change of the active material discharge capacity of the lithium secondary battery which used the lithium iron complex oxide whose substitution ratio by Mn is 0.1 as a positive electrode active material is also shown similarly.
[0054]
From FIG. 2, the active material discharge capacity of each secondary battery decreases as it goes through the cycle. However, the secondary battery using the carbon-containing lithium iron composite oxide of the present invention has an initial active material discharge capacity value as compared with the secondary battery using the lithium iron composite oxide not composited with carbon. As well as a large decrease in the active material discharge capacity. That is, the initial active material discharge capacity of the secondary battery using the carbon-containing lithium iron composite oxide of the present invention was 88 mAh / g, while the capacity retention after 500 cycles was a high value of about 84%, An initial active material discharge capacity of a secondary battery using a lithium iron composite oxide not compounded with carbon material fine particles was 80 mAh / g, and a capacity retention rate was about 77%. Further, the larger the substitution ratio of Fe sites with Mn, the larger the initial active material discharge capacity value, and the lower the active material discharge capacity was smaller. This is presumably because the crystal structure was stabilized by substitution with Fe as described above.
[0055]
Therefore, the lithium secondary battery using the carbon-containing lithium iron composite oxide of the present invention as the positive electrode active material has a large active material discharge capacity and cycle characteristics with little decrease in capacity even when the cycle is repeated at a high temperature. It was confirmed that the lithium secondary battery was excellent.
[0056]
【The invention's effect】
The carbon-containing lithium iron composite oxide of the present invention is obtained by combining carbon material fine particles with lithium iron composite oxide particles having an olivine structure. When a lithium secondary battery is constructed using the carbon-containing lithium iron composite oxide of the present invention as a positive electrode active material, lithium having a large active material capacity and excellent cycle characteristics with little decrease in capacity even after repeated cycles A secondary battery can be obtained. Moreover, according to the method for producing a carbon-containing lithium iron composite oxide of the present invention, the carbon-containing lithium iron composite oxide having a large active material capacity and little cycle deterioration can be easily produced.
[Brief description of the drawings]
FIG. 1 shows values of active material charge capacity and charge / discharge efficiency of a secondary battery using lithium iron composite oxides having different carbon content ratios as a positive electrode active material.
FIG. 2 shows a change in active material discharge capacity of each secondary battery in a charge / discharge cycle test.

Claims (3)

基本組成をLiFePOとするオリビン構造リチウム鉄複合酸化物の粒子に炭素物質微粒子が複合化してなり、
前記炭素物質微粒子の平均粒子径は5nm以上100nm以下であり、
前記炭素物質微粒子の炭素原子と、リチウム原子とのモル比は0.02〜0.2であり、
前記リチウム鉄複合酸化物は、組成式LiFe 1−x PO (MはMn、Mg、Ni、Co、Cu、Zn、Geから選ばれる少なくとも1種;0.02≦x≦0.2)で表されるものであるリチウム二次電池正極活物質用炭素含有リチウム鉄複合酸化物。
Ri the basic composition to the particles of the olivine-type lithium iron composite oxides to LiFePO 4 carbon material particles greens and composite,
The carbon material fine particles have an average particle size of 5 nm to 100 nm,
The carbon material fine particles have a molar ratio of carbon atoms to lithium atoms of 0.02 to 0.2,
The lithium iron composite oxide has a composition formula LiFe 1-x M x PO 4 (M is at least one selected from Mn, Mg, Ni, Co, Cu, Zn, Ge; 0.02 ≦ x ≦ 0.2 A carbon-containing lithium iron composite oxide for a positive electrode active material of a lithium secondary battery, which is represented by :
粒子の平均粒子径は0.2μm以上5μm以下である請求項1に記載のリチウム二次電池正極活物質用炭素含有リチウム鉄複合酸化物。2. The carbon-containing lithium iron composite oxide for a lithium secondary battery positive electrode active material according to claim 1, wherein the average particle size of the particles is 0.2 μm or more and 5 μm or less. 基本組成をLiFePOとするオリビン構造リチウム鉄複合酸化物の粒子に炭素物質微粒子が複合化してなるリチウム二次電池正極活物質用炭素含有リチウム鉄複合酸化物の製造方法であって、
リチウム化合物と、鉄化合物と、リン含有アンモニウム塩と、炭素物質微粒子とを混合して混合物を得る原料混合工程と、
該混合物を600℃以上750℃以下の温度で焼成する焼成工程と、
を含んでなる請求項1に記載のリチウム二次電池正極活物質用炭素含有リチウム鉄複合酸化物の製造方法。
A method of manufacturing a basic composition of LiFePO 4 to olivine structure lithium-iron composite particles in the carbon material particles of oxide is complexed lithium secondary battery positive electrode active material for a carbon-containing lithium-iron composite oxide,
A raw material mixing step of mixing a lithium compound, an iron compound, a phosphorus-containing ammonium salt, and carbon material fine particles to obtain a mixture;
A firing step of firing the mixture at a temperature of 600 ° C. or higher and 750 ° C. or lower;
The manufacturing method of the carbon containing lithium iron complex oxide for lithium secondary battery positive electrode active materials of Claim 1 which comprises this.
JP2002132603A 2001-05-15 2002-05-08 Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same Expired - Fee Related JP4186507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002132603A JP4186507B2 (en) 2001-05-15 2002-05-08 Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-145396 2001-05-15
JP2001145396 2001-05-15
JP2002132603A JP4186507B2 (en) 2001-05-15 2002-05-08 Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003034534A JP2003034534A (en) 2003-02-07
JP4186507B2 true JP4186507B2 (en) 2008-11-26

Family

ID=26615133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132603A Expired - Fee Related JP4186507B2 (en) 2001-05-15 2002-05-08 Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4186507B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4252331B2 (en) * 2003-02-24 2009-04-08 住友大阪セメント株式会社 Method for producing positive electrode active material for lithium ion battery
JP4579588B2 (en) * 2003-06-16 2010-11-10 株式会社豊田中央研究所 Lithium ion secondary battery
JP4641375B2 (en) * 2003-10-20 2011-03-02 日立マクセル株式会社 Method for producing composite of olivine type lithium phosphate and carbon material
WO2005041327A1 (en) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
US8715860B2 (en) 2004-03-03 2014-05-06 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
JP5232353B2 (en) * 2004-10-06 2013-07-10 日本ゼオン株式会社 Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
JP4655721B2 (en) * 2005-03-31 2011-03-23 株式会社日立製作所 Lithium ion secondary battery and positive electrode active material
JP5344452B2 (en) 2005-09-21 2013-11-20 関東電化工業株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte battery having a positive electrode containing the positive electrode active material
JP5098146B2 (en) * 2005-10-14 2012-12-12 株式会社Gsユアサ Method for producing positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
TWI270994B (en) * 2005-12-29 2007-01-11 Ind Tech Res Inst High rate capability design of lithium ion secondary battery
JP5466408B2 (en) * 2006-02-28 2014-04-09 プリメット プレシジョン マテリアルズ, インコーポレイテッド Nanoparticle compositions of lithium-based compounds and methods of forming the nanoparticle compositions
KR100940979B1 (en) 2006-05-08 2010-02-05 주식회사 엘지화학 Method of manufacturing lithium iron phosphate
KR100762798B1 (en) 2006-09-28 2007-10-04 한국전기연구원 Carbon-coated composite material, manufacturing method thereof, positive active material, and lithium secondary battery comprising the same
US8771877B2 (en) 2006-12-28 2014-07-08 Gs Yuasa International Ltd. Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery including the same, and method for producing the same
CN101348243B (en) * 2007-07-20 2011-04-06 上海比亚迪有限公司 Lithium iron phosphate anode active material and preparation thereof
US9991551B2 (en) 2010-02-04 2018-06-05 Gs Yuasa International Ltd. Assembled battery, method of charging an assembled battery, and charging circuit which charges an assembled battery
CN105048012B (en) 2010-02-04 2018-12-18 株式会社杰士汤浅国际 Charging method
DE102010021804A1 (en) * 2010-05-27 2011-12-01 Süd-Chemie AG Composite material containing a mixed lithium metal phosphate
JP5590424B2 (en) * 2010-07-23 2014-09-17 トヨタ自動車株式会社 Lithium ion secondary battery
WO2013005705A1 (en) 2011-07-04 2013-01-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member, lithium ion secondary battery, and production method for said positive electrode material
JP5637102B2 (en) 2011-09-05 2014-12-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP5760871B2 (en) 2011-09-05 2015-08-12 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode material for lithium ion secondary battery
JP5850058B2 (en) 2011-09-28 2016-02-03 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP2013095613A (en) * 2011-10-28 2013-05-20 Toyota Motor Corp CARBON-COATED LiVP2O7 PARTICLE, METHOD FOR PRODUCING THE SAME, AND LITHIUM ION SECONDARY BATTERY
JP5610164B2 (en) * 2012-03-16 2014-10-22 日本ゼオン株式会社 Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
JP6253876B2 (en) 2012-09-28 2017-12-27 日本ケミコン株式会社 Method for producing electrode material
CN113113583A (en) * 2021-03-24 2021-07-13 沈阳国科金能科技有限公司 Preparation method of nano carbon coated composite lithium iron phosphate low-temperature cathode material
CN115432684A (en) * 2022-09-09 2022-12-06 株洲冶炼集团股份有限公司 Method for preparing lithium iron phosphate by sintering in atmosphere rotary kiln

Also Published As

Publication number Publication date
JP2003034534A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
US7025907B2 (en) Carbon-containing lithium-iron composite phosphorus oxide for lithium secondary battery positive electrode active material and process for producing the same
JP4075451B2 (en) Lithium secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
EP0713256B1 (en) Lithium secondary battery and process for preparing negative-electrode active material for use in the same
JP5843766B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
US20120231341A1 (en) Positive active material, and electrode and lithium battery containing the positive active material
CN105280880B (en) Positive electrode for nonaqueous electrolyte secondary battery, and system thereof
JP2003303585A (en) Battery
EP1246290A2 (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2001126733A (en) Nonaqueous electrolytic material
CN112313817A (en) Positive electrode material and secondary battery
KR20090020882A (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
JP4798741B2 (en) Non-aqueous secondary battery
JP3624205B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
JP4788075B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP3140880B2 (en) Lithium secondary battery
JP2002128526A (en) Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2002117845A (en) Lithium iron complex oxide for lithium secondary battery positive electrode active material
JP5189466B2 (en) Lithium secondary battery
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2009129632A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140919

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees