JP2001126733A - Nonaqueous electrolytic material - Google Patents

Nonaqueous electrolytic material

Info

Publication number
JP2001126733A
JP2001126733A JP30613099A JP30613099A JP2001126733A JP 2001126733 A JP2001126733 A JP 2001126733A JP 30613099 A JP30613099 A JP 30613099A JP 30613099 A JP30613099 A JP 30613099A JP 2001126733 A JP2001126733 A JP 2001126733A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
carbon black
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30613099A
Other languages
Japanese (ja)
Other versions
JP4595145B2 (en
Inventor
Kenichi Kawase
賢一 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP30613099A priority Critical patent/JP4595145B2/en
Publication of JP2001126733A publication Critical patent/JP2001126733A/en
Application granted granted Critical
Publication of JP4595145B2 publication Critical patent/JP4595145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superior quick rapid large current and long-term reliability by stabilizing a conducting pass through a positive electrode, so as to reduce the initial internal resistance. SOLUTION: A positive electrode provided with a positive electrode active material layer, a negative electrode and a nonaqueous electrolyte are provided, and the positive electrode active material layer contains, as a conductive material, a mixture of a carbon black with an average particle diameter of 1 nm-100 nm, a dibutyl phthalate absorption of 50 ml/100 g or higher and iodine adsorption of 200 mg/g or less and a graphitization carbon fiber with an average fiber diameter of 0.01 μm-10 μm, an average fiber length of 1 μm-200 μm, a true density of 1.8 g/cm3 or higher and a X-ray diffraction parameter d (002) of 0.345 nm or smaller.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質電池に
関する。
[0001] The present invention relates to a non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術】金属リチウム又はリチウムイオンを吸蔵
・放出可能な炭素材料を負極に用いた非水系二次電池
は、水系のニッケル−カドミウム電池やニッケル−水素
電池と比較して高電圧・高エネルギー密度を有し、近年
盛んに研究が行われている。
2. Description of the Related Art A non-aqueous secondary battery using a carbon material capable of occluding and releasing metallic lithium or lithium ions for a negative electrode has a higher voltage and higher energy than aqueous nickel-cadmium batteries and nickel-hydrogen batteries. It has a high density and has been actively studied in recent years.

【0003】負極の炭素材料に関しては、ハードカーボ
ンのようなガラス状炭素系材料が検討されており、40
0mAh/gを越える放電容量やOCV曲線が緩やかな
傾きを保持していることからの容量検知性の良さ、ある
いはプロピレンカーボネート等のハンドリングの良い電
解液に対する耐性等により検討が進んでおり、リチウム
イオン二次電池の負極材料として採用されている。
With respect to the carbon material for the negative electrode, glassy carbon-based materials such as hard carbon have been studied.
Investigations are progressing on the basis of the discharge capacity exceeding 0 mAh / g, the good capacity detectability due to the OCV curve maintaining a gradual slope, and the resistance to an easily handled electrolyte such as propylene carbonate. It is used as a negative electrode material for secondary batteries.

【0004】一方、天然黒鉛や人造黒鉛も、理論容量は
グラファイトのステージ構造に起因する372mAh/
gが上限であるが、初期充放電での容量ロスが少ないこ
とや、電極作製時のプレス密度が高く充填性が良いこと
などから、リチウムイオン電池の負極活物質として導入
されている。現在、実用化されているリチウム二次電池
の正極活物質にはCo,Ni,Mn等の金属酸化物が主
に用いられており、これらの層状化合物も電気化学的に
リチウムイオンを吸蔵・放出することが可能である。
On the other hand, natural graphite and artificial graphite also have a theoretical capacity of 372 mAh / s due to the graphite stage structure.
Although g is the upper limit, it has been introduced as a negative electrode active material for a lithium ion battery because of its small capacity loss during initial charge and discharge and its high press density during electrode preparation and good filling properties. At present, metal oxides such as Co, Ni, and Mn are mainly used as a positive electrode active material of a lithium secondary battery that is in practical use, and these layered compounds also electrochemically occlude and release lithium ions. It is possible to

【0005】[0005]

【発明が解決しようとする課題】リチウム二次電池は、
上述したように、高容量・高電圧の特徴から、各種携帯
機器用電源として広く実用化されている。また、最近で
は、リチウム二次電池に対する要望が小型携帯機器用の
他にも、エンジンスターター、電気自動車、ロードレベ
リング或いは航空・宇宙用途等の領域まで広がってい
る。これらの分野では、特に、急速充電特性及び長期寿
命特性が要求される。
SUMMARY OF THE INVENTION A lithium secondary battery is
As described above, due to its high capacity and high voltage, it has been widely used as a power source for various portable devices. Recently, demands for lithium secondary batteries have been spreading to fields such as engine starters, electric vehicles, road leveling, and aerospace applications in addition to small portable devices. In these fields, fast charging characteristics and long-term life characteristics are particularly required.

【0006】しかしながら、リチウム二次電池の場合、
電解液に非水系溶媒を用いていることから、一般的に水
系のニッケル−カドミウム電池やニッケル−水素電池と
比較して内部抵抗が高い。このことから、非水系二次電
池のさらなる初期内部抵抗の低減及びサイクル特性の寿
命改善が求められている。
However, in the case of a lithium secondary battery,
Since a non-aqueous solvent is used for the electrolyte, the internal resistance is generally higher than that of an aqueous nickel-cadmium battery or nickel-hydrogen battery. For this reason, further reduction in the initial internal resistance of the non-aqueous secondary battery and improvement in the life of the cycle characteristics are required.

【0007】特に正極活物質として用いられているLi
Mn24等の金属酸化物は、負極のカーボン材と比較し
て体積抵抗率が高く、急速充放電に際しては、活物質の
利用率を高めるため、適切な導電補助剤の添加が必要で
ある。また、充放電の際に、リチウムイオンのドープ・
脱ドープに伴い、活物質粒子の膨張収縮が起こり、これ
により電池作成初期での合剤中での導電パスが長期間の
使用に伴い変化し、サイクル特性・負荷特性の低下をも
たらす。よって、正極中には、高導電性であり、長期の
充放電使用に対して安定した導電パスを形成させる必要
がある。
Particularly, Li used as a positive electrode active material
Metal oxides such as Mn 2 O 4 have a higher volume resistivity than the carbon material of the negative electrode, and at the time of rapid charge / discharge, it is necessary to add an appropriate conductive auxiliary agent in order to increase the utilization rate of the active material. is there. In addition, during charging and discharging, doping of lithium ions
With the undoping, expansion and contraction of the active material particles occur, whereby the conductive path in the mixture at the initial stage of battery production changes with long-term use, resulting in deterioration in cycle characteristics and load characteristics. Therefore, it is necessary to form a conductive path that is highly conductive and stable for long-term charge / discharge use in the positive electrode.

【0008】本発明はこのような従来の実情に鑑みて提
案されたものであり、正極中の導電パスを安定なものと
し、これにより初期内部抵抗を低減させ、急速大電流充
放電及び長期信頼性に優れた非水電解質電池を提供する
ことを目的とする。
The present invention has been proposed in view of such a conventional situation, and makes the conductive path in the positive electrode stable, thereby reducing the initial internal resistance, rapid charging and discharging of large current, and long-term reliability. An object of the present invention is to provide a non-aqueous electrolyte battery having excellent performance.

【0009】[0009]

【課題を解決するための手段】本発明の非水電解質電池
は、正極活物質と導電材とを含有する正極活物質層を備
えた正極と、負極活物質を有する負極と、上記正極と上
記負極との間に介在された非水電解質とを備え、上記正
極活物質層は、上記導電材として、平均粒子径が1nm
〜100nm、ジブチルフタレート吸油量が50ml/
100g以上、ヨウ素吸着量が2000mg/g以下の
カーボンブラックと、平均繊維径が0.01μm〜10
μm、平均繊維長が1μm〜200μm、真密度が1.
8g/cm3以上、X線回折パラメータd(002)が
0.345nm以下の黒鉛化カーボンファイバーとの混
合物を含有することを特徴とする。
According to the present invention, there is provided a non-aqueous electrolyte battery comprising: a positive electrode having a positive electrode active material layer containing a positive electrode active material and a conductive material; a negative electrode having a negative electrode active material; And a non-aqueous electrolyte interposed between the negative electrode and the positive electrode active material layer, wherein the conductive material has an average particle diameter of 1 nm.
-100 nm, oil absorption of dibutyl phthalate is 50 ml /
100 g or more, carbon black having an iodine adsorption amount of 2000 mg / g or less, and an average fiber diameter of 0.01 μm to 10
μm, average fiber length is 1 μm to 200 μm, and true density is 1.
It is characterized by containing a mixture with a graphitized carbon fiber having an X-ray diffraction parameter d (002) of not less than 8 g / cm 3 and not more than 0.345 nm.

【0010】上述したような本発明に係る非水電解質電
池では、正極活物質層中にカーボンブラックと黒鉛化カ
ーボンファイバーとの混合物を含有しているので、正極
活物質層中の微視的部分への導電パスが安定に形成され
る。その結果、本発明の非水電解質電池は、高サイクル
特性、高寿命の急速大電流充電性を有するものとなる。
[0010] In the nonaqueous electrolyte battery according to the present invention as described above, the mixture of carbon black and graphitized carbon fibers is contained in the positive electrode active material layer. Is formed stably. As a result, the non-aqueous electrolyte battery of the present invention has high cycle characteristics, long life, and rapid high-current chargeability.

【0011】さらに、本発明の非水電解質電池は、正極
活物質層中に、真密度が1.9g/cm3以上、X線回
折パラメータd(002)が0.340nm以下、平均
粒径0.5μm〜50μmの鱗片状の天然黒鉛又は人造
黒鉛を含有していることが好ましい。
Further, in the non-aqueous electrolyte battery of the present invention, the true density is 1.9 g / cm 3 or more, the X-ray diffraction parameter d (002) is 0.340 nm or less, and the average particle size is 0 in the positive electrode active material layer. It preferably contains flake-like natural graphite or artificial graphite having a size of 0.5 μm to 50 μm.

【0012】[0012]

【発明の実施の形態】本発明を適用した非水電解液電池
の一構成例を図1に示す。この非水電解液電池1は、負
極2と、負極2を収容する負極缶3と、正極4と、正極
4を収容する正極缶5と、正極4と負極2との間に配さ
れたセパレータ6と、絶縁ガスケット7とを備え、負極
缶3及び正極缶5内に非水電解液が充填されてなる。
FIG. 1 shows an example of the configuration of a nonaqueous electrolyte battery according to the present invention. The nonaqueous electrolyte battery 1 includes a negative electrode 2, a negative electrode can 3 containing the negative electrode 2, a positive electrode 4, a positive electrode can 5 containing the positive electrode 4, and a separator disposed between the positive electrode 4 and the negative electrode 2. 6 and an insulating gasket 7. The negative electrode can 3 and the positive electrode can 5 are filled with a non-aqueous electrolyte.

【0013】負極2は、負極活物質となる例えば金属リ
チウム箔からなる。また、負極活物質として、リチウム
をドープ、脱ドープ可能な材料を用いる場合には、負極
2は、負極集電体上に、上記負極活物質を含有する負極
活物質層が形成されてなる。負極集電体としては、例え
ばニッケル箔等が用いられる。
The negative electrode 2 is made of, for example, a metal lithium foil serving as a negative electrode active material. When a material that can be doped and dedoped with lithium is used as the negative electrode active material, the negative electrode 2 is formed by forming a negative electrode active material layer containing the negative electrode active material on a negative electrode current collector. As the negative electrode current collector, for example, a nickel foil or the like is used.

【0014】本発明に用いられる負極活物質としては、
炭素材料及び金属リチウム及びリチウム合金が用いられ
る。炭素材料としては、リチウムをドープ・脱ドープす
ることが可能なものであればよく、2000℃以下の比
較的低い温度で焼成して得られる低結晶性炭素材料や、
結晶化しやすい原料を3000℃近くの高温で処理した
人造黒鉛や天然黒鉛等の高結晶性材料が得られる。例え
ば、熱分解炭素類、コークス類、黒鉛類、ガラス状炭素
類、有機高分子化合物焼成体、炭素繊維、活性炭などが
使用可能である。
The negative electrode active material used in the present invention includes:
Carbon materials and metallic lithium and lithium alloys are used. As the carbon material, any material capable of doping and undoping lithium may be used, and a low-crystalline carbon material obtained by firing at a relatively low temperature of 2000 ° C. or lower,
A highly crystalline material such as artificial graphite or natural graphite obtained by processing a material that is easily crystallized at a high temperature of about 3000 ° C. can be obtained. For example, pyrolytic carbons, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and the like can be used.

【0015】負極缶3は、負極2を収容するものであ
り、また、非水電解液電池1の外部負極となる。
The negative electrode can 3 houses the negative electrode 2 and serves as an external negative electrode of the nonaqueous electrolyte battery 1.

【0016】正極4は、正極集電体上に、正極活物質を
含有する正極活物質層が形成されてなる。正極集電体と
しては、例えばアルミニウム箔等が用いられる。
The positive electrode 4 is formed by forming a positive electrode active material layer containing a positive electrode active material on a positive electrode current collector. As the positive electrode current collector, for example, an aluminum foil or the like is used.

【0017】本発明に使用される正極活物質としては、
LixMO2(但し、Mは1種類以上の遷移金属を表
す。)で表されるリチウム遷移金属複合酸化物等が挙げ
られ、中でもLiCoO2、LiNiO2、LiMn24
等が好ましい。このようなリチウム遷移金属複合酸化物
は、例えばリチウム、コバルト、ニッケル、マンガンの
炭酸塩、硝酸塩、酸化物、水酸化物等を出発原料とし、
これらを組成に応じた量で混合し、600℃〜1000
℃の温度範囲で焼成することにより得られる。但し、本
発明は上記の正極活物質に限定されるものではなく、例
えばポリアニリン、ポリピロール、ポリチオフェン等の
導電性ポリマーやジスルフィド系化合物等の有機系正極
活物質にも応用できる。
The positive electrode active material used in the present invention includes:
Li x MO 2 (where, M represents. One or more transition metals) include lithium transition metal composite oxides represented by, among others LiCoO 2, LiNiO 2, LiMn 2 O 4
Are preferred. Such lithium transition metal composite oxide, for example, lithium, cobalt, nickel, manganese carbonate, nitrate, oxide, hydroxide and the like starting material,
These are mixed in an amount according to the composition, and
It is obtained by firing in a temperature range of ° C. However, the present invention is not limited to the above-described positive electrode active material, and can be applied to a conductive polymer such as polyaniline, polypyrrole, and polythiophene, and an organic positive electrode active material such as a disulfide compound.

【0018】正極活物質層に含有される結合剤として
は、この種の非水電解液電池の正極活物質層の結合剤と
して通常用いられている公知の樹脂材料等を用いること
ができる。
As the binder contained in the positive electrode active material layer, a known resin material or the like which is usually used as a binder for the positive electrode active material layer of this type of nonaqueous electrolyte battery can be used.

【0019】ここで、後述するように、本発明の非水電
解液電池1では、正極活物質層中に、カーボンブラック
と黒鉛化カーボンファイバーとの混合物を少なくとも含
有している。
Here, as will be described later, in the nonaqueous electrolyte battery 1 of the present invention, the cathode active material layer contains at least a mixture of carbon black and graphitized carbon fibers.

【0020】正極缶5は、正極4を収容するものであ
り、また、非水電解液電池1の外部正極となる。
The positive electrode can 5 houses the positive electrode 4 and serves as an external positive electrode of the nonaqueous electrolyte battery 1.

【0021】セパレータ6は、正極4と、負極2とを離
間させるものであり、この種の非水電解液電池のセパレ
ータとして通常用いられている公知の材料を用いること
ができ、例えばポリプロピレンなどの高分子フィルムが
用いられる。また、リチウムイオン伝導度とエネルギー
密度との関係から、セパレータの厚みはできるだけ薄い
ことが必要である。具体的には、セパレータの厚みは例
えば50μm以下が適当である。
The separator 6 separates the positive electrode 4 and the negative electrode 2 from each other, and can be made of a known material usually used as a separator of this type of non-aqueous electrolyte battery. A polymer film is used. Also, from the relationship between lithium ion conductivity and energy density, it is necessary that the thickness of the separator be as small as possible. Specifically, the thickness of the separator is suitably, for example, 50 μm or less.

【0022】絶縁ガスケット7は、負極缶3に組み込ま
れ一体化されている。この絶縁ガスケット7は、負極缶
3及び正極缶5内に充填された非水電解液の漏出を防止
するためのものである。
The insulating gasket 7 is integrated into the negative electrode can 3. The insulating gasket 7 is for preventing the leakage of the nonaqueous electrolyte filled in the negative electrode can 3 and the positive electrode can 5.

【0023】非水電解液としては、非プロトン性非水溶
媒に電解質を溶解させた溶液が用いられる。
As the non-aqueous electrolyte, a solution in which an electrolyte is dissolved in an aprotic non-aqueous solvent is used.

【0024】有機溶媒としては、特に限定されるもので
はないが、例えばエチレンカーボネート、プロピレンカ
ーボネート等の環状カーボネート、ジメチルカーボネー
ト、ジエチルカーボネート等の鎖状カーボネート、γ−
ブチロラクトン等の環状エステル、酢酸エチル、プロピ
オン酸メチル等の鎖状エステル、テトラヒドロフラン、
1,2−ジメトキシエタン等のエーテル類等を挙げるこ
とができる。また、このような非水溶媒は、1種類を単
独で用いてもよいし、2種類以上を混合して用いてもよ
い。
The organic solvent is not particularly limited. For example, cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate and diethyl carbonate, and γ-
Cyclic esters such as butyrolactone, ethyl acetate, chain esters such as methyl propionate, tetrahydrofuran,
Ethers such as 1,2-dimethoxyethane can be exemplified. In addition, such a non-aqueous solvent may be used alone or as a mixture of two or more.

【0025】また、非水溶媒に溶解させる電解質として
は、例えば、LiPF6、LiClO4、LiAsF6
LiBF4、LiCF3SO3、LiN(CF3SO22
LiC(CF3SO23等のリチウム塩を使用すること
ができる。これらのリチウム塩の中でも、LiPF6
LiBF4を使用することが好ましい。
The electrolyte to be dissolved in the non-aqueous solvent is, for example, LiPF 6 , LiClO 4 , LiAsF 6 ,
LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 ,
Lithium salts such as LiC (CF 3 SO 2 ) 3 can be used. Among these lithium salts, LiPF 6 ,
Preferably, LiBF 4 is used.

【0026】そして、本発明の非水電解液電池1では、
正極活物質層中に、カーボンブラックと黒鉛化カーボン
ファイバーとの混合物を少なくとも含有している。
In the non-aqueous electrolyte battery 1 of the present invention,
The positive electrode active material layer contains at least a mixture of carbon black and graphitized carbon fibers.

【0027】電池の内部抵抗の低減の一つとして、電極
合剤中に導電材を添加し、電極合剤の電子伝導性を向上
させ放電・充電初期のIRドロップを低減させることが
考えられる。しかし、実際の導電材の効果はそれだけで
はなく、活物質粒子の反応面積を向上させて、活性化分
極を抑え、反応抵抗を低減させる効果や、合剤中に適量
の電解液を保持させる効果もある。これまで検討されて
いる代表的な導電材としてカーボンブラックを挙げるこ
とができる。
One of the ways to reduce the internal resistance of the battery is to add a conductive material to the electrode mixture to improve the electron conductivity of the electrode mixture and reduce the IR drop at the beginning of discharge / charge. However, the effect of the conductive material is not only that, but also the effect of improving the reaction area of the active material particles, suppressing the activation polarization and reducing the reaction resistance, and the effect of holding an appropriate amount of electrolyte in the mixture. There is also. As a representative conductive material studied so far, carbon black can be cited.

【0028】カーボンブラックは2次元的ストラクチャ
ーを形成するため、その鎖状粒子により電子伝導性を保
持すると言われており、粒径はナノオーダーの微粒子で
あることから、活物質表面の微視的な導電効果がある。
しかしながら、粒子接触又はトンネル効果での電子伝導
には限界があり、巨視的に電極合剤として見た場合、大
電流放電には単独では不向きである。
Since carbon black forms a two-dimensional structure, it is said that it retains electron conductivity by its chain-like particles. There is a large conductive effect.
However, there is a limit in electron conduction by particle contact or tunnel effect, and when viewed macroscopically as an electrode mixture, it is not suitable alone for large current discharge.

【0029】また、鱗片状の天然黒鉛及び人造黒鉛粉末
は良好な体積抵抗率を有し、活物質及びバインダー中で
構成される電極合剤中に、これらの黒鉛粉を添加すれば
するほど電極合剤自体の体積抵抗率は低下する。
Further, flaky natural graphite and artificial graphite powder have good volume resistivity, and the more the graphite powder is added to the electrode mixture composed of the active material and the binder, the more the electrode powder becomes. The volume resistivity of the mixture itself decreases.

【0030】しかしながら、活物質表面への微視的な導
電パスの形成が不可能なこと、電解液の保持性が低いこ
と、合剤中での分散性が悪いこと、正極合剤スラリーの
塗布方法によっては電極内で配向しやすいこと、長期サ
イクルに伴い活物質との接触点が変化する等の問題点が
存在する。
However, it is impossible to form a microscopic conductive path on the surface of the active material, the retention of the electrolyte is low, the dispersibility in the mixture is poor, and the application of the cathode mixture slurry Depending on the method, there are problems such as easy orientation in the electrode and change of the contact point with the active material with a long cycle.

【0031】これに対し、気相成長法炭素やメソフェー
ズピッチを紡糸したカーボンファイバーを2000℃以
上で黒鉛化したカーボンファイバーは鱗片状天然・人造
黒鉛には劣るものの一般に高導電性を有し、その他高弾
性や耐熱酸化性、低吸収性、高強度等の特性を有する。
これらのカーボンファイバーを正極中に添加させること
により、電極内の電子伝導性を良好にするだけでなく、
長期充放電でも合剤中の導電パスが保たれる。また、天
然・人造黒鉛を同量正極中へ添加したものに比べ電解液
の保液率も向上する。しかしながら、上記カーボンファ
イバー単独でも合剤中の微視的部分への導電パスが不十
分である。
On the other hand, carbon fibers obtained by graphitizing carbon fibers spun from vapor-grown carbon or mesophase pitch at 2,000 ° C. or higher generally have high conductivity, although inferior to flaky natural or artificial graphite. It has properties such as high elasticity, thermal oxidation resistance, low absorption and high strength.
By adding these carbon fibers to the positive electrode, not only can the electron conductivity in the electrode be improved,
The conductive path in the mixture is maintained even during long-term charging and discharging. In addition, the retention rate of the electrolytic solution is improved as compared with the case where the same amount of natural and artificial graphite is added to the positive electrode. However, the conductive path to the microscopic portion in the mixture is insufficient even with the carbon fiber alone.

【0032】そこで、鋭意検討の結果、本発明者は、導
電材としてカーボンブラックと黒鉛化カーボンファイバ
ーの混合物を活物質と複合化させることにより、正極活
物質層中の微視的部分への導電パスを安定に形成するこ
とができることを見出した。そして、これにより高サイ
クル特性、高寿命の大電流急速充電可能な、優れた正極
及びそれを使用した非水電解質電池を実現することが可
能となる。
Therefore, as a result of intensive studies, the present inventor has found that a mixture of carbon black and graphitized carbon fiber as a conductive material is compounded with an active material to provide a conductive material to a microscopic portion in a positive electrode active material layer. It has been found that a path can be formed stably. As a result, it is possible to realize an excellent positive electrode having a high cycle characteristic, a long life and a large current rapid charge, and a nonaqueous electrolyte battery using the same.

【0033】ここで、上記カーボンブラックの性状は、
平均粒子径が1nm〜100nmであり、DBP(ジブ
チルフタレート)吸油量が50ml/100g以上であ
り、さらに、ヨウ素吸着量が2000mg/g以下であ
る。
Here, the properties of the carbon black are as follows:
The average particle diameter is 1 nm to 100 nm, the DBP (dibutyl phthalate) oil absorption is 50 ml / 100 g or more, and the iodine adsorption is 2000 mg / g or less.

【0034】カーボンブラックは結晶子サイズの大きな
カーボンと比較すると嵩高く、電解液を多量に吸収す
る。よって、平均粒子径が1nm未満のカーボンブラッ
クでは嵩高さが増加し、電極の密度が低下しセルの容量
が減少することや、導電性能が低下してしまうため好ま
しくない。また、平均粒子径が1nm未満のカーボンブ
ラックでは、活物質や結合材等と混合しN−メチルピロ
リドンを使用して正極合剤スラリーを作製する際、粘度
が高くなり集電体への塗布が困難となる。また、平均粒
子径が100nmを越えるカーボンブラックでは、電極
内の微視的な導電パスの作製能力が低下し、サイクル特
性が低下してしまう。したがって、平均粒子径が1nm
〜100nmのカーボンブラックを使用することが必要
である。
Carbon black is bulky as compared with carbon having a large crystallite size, and absorbs a large amount of electrolyte. Therefore, carbon black having an average particle diameter of less than 1 nm is not preferable because the bulkiness increases, the density of the electrode decreases, the capacity of the cell decreases, and the conductive performance decreases. When carbon black having an average particle diameter of less than 1 nm is mixed with an active material or a binder and used to prepare a positive electrode mixture slurry using N-methylpyrrolidone, the viscosity becomes high, and application to a current collector becomes difficult. It will be difficult. On the other hand, in the case of carbon black having an average particle diameter of more than 100 nm, the ability to produce microscopic conductive paths in the electrode is reduced, and the cycle characteristics are reduced. Therefore, the average particle diameter is 1 nm.
It is necessary to use ~ 100 nm carbon black.

【0035】また、カーボンブラックのDBP吸油量
は、アブソーブメータを用いて、カーボンブラックにD
BPを添加したときの、最大トルクの70%から求めた
100g当たりのDBP吸油量であり、この値はカーボ
ンストラクチャーの形成レベルの指標となる。この値が
50ml/100g未満では、連続的なストラクチャー
が少なく、導電性能が不十分である。従って、カーボン
ブラックのDBP吸油量は、少なくとも50ml/10
0g以上であることが必要である。
Further, the DBP oil absorption of carbon black was measured by using an absorption meter to calculate the D
This is the DBP oil absorption per 100 g calculated from 70% of the maximum torque when BP is added, and this value is an index of the carbon structure formation level. If this value is less than 50 ml / 100 g, the continuous structure is small and the conductive performance is insufficient. Therefore, the DBP oil absorption of carbon black is at least 50 ml / 10
It is necessary to be 0 g or more.

【0036】また、ヨウ素吸着量は比表面積を表し、こ
れが2000mg/gを越える場合には正極合剤中に加
えた場合、合剤スラリーの性状が悪化し、集電体への塗
布が困難となる。
The iodine adsorption amount indicates a specific surface area. If the iodine adsorption amount exceeds 2000 mg / g, the properties of the mixture slurry deteriorate when added to the positive electrode mixture, and it is difficult to apply the mixture to the current collector. Become.

【0037】一方、上記黒鉛化カーボンファイバーの性
状は、平均繊維径が0.01μm〜10μmであり、平
均繊維長が1μm〜200μmであり、真密度が1.8
g/cm3以上であり、X線回折パラメータd(00
2)が0.345nm以下である。
On the other hand, the properties of the graphitized carbon fiber are such that the average fiber diameter is 0.01 μm to 10 μm, the average fiber length is 1 μm to 200 μm, and the true density is 1.8.
g / cm 3 or more, and the X-ray diffraction parameter d (00
2) is 0.345 nm or less.

【0038】黒鉛化カーボンファイバーの繊維径が0.
01μm未満では、強度が弱く、電極プレス時に割れや
裁断等の構造破壊が起きる。また、繊維径が10μmを
越えると、活物質との接触面積が減少し電極に十分な導
電性能を与えられない。また、黒鉛化カーボンファイバ
ーの繊維長が1μm未満では、活物質間の導電性を保つ
ことができない。また、繊維長が200μmを越える場
合には、嵩高くなり電極の密度が低下してしまう。従っ
て、平均繊維径が0.01μm〜10μmであり、平均
繊維長が1μm〜200μmであるような黒鉛化カーボ
ンファイバーを用いることが必要である。
The graphitized carbon fiber has a fiber diameter of 0.1.
If it is less than 01 μm, the strength is weak, and structural destruction such as cracking or cutting occurs during electrode pressing. On the other hand, if the fiber diameter exceeds 10 μm, the contact area with the active material decreases, and the electrode cannot be provided with sufficient conductive performance. If the fiber length of the graphitized carbon fiber is less than 1 μm, the conductivity between the active materials cannot be maintained. On the other hand, if the fiber length exceeds 200 μm, the fiber becomes bulky and the density of the electrode decreases. Therefore, it is necessary to use a graphitized carbon fiber having an average fiber diameter of 0.01 μm to 10 μm and an average fiber length of 1 μm to 200 μm.

【0039】また、真密度が1.8g/cm3未満、X
線回折パラメータd(002)が0.345nmを越え
る黒鉛化カーボンファイバーでは、十分に黒鉛構造が発
達しておらず、電子伝導性が低いために電極に十分な導
電性を寄与できない。従って、真密度が1.8g/cm
3以上であり、X線回折パラメータd(002)が0.
345nm以下であるような黒鉛化カーボンファイバー
を用いることが必要である。
The true density is less than 1.8 g / cm 3 ,
Graphitized carbon fibers having a line diffraction parameter d (002) exceeding 0.345 nm do not sufficiently develop a graphite structure and have low electron conductivity, so that sufficient conductivity cannot be contributed to the electrode. Therefore, the true density is 1.8 g / cm
3 or more, and the X-ray diffraction parameter d (002) is
It is necessary to use a graphitized carbon fiber having a size of 345 nm or less.

【0040】そして、非水電解質電池1は、上記カーボ
ンブラックと上記カーボンファイバーとを、合計で正極
活物質層全体の0.5重量%〜20重量%の割合で含有
していることが好ましい。
The non-aqueous electrolyte battery 1 preferably contains the carbon black and the carbon fibers in a total amount of 0.5% by weight to 20% by weight of the whole positive electrode active material layer.

【0041】上記カーボンブラックと上記カーボンファ
イバーとの合計割合が0.5重量%未満の場合には、活
物質粒子に十分な電子伝導性を与えられず、放電初期の
IRドロップが大きいため、放電電圧の低下及び負荷特
性の悪化を引き起こしてしまう。また、電極コーティン
グ時に電極材料をスラリー状にする必要があり、微粉カ
ーボン材の量が20重量%を越えるとスラリー性状が悪
くなる。また、カーボン材の活物質に対する割合は電池
容量を低下させるため、上記カーボンブラックと上記カ
ーボンファイバーとの合計割合が20重量%を越える
と、負荷特性が向上しても放電容量の絶対値が低下して
しまう。
If the total proportion of the carbon black and the carbon fiber is less than 0.5% by weight, sufficient electron conductivity cannot be given to the active material particles, and the IR drop at the beginning of discharge is large. This causes a reduction in voltage and a deterioration in load characteristics. In addition, it is necessary to make the electrode material into a slurry at the time of electrode coating. If the amount of the fine carbon material exceeds 20% by weight, the slurry properties deteriorate. Further, since the ratio of the carbon material to the active material lowers the battery capacity, if the total ratio of the carbon black and the carbon fiber exceeds 20% by weight, the absolute value of the discharge capacity decreases even if the load characteristics are improved. Resulting in.

【0042】さらに、本発明にかかる非水電解質電池1
は、正極活物質層中に上記のカーボンブラック、黒鉛化
カーボンファイバーに加えて第3のカーボン材料として
鱗片状の天然黒鉛又は人造黒鉛粉末を含有していること
が好ましい。鱗片状の天然黒鉛又は人造黒鉛粉末は良好
な体積抵抗率を有し、正極活物質及び結合材で構成され
る正極合剤中に、これらの黒鉛粉を添加すればするほど
正極合剤自体の体積抵抗率は低下する。これにより非水
電解質電池1は大電流放電使用時にさらに高性能を示す
ものとなる。
Further, the non-aqueous electrolyte battery 1 according to the present invention
Preferably, the positive electrode active material layer contains flaky natural graphite or artificial graphite powder as the third carbon material in addition to the carbon black and the graphitized carbon fiber. Scaly natural graphite or artificial graphite powder has a good volume resistivity, and in the positive electrode mixture composed of the positive electrode active material and the binder, the more these graphite powders are added, the more the positive electrode mixture itself Volume resistivity decreases. Thus, the nonaqueous electrolyte battery 1 exhibits higher performance when using a large current discharge.

【0043】上記鱗片状の天然黒鉛又は人造黒鉛の性状
は、真密度が1.9g/cm3以上であり、X線回折パ
ラメータd(002)が0.340nm以下であり、平
均粒径が0.5μm〜50μmである。
The properties of the above-mentioned scaly natural graphite or artificial graphite have a true density of 1.9 g / cm 3 or more, an X-ray diffraction parameter d (002) of 0.340 nm or less, and an average particle size of 0 or less. 0.5 μm to 50 μm.

【0044】真密度が1.9g/cm3未満であり、d
(002)が0.340nm以上を越えるような鱗片状
の天然黒鉛又は人造黒鉛は、黒鉛化度が低いため導電性
が悪く、電極に十分な導電性を与えられない。従って、
真密度が1.9g/cm3以上であり、X線回折パラメ
ータd(002)が0.340nm以下であるような鱗
片状の天然黒鉛又は人造黒鉛を用いることが必要とな
る。
The true density is less than 1.9 g / cm 3 , d
Scaly natural graphite or artificial graphite in which (002) exceeds 0.340 nm or more has a low degree of graphitization and thus has poor conductivity, and does not provide sufficient conductivity to the electrode. Therefore,
It is necessary to use flaky natural graphite or artificial graphite having a true density of 1.9 g / cm 3 or more and an X-ray diffraction parameter d (002) of 0.340 nm or less.

【0045】そして、正極活物質層中にカーボンブラッ
ク、黒鉛化カーボンファイバーに加えて鱗片状の天然黒
鉛又は人造黒鉛粉末を含有する場合にも、それらの合計
割合は、正極活物質層全体の0.5重量%〜20重量%
の範囲であることが好ましい。
When the positive electrode active material layer contains flaky natural graphite or artificial graphite powder in addition to carbon black and graphitized carbon fiber, the total ratio thereof is 0% of the whole positive electrode active material layer. 0.5% to 20% by weight
Is preferably within the range.

【0046】なお、上述した実施の形態では、非水電解
液を用いた非水電解液電池を例に挙げて説明したが、本
発明はこれに限定されるものではなく、導電性高分子化
合物の単体あるいは混合物を含有する高分子固体電解質
を用いた固体電解質電池や、膨潤溶媒を含有するゲル状
の固体電解質を用いたゲル状電解質電池についても適用
可能である。
In the above-described embodiment, a non-aqueous electrolyte battery using a non-aqueous electrolyte has been described as an example. However, the present invention is not limited to this. The present invention is also applicable to a solid electrolyte battery using a polymer solid electrolyte containing a simple substance or a mixture thereof, and a gel electrolyte battery using a gel solid electrolyte containing a swelling solvent.

【0047】上記の高分子固体電解質やゲル状電解質に
含有される導電性高分子化合物として具体的には、シリ
コン、アクリル、アクリロニトリル、ポリフォスファゼ
ン変性ポリマ、ポリエチレンオキサイド、ポリプロピレ
ンオキサイド、フッ素系ポリマ又はこれらの化合物の複
合ポリマや架橋ポリマ、変性ポリマ等が挙げられる。上
記フッ素系ポリマとしては、ポリ(ビニリデンフルオラ
イド)、ポリ(ビニリデンフルオライド−co−ヘキサ
フルオロプロピレン)、ポリ(ビニリデンフルオライド
−co−テトラフルオロエチレン)、ポリ(ビニリデン
フルオライド−co−トリフルオリエチレン)等が挙げ
られる。
Specific examples of the conductive polymer compound contained in the polymer solid electrolyte or the gel electrolyte include silicon, acryl, acrylonitrile, polyphosphazene-modified polymer, polyethylene oxide, polypropylene oxide, fluorine-based polymer, Examples thereof include a composite polymer, a crosslinked polymer, and a modified polymer of these compounds. Examples of the fluorine-based polymer include poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), poly (vinylidene fluoride-co-tetrafluoroethylene), and poly (vinylidene fluoride-co-trifluorethylene). ) And the like.

【0048】また、上述した実施の形態では、二次電池
を例に挙げて説明したが、本発明はこれに限定されるも
のではなく、一次電池についても適用可能である。ま
た、本発明の電池は、円筒型、角型、コイン型、ボタン
型等、その形状については特に限定されることはなく、
また、薄型、大型等の種々の大きさにすることができ
る。
Further, in the above-described embodiment, a description has been given by taking a secondary battery as an example. However, the present invention is not limited to this, and can be applied to a primary battery. In addition, the battery of the present invention has a cylindrical shape, a square shape, a coin shape, a button shape, and the like, and its shape is not particularly limited,
In addition, various sizes such as a thin type and a large size can be used.

【0049】[0049]

【実施例】本発明の効果を確認すべく、上述したような
構成のコイン型電池を作製し、その特性を評価した。
EXAMPLES In order to confirm the effects of the present invention, a coin-type battery having the above-described configuration was manufactured and its characteristics were evaluated.

【0050】〈サンプル電池の作製〉まず、正極活物質
として、スピネル構造を持つ平均粒径30μm、比表面
積2.4m2/gのLiMn24粉末を85gと、結着
材としてポリフッ化ビニリデンを5gと、導電材とし
て、カーボンブラック(A)と黒鉛化カーボンファイバ
ー(B)と鱗片状人造黒鉛(C)とを表1又は表2に示
す重量比で混合した混合炭素材料を10gとを、撹拌羽
根付き金属カップ中で約1時間混合させ、その後、適量
のN−メチルピロリドンを添加しさらに1時間撹拌する
ことによりスラリー状の正極合剤を得た。
<Preparation of Sample Battery> First, 85 g of LiMn 2 O 4 powder having an average particle diameter of 30 μm having a spinel structure and a specific surface area of 2.4 m 2 / g were used as a positive electrode active material, and polyvinylidene fluoride was used as a binder. And 10 g of a mixed carbon material obtained by mixing carbon black (A), graphitized carbon fiber (B), and flaky artificial graphite (C) at a weight ratio shown in Table 1 or Table 2 as a conductive material. The mixture was mixed in a metal cup with stirring blades for about 1 hour, and then an appropriate amount of N-methylpyrrolidone was added and stirred for 1 hour to obtain a slurry-like positive electrode mixture.

【0051】ここで、上記カーボンブラック(A)は、
平均粒径が30nmであり、比表面積が900cm2
gである。また、黒鉛化カーボンファイバー(B)は、
繊維径が150nmであり、平均繊維長が20μmであ
り、真密度が2.0である。また、鱗片状人造黒鉛
(C)は、平均粒径が6μmであり、比表面積が15m
2/gであり、d(002)が0.3356nmであ
り、Lcが100nmよりも大きく、真密度が2.26
g/cm3である。
Here, the carbon black (A) is
The average particle size is 30 nm and the specific surface area is 900 cm 2 /
g. Graphitized carbon fiber (B)
The fiber diameter is 150 nm, the average fiber length is 20 μm, and the true density is 2.0. The flaky artificial graphite (C) has an average particle size of 6 μm and a specific surface area of 15 m.
2 / g, d (002) is 0.3356 nm, Lc is greater than 100 nm, and the true density is 2.26.
g / cm 3 .

【0052】次に、得られた正極合剤をガラス板状に塗
布し、130℃、5時間、真空中に放置・乾燥させ、こ
れを掻き取り、自動乳鉢により粉末状とし、錠剤形成器
に導入して直径15mmの正極ペレットを作成した。な
お、正極合剤組成粉末に対し、このとき錠剤形成プレッ
シャーは2トン/cm2で一定とした。
Next, the obtained positive electrode mixture was applied to a glass plate, left in a vacuum at 130 ° C. for 5 hours and dried, scraped off, powdered with an automatic mortar, and placed in a tablet former. It was introduced to produce a positive electrode pellet having a diameter of 15 mm. At this time, the tablet forming pressure was kept constant at 2 ton / cm 2 with respect to the positive electrode mixture composition powder.

【0053】そして、得られた正極ペレットを正極缶に
収容し、負極として金属リチウムを用い、この金属リチ
ウムを負極缶に収容した。負極と正極との間に、25μ
m厚のポリプロピレン製多孔質膜からなるセパレータを
配した。
Then, the obtained positive electrode pellet was accommodated in a positive electrode can, and metallic lithium was used as a negative electrode. This metallic lithium was accommodated in a negative electrode can. 25μ between the negative and positive electrodes
A separator made of a m-thick polypropylene porous membrane was provided.

【0054】次に、負極缶及び正極缶内に非水電解液を
注入した。ここで、この非水電解液は、エチレンカーボ
ネートとプロピレンカーボネートとの等容量混合溶媒
に、LiPF6を1.0mol/リットルの濃度で溶解
して調製した。
Next, a non-aqueous electrolyte was injected into the negative electrode can and the positive electrode can. Here, this non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / liter in a mixed solvent of equal volumes of ethylene carbonate and propylene carbonate.

【0055】最後に、絶縁ガスケットを介して負極缶と
正極缶とをかしめて固定することにより、コイン型電池
が完成する。
Finally, the negative electrode can and the positive electrode can are caulked and fixed via an insulating gasket, thereby completing a coin-type battery.

【0056】以上のようにして、正極合剤中に含有され
る導電材となる、カーボンブラック(A)と黒鉛化カー
ボンファイバー(B)と鱗片状人造黒鉛(C)との混合
比率を後掲する表1及び表2に示すようにそれぞれ変え
て、サンプル1〜サンプル17のコイン型電池を作製し
た。
As described above, the mixing ratio of carbon black (A), graphitized carbon fiber (B), and flaky artificial graphite (C), which will be the conductive material contained in the positive electrode mixture, will be described later. The coin-type batteries of Samples 1 to 17 were produced by changing each as shown in Tables 1 and 2.

【0057】なお、表1に示すサンプル1〜サンプル9
の電池では、カーボンブラック(A)と黒鉛化カーボン
ファイバー(B)とのみを混合している。また、表2に
示すサンプル10〜サンプル17の電池では、カーボン
ブラック(A)と黒鉛化カーボンファイバー(B)と鱗
片状人造黒鉛(C)とを混合している。
Samples 1 to 9 shown in Table 1
In this battery, only carbon black (A) and graphitized carbon fiber (B) are mixed. In the batteries of Samples 10 to 17 shown in Table 2, carbon black (A), graphitized carbon fiber (B), and flaky artificial graphite (C) were mixed.

【0058】以上のようにして作製されたコインセルに
対し、電流密度0.5mA/cm2、3.0mA/c
2、6.0mA/cm2、12.0mA/cm2におけ
る放電容量をそれぞれ測定した。放電容量測定範囲は
4.3V〜2.8Vの範囲とした。
A current density of 0.5 mA / cm 2 , 3.0 mA / c was applied to the coin cell manufactured as described above.
The discharge capacities at m 2 , 6.0 mA / cm 2 and 12.0 mA / cm 2 were measured, respectively. The discharge capacity measurement range was in the range of 4.3V to 2.8V.

【0059】そして、各仕様コインセルの0.5mA/
cm2での放電容量を100%として高負荷放電すなわ
ち3.0mA/cm2、6.0mA/cm2、12.0m
A/cm2における容量維持率を測定した。なお、サン
プル1〜サンプル9の電池では、3.0mA/cm2
び6.0mA/cm2における容量維持率を測定した。
また、サンプル10〜サンプル17の電池では、6.0
mA/cm2及び12.0mA/cm2における容量維持
率を測定した。
Then, 0.5 mA /
high-load discharge i.e. 3.0 mA / cm 2 and the discharge capacity in cm 2 as 100%, 6.0mA / cm 2, 12.0m
The capacity retention at A / cm 2 was measured. In addition, in the batteries of Sample 1 to Sample 9, the capacity retention rates at 3.0 mA / cm 2 and 6.0 mA / cm 2 were measured.
In the batteries of Samples 10 to 17, 6.0 was used.
It was measured and the capacity retention ratio in mA / cm 2 and 12.0mA / cm 2.

【0060】そして、6.0mA/cm2又は12.0
mA/cm2における容量維持率から、各電池の負荷特
性を評価した。
Then, 6.0 mA / cm 2 or 12.0
The load characteristics of each battery were evaluated from the capacity retention rate at mA / cm 2 .

【0061】すなわち、表1に示すサンプル1〜サンプ
ル9の電池では、6.0mA/cm2における容量維持
率が85%以上の場合を○とし、80%以上、85%未
満の場合を△とし、80%未満の場合を×として評価し
た。さらに、○と評価されたなかで最も良好な特性が得
られているものを◎とした。
That is, in the batteries of Sample 1 to Sample 9 shown in Table 1, the case where the capacity retention rate at 6.0 mA / cm 2 is 85% or more is indicated by ○, and the case where the capacity retention ratio is 80% or more and less than 85% is indicated by △. , Less than 80% was evaluated as x. Further, among those evaluated as 良好, the one with the best characteristics was obtained as ◎.

【0062】一方、表2に示すサンプル10〜サンプル
17の電池では、12.0mA/cm2における容量維
持率が80%以上の場合を○とし、75%以上、80%
未満の場合を△とし、75%未満の場合を×として評価
した。さらに、○と評価されたなかで最も良好な特性が
得られているものを◎とした。
On the other hand, in the batteries of Samples 10 to 17 shown in Table 2, the case where the capacity retention rate at 12.0 mA / cm 2 was 80% or more was evaluated as ○, and the batteries were 75% or more and 80% or more.
Was evaluated as Δ when the value was less than 75%, and evaluated as × when the value was less than 75%. Further, among those evaluated as 良好, the one with the best characteristics was obtained as ◎.

【0063】以上のようにして得られた、サンプル1〜
サンプル9の電池の評価結果をカーボン材料の混合比と
併せて表1に示す。また、サンプル10〜サンプル17
の電池の評価結果をカーボン材料の混合比と併せて表2
に示す。
Samples 1 to 5 obtained as described above
Table 1 shows the evaluation results of the battery of Sample 9 together with the mixing ratio of the carbon materials. Sample 10 to sample 17
Table 2 shows the evaluation results of the batteries, together with the mixing ratio of the carbon materials.
Shown in

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【表2】 [Table 2]

【0066】まず、表1に示すサンプル1〜サンプル9
の電池では、上記のカーボンブラック(A)と黒鉛化カ
ーボンファイバー(B)との複合系を測定した。
First, samples 1 to 9 shown in Table 1
For the battery of No. 1, a composite system of the above carbon black (A) and graphitized carbon fiber (B) was measured.

【0067】表1から明らかなように、負荷特性評価で
は黒鉛化カーボンファイバー(B)を単独使用したもの
に比べカーボンブラック(A)を複合化した電池のほう
がより高い負荷特性を示した。但し、カーボンブラック
(A)が100重量%の場合には、黒鉛化カーボンファ
イバー(B)を複合させた系よりも低い負荷特性を示し
た。また、黒鉛化カーボンファイバー(B)が100重
量%の場合には、カーボンブラック(A)を複合させた
系よりも負荷特性が低下した。
As is evident from Table 1, in the evaluation of the load characteristics, the battery combined with the carbon black (A) showed higher load characteristics than the battery using the graphitized carbon fiber (B) alone. However, when the carbon black (A) was 100% by weight, the load characteristics were lower than those of the system in which the graphitized carbon fibers (B) were combined. In addition, when the graphitized carbon fiber (B) was 100% by weight, the load characteristics were lower than in the case where the carbon black (A) was combined.

【0068】従って、カーボンブラック(A)と黒鉛化
カーボンファイバー(B)とを複合化させることによっ
て、急速充放電可能な電池系を実現できることがわかっ
た。
Accordingly, it was found that a battery system capable of rapid charging and discharging can be realized by combining carbon black (A) and graphitized carbon fiber (B).

【0069】また、表2では、大電流放電及び短時間大
電流パルス放電等の用途用電極として12mA/cm2
の高電流密度で放電した場合の人造黒鉛添加効果を示
す。
Table 2 shows that 12 mA / cm 2 is used as an electrode for applications such as high-current discharge and short-time high-current pulse discharge.
3 shows the effect of adding artificial graphite when discharged at a high current density.

【0070】前記実験で最も負荷特性の良好であったカ
ーボンブラック:黒鉛化カーボンファイバー=2:8の
うち、黒鉛化カーボンファイバーを人造黒鉛に任意の比
で置き換えた導電材組成の正極ペレットを用いた負荷特
性測定結果である。
Among the carbon black: graphitized carbon fiber = 2: 8 having the best load characteristics in the above experiment, a positive electrode pellet having a conductive material composition in which the graphitized carbon fiber was replaced with artificial graphite at an arbitrary ratio was used. It is a load characteristic measurement result.

【0071】これによると、3mA/cm2程度の電流
密度では人造黒鉛が増加するにつれ負荷特性は低下する
が、6mA/cm2の高電流密度では全導電材量の約5
0重量%を人造黒鉛が占める組成が最も負荷特性が良好
であった。よって、高電流密度での充放電では、カーボ
ンブラック、黒鉛化カーボンファイバー、人造黒鉛の3
種カーボンを活物質と複合化させることにより、さらに
高電流密度充放電可能な電池の正極作製が可能となるこ
とがわかった。
[0071] According to this, although the current density of about 3mA / cm 2 load characteristics as the artificial graphite is increased is reduced, about 5 Zenshirube material amount at a high current density of 6 mA / cm 2
The composition in which artificial graphite occupied 0% by weight had the best load characteristics. Therefore, in charging and discharging at a high current density, carbon black, graphitized carbon fiber, and artificial graphite
It has been found that the composite of the seed carbon with the active material makes it possible to produce a positive electrode of a battery capable of charging and discharging at a higher current density.

【0072】また、上記実験で特徴的な結果が得られた
サンプル1の電池と、サンプル9の電池と、サンプル1
7の電池と、サンプル5の電池と、サンプル14の電池
について、0.5mA/cm2と12mA/cm2の電流
密度での充放電サイクル特性を評価した。
The batteries of Sample 1, from which the characteristic results were obtained in the above experiment, the batteries of Sample 9, and the batteries of Sample 1
7 and battery, and the battery of sample 5, the batteries of the samples 14 were evaluated for charge-discharge cycle characteristics at a current density of 0.5 mA / cm 2 and 12 mA / cm 2.

【0073】まず、0.5mA/cm2の充放電サイク
ル特性評価において、放電は、2mA/セルの電流密度
で、電池電圧が4.3Vになるまで6時間行った。ま
た、放電は、0.88mA/セル(0.5mA/c
2)の電流密度で、電池電圧が2.8Vになるま行っ
た。これを1サイクルとし、コインセル作製初期から3
サイクル目の(グラフでは1サイクル目)の容量を10
0%として、それ以降の各サイクルにおける放電容量か
ら容量維持率を算出した。この結果を図2に示す。
First, in the evaluation of charge / discharge cycle characteristics of 0.5 mA / cm 2 , discharge was performed at a current density of 2 mA / cell for 6 hours until the battery voltage reached 4.3 V. The discharge was 0.88 mA / cell (0.5 mA / c
The operation was performed at a current density of m 2 ) until the battery voltage reached 2.8 V. This is defined as one cycle, and 3 cycles from the initial stage of coin cell production.
The capacity at the cycle (first cycle in the graph) is 10
Assuming 0%, the capacity retention rate was calculated from the discharge capacity in each cycle thereafter. The result is shown in FIG.

【0074】この図2より、黒鉛化カーボンファイバ
ー、鱗片状人造黒鉛をそれぞれ単独で用いたサンプル9
及びサンプル17の電池電池では、20サイクルで初期
容量の90%以下に低下していることがわかる。これ
は、合剤内の微視的な導電性が低下したためと考えられ
る。これに比べ、カーボンブラックを単独で用いたサン
プル1の電池では90%以上の維持率を示した。また、
カーボンブラックと黒鉛化カーボンファイバーとを混合
して用いたサンプル5の電池、カーボンブラックと黒鉛
化カーボンファイバーと鱗片状人造黒鉛とを混合して用
いたサンプル14の電池でも90%以上の容量維持率を
示した。
FIG. 2 shows that Sample 9 using graphitized carbon fiber and flaky artificial graphite alone was used.
In addition, it can be seen that the battery of Sample 17 has decreased to 90% or less of the initial capacity in 20 cycles. This is probably because the microscopic conductivity in the mixture was reduced. In comparison, the battery of Sample 1 using carbon black alone exhibited a retention of 90% or more. Also,
The battery of Sample 5 using a mixture of carbon black and graphitized carbon fiber and the battery of Sample 14 using a mixture of carbon black, graphitized carbon fiber and flaky artificial graphite have a capacity retention of 90% or more. showed that.

【0075】一方、12mA/cm2の充放電サイクル
特性評価において、放電は、2mA/セルの電流密度
で、電池電圧が4.3Vになるまで6時間行った。ま
た、放電は、21.2mA/セル(12.0mA/cm
2)の電流密度で、電池電圧が2.8Vになるま行っ
た。これを1サイクルとし、コインセル作製初期から3
サイクル目の(グラフでは1サイクル目)の容量を10
0%として、それ以降の各サイクルにおける放電容量か
ら容量維持率を算出した。この結果を図3に示す。
On the other hand, in the evaluation of the charge / discharge cycle characteristics at 12 mA / cm 2 , the discharge was performed at a current density of 2 mA / cell for 6 hours until the battery voltage reached 4.3 V. The discharge was 21.2 mA / cell (12.0 mA / cm
The test was performed until the battery voltage reached 2.8 V at the current density of 2 ). This is defined as one cycle, and 3 cycles from the initial stage of coin cell production.
The capacity at the cycle (first cycle in the graph) is 10
Assuming 0%, the capacity retention rate was calculated from the discharge capacity in each cycle thereafter. The result is shown in FIG.

【0076】図3の結果から明らかなように、大電流放
電サイクル特性では、カーボンブラックと黒鉛化カーボ
ンファイバーとを混合して用いたサンプル5の電池、カ
ーボンブラックと黒鉛化カーボンファイバーと鱗片状人
造黒鉛とを混合して用いたサンプル14の電池の容量維
持率が高く、低電流放電時に容量維持率の高かったサン
プル1の電池の容量維持率は、サンプル9の電池の容量
維持率レベルと同じ程度に低下していることがわかる。
As is clear from the results of FIG. 3, in the large current discharge cycle characteristics, the battery of Sample 5 using a mixture of carbon black and graphitized carbon fiber, the carbon black, graphitized carbon fiber, and flaky artificial The capacity retention ratio of the battery of Sample 1 which had a high capacity retention ratio at the time of low-current discharge and the capacity retention ratio of the battery of Sample 1 using graphite mixed was the same as the capacity retention ratio level of the battery of Sample 9. It can be seen that it has decreased to a degree.

【0077】以上の結果をまとめると、カーボンブラッ
クと黒鉛化カーボンファイバーとを複合させた材料を正
極中の導電材として用いることで、負荷特性とサイクル
特性が良好な電池が得られることがわかった。また、カ
ーボンブラックと黒鉛化カーボンファイバーと鱗片状人
造黒鉛とを複合させた材料を正極中の導電材として用い
た電池は、大電流放電使用時にさらに高性能を示すこと
がわかった。
Summarizing the above results, it was found that a battery having good load characteristics and cycle characteristics could be obtained by using a composite material of carbon black and graphitized carbon fiber as the conductive material in the positive electrode. . Also, it was found that a battery using a composite material of carbon black, graphitized carbon fiber, and flaky artificial graphite as the conductive material in the positive electrode exhibited higher performance when using a large current discharge.

【0078】[0078]

【発明の効果】本発明では、正極活物質層中にカーボン
ブラックと、黒鉛化カーボンファイバーとの混合物を含
有させることで、正極活物質層中の微視的部分への導電
パスを安定に形成することができる。その結果、本発明
では、高サイクル特性、高寿命の大電流急速充電性を有
する非水電解質電池を実現することができる。
According to the present invention, a conductive path to a microscopic portion in the positive electrode active material layer can be stably formed by including a mixture of carbon black and graphitized carbon fiber in the positive electrode active material layer. can do. As a result, according to the present invention, it is possible to realize a nonaqueous electrolyte battery having high cycle characteristics, a long life, and a large current rapid chargeability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るコイン型非水電解液電池の一構成
例を示す断面図である。
FIG. 1 is a cross-sectional view showing one configuration example of a coin-type nonaqueous electrolyte battery according to the present invention.

【図2】実施例で作製した電池について、0.5mA/
cm2放電におけるサイクル数と容量維持率との関係を
示す図である。
FIG. 2 is a graph showing the relationship between the battery manufactured in Example and the current of 0.5 mA /
FIG. 4 is a diagram showing the relationship between the number of cycles and the capacity retention in cm 2 discharge.

【図3】実施例で作製した電池について、12.0mA
/cm2放電におけるサイクル数と容量維持率との関係
を示す図である。
FIG. 3 shows 12.0 mA for the battery manufactured in the example.
FIG. 4 is a diagram showing the relationship between the number of cycles and the capacity retention rate in / cm 2 discharge.

【符号の説明】[Explanation of symbols]

1 非水電解液電池、 2 負極、 3 負極缶、 4
正極、 5 正極缶、 6 セパレータ、 7 絶縁
ガスケット
1 non-aqueous electrolyte battery, 2 negative electrode, 3 negative electrode can, 4
Positive electrode, 5 Positive electrode can, 6 Separator, 7 Insulating gasket

フロントページの続き Fターム(参考) 5H003 AA01 AA02 AA04 BB15 BC01 BC02 BD02 BD04 BD05 5H029 AJ02 AJ03 AJ05 AJ06 AK03 AK16 AL06 AL07 AL12 AM01 AM02 AM03 AM04 AM05 AM07 AM11 AM16 BJ02 BJ03 DJ08 DJ15 DJ16 EJ04 HJ00 HJ01 HJ05 HJ08 HJ13 Continued on front page F-term (reference)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質と導電材とを含有する正極活
物質層を備えた正極と、 負極活物質を有する負極と、 上記正極と上記負極との間に介在された非水電解質とを
備え、 上記正極活物質層は、上記導電材として、 平均粒子径が1nm〜100nmであり、ジブチルフタ
レート吸油量が50ml/100g以上であり、ヨウ素
吸着量が2000mg/g以下であるようなカーボンブ
ラックと、 平均繊維径が0.01μm〜10μmであり、平均繊維
長が1μm〜200μmであり、真密度が1.8g/c
3以上であり、X線回折パラメータd(002)が
0.345nm以下であるような黒鉛化カーボンファイ
バーとの混合物を含有することを特徴とする非水電解質
電池。
1. A positive electrode having a positive electrode active material layer containing a positive electrode active material and a conductive material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode The positive electrode active material layer comprises, as the conductive material, carbon black having an average particle diameter of 1 nm to 100 nm, a dibutyl phthalate oil absorption of 50 ml / 100 g or more, and an iodine adsorption of 2000 mg / g or less. The average fiber diameter is 0.01 μm to 10 μm, the average fiber length is 1 μm to 200 μm, and the true density is 1.8 g / c.
A non-aqueous electrolyte battery comprising a mixture with a graphitized carbon fiber having an X-ray diffraction parameter d (002) of at least m 3 and at most 0.345 nm.
【請求項2】 上記カーボンブラックと上記カーボンフ
ァイバーとの混合物の割合が、上記正極活物質層全体の
0.5重量%〜20重量%の範囲であることを特徴とす
る請求項1記載の非水電解質電池。
2. The non-woven fabric according to claim 1, wherein a ratio of the mixture of the carbon black and the carbon fiber is in a range of 0.5% by weight to 20% by weight of the whole positive electrode active material layer. Water electrolyte battery.
【請求項3】 上記正極活物質層は、上記導電材とし
て、真密度が1.9g/cm3以上であり、X線回折パ
ラメータd(002)が0.340nm以下であり、平
均粒径0.5μm〜50μmであるような鱗片状の天然
黒鉛又は人造黒鉛を含有することを特徴とする請求項1
記載の非水電解質電池。
3. The positive electrode active material layer as the conductive material has a true density of 1.9 g / cm 3 or more, an X-ray diffraction parameter d (002) of 0.340 nm or less, and an average particle size of 0 or less. 2. A scale-like natural graphite or artificial graphite having a size of 0.5 to 50 [mu] m.
The non-aqueous electrolyte battery according to the above.
【請求項4】 上記カーボンブラックと上記カーボンフ
ァイバーと鱗片状の天然黒鉛又は人造黒鉛との混合物の
割合が、上記正極活物質層全体の0.5重量%〜20重
量%の範囲であることを特徴とする請求項3記載の非水
電解質電池。
4. The ratio of a mixture of the carbon black, the carbon fiber, and flaky natural graphite or artificial graphite in a range of 0.5% by weight to 20% by weight of the whole positive electrode active material layer. The non-aqueous electrolyte battery according to claim 3, wherein:
JP30613099A 1999-10-27 1999-10-27 Non-aqueous electrolyte battery Expired - Fee Related JP4595145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30613099A JP4595145B2 (en) 1999-10-27 1999-10-27 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30613099A JP4595145B2 (en) 1999-10-27 1999-10-27 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2001126733A true JP2001126733A (en) 2001-05-11
JP4595145B2 JP4595145B2 (en) 2010-12-08

Family

ID=17953422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30613099A Expired - Fee Related JP4595145B2 (en) 1999-10-27 1999-10-27 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4595145B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110253A (en) * 2000-09-29 2002-04-12 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
WO2008001792A1 (en) * 2006-06-27 2008-01-03 Kao Corporation Method for producing composite material for positive electrode of lithium battery
WO2008001791A1 (en) * 2006-06-27 2008-01-03 Kao Corporation Composite positive electrode material for lithium ion battery and battery using the same
JP2008034376A (en) * 2006-06-27 2008-02-14 Kao Corp Composite positive electrode material for lithium ion battery and battery using the same
JP2008277128A (en) * 2007-04-27 2008-11-13 Toyota Motor Corp Electrode for secondary battery, its manufacturing method, and secondary battery
JP2010009898A (en) * 2008-06-26 2010-01-14 Hitachi Maxell Ltd Nonaqueous secondary battery and nonaqueous secondary battery system
JP2010205430A (en) * 2009-02-27 2010-09-16 Hitachi Vehicle Energy Ltd Positive electrode for lithium secondary battery and lithium secondary battery
WO2011062019A1 (en) 2009-11-18 2011-05-26 電気化学工業株式会社 Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
WO2013049939A1 (en) 2011-10-04 2013-04-11 HYDRO-QUéBEC Positive-electrode materials: methods for their preparation and use in lithium secondary batteries
WO2013073561A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
WO2013073562A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
JP2013127872A (en) * 2011-12-16 2013-06-27 Samsung Sdi Co Ltd Positive electrode for secondary battery, and secondary battery
WO2013166598A1 (en) 2012-05-08 2013-11-14 HYDRO-QUéBEC Lithium-ion secondary battery and method of producing same
WO2014063244A1 (en) 2012-10-22 2014-05-01 HYDRO-QUéBEC Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
KR20160024776A (en) * 2014-08-26 2016-03-07 주식회사 엘지화학 Surface coated cathode active material, preparation method thereof and lithium secondary battery comprising the same
JP2016039146A (en) * 2014-08-07 2016-03-22 帝人株式会社 Complex suitable for nonaqueous electrolyte secondary battery
WO2019073830A1 (en) 2017-10-10 2019-04-18 デンカ株式会社 Positive electrode composition for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2019216275A1 (en) 2018-05-08 2019-11-14 デンカ株式会社 Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
WO2020111201A1 (en) 2018-11-28 2020-06-04 デンカ株式会社 Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
WO2021200779A1 (en) * 2020-03-30 2021-10-07 パナソニックIpマネジメント株式会社 Electrochemical device
WO2022102692A1 (en) * 2020-11-13 2022-05-19 積水化学工業株式会社 Positive electrode material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2022270361A1 (en) 2021-06-25 2022-12-29 デンカ株式会社 Positive electrode composition, positive electrode, and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111818A (en) * 1992-09-29 1994-04-22 Shin Kobe Electric Mach Co Ltd Carbon negative electrode for nonaqueous electrolyte secondary battery
JPH10312811A (en) * 1997-03-11 1998-11-24 Matsushita Electric Ind Co Ltd Nonaqeous electrolyte secondary battery
JPH11176446A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery
JPH11265716A (en) * 1998-03-16 1999-09-28 Denso Corp Negative electrode active material for lithium secondary battery and its manufacture
JP2000058066A (en) * 1998-08-06 2000-02-25 Japan Storage Battery Co Ltd Secondary battery
JP2000208147A (en) * 1999-01-11 2000-07-28 Toyota Motor Corp Lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111818A (en) * 1992-09-29 1994-04-22 Shin Kobe Electric Mach Co Ltd Carbon negative electrode for nonaqueous electrolyte secondary battery
JPH10312811A (en) * 1997-03-11 1998-11-24 Matsushita Electric Ind Co Ltd Nonaqeous electrolyte secondary battery
JPH11176446A (en) * 1997-12-15 1999-07-02 Hitachi Ltd Lithium secondary battery
JPH11265716A (en) * 1998-03-16 1999-09-28 Denso Corp Negative electrode active material for lithium secondary battery and its manufacture
JP2000058066A (en) * 1998-08-06 2000-02-25 Japan Storage Battery Co Ltd Secondary battery
JP2000208147A (en) * 1999-01-11 2000-07-28 Toyota Motor Corp Lithium ion secondary battery

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110253A (en) * 2000-09-29 2002-04-12 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
US8003015B2 (en) 2006-06-27 2011-08-23 Kao Corporation Composite positive electrode material for lithium ion battery and battery using the same
WO2008001792A1 (en) * 2006-06-27 2008-01-03 Kao Corporation Method for producing composite material for positive electrode of lithium battery
WO2008001791A1 (en) * 2006-06-27 2008-01-03 Kao Corporation Composite positive electrode material for lithium ion battery and battery using the same
JP2008034376A (en) * 2006-06-27 2008-02-14 Kao Corp Composite positive electrode material for lithium ion battery and battery using the same
CN101479867B (en) * 2006-06-27 2012-09-05 花王株式会社 Composite positive electrode material for lithium ion battery and battery using the same
US8241525B2 (en) 2006-06-27 2012-08-14 Kao Corporation Method for producing composite material for positive electrode of lithium battery
KR101153532B1 (en) * 2006-06-27 2012-06-11 가오 가부시키가이샤 Method for producing composite material for positive electrode of lithium battery
EP2144315A1 (en) * 2007-04-27 2010-01-13 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery, its manufacturing method, and secondary battery
US9537150B2 (en) 2007-04-27 2017-01-03 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery and production process for the same and secondary battery
EP2144315A4 (en) * 2007-04-27 2014-06-04 Toyota Motor Co Ltd Electrode for secondary battery, its manufacturing method, and secondary battery
US20100119949A1 (en) * 2007-04-27 2010-05-13 Tsuyoshi Yano Electrode for secondary battery and production process for the same and secondary battery
JP2008277128A (en) * 2007-04-27 2008-11-13 Toyota Motor Corp Electrode for secondary battery, its manufacturing method, and secondary battery
WO2008136361A1 (en) * 2007-04-27 2008-11-13 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery, its manufacturing method, and secondary battery
CN101669236B (en) * 2007-04-27 2012-08-29 丰田自动车株式会社 Electrode for secondary battery, its manufacturing method, and secondary battery
JP2010009898A (en) * 2008-06-26 2010-01-14 Hitachi Maxell Ltd Nonaqueous secondary battery and nonaqueous secondary battery system
JP2010205430A (en) * 2009-02-27 2010-09-16 Hitachi Vehicle Energy Ltd Positive electrode for lithium secondary battery and lithium secondary battery
KR20120093874A (en) 2009-11-18 2012-08-23 덴키 가가쿠 고교 가부시기가이샤 Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
US8597835B2 (en) 2009-11-18 2013-12-03 Denki Kagaku Kogyo Kabushiki Kaisha Positive-electrode material for a lithium ion secondary battery and manufacturing method of the same
WO2011062019A1 (en) 2009-11-18 2011-05-26 電気化学工業株式会社 Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
WO2013049939A1 (en) 2011-10-04 2013-04-11 HYDRO-QUéBEC Positive-electrode materials: methods for their preparation and use in lithium secondary batteries
US10090525B2 (en) 2011-10-04 2018-10-02 Hydro-Quebec Positive-electrode materials: methods for their preparation and use in lithium secondary batteries
US10944107B2 (en) 2011-10-04 2021-03-09 HYDRO-QUéBEC Methods for the preparation and use of positive electrode materials coated with carbon in lithium secondary batteries
US9577253B2 (en) 2011-10-04 2017-02-21 Hydro-Quebec Positive-electrode materials: methods for their preparation and use in lithium secondary batteries
US11715828B2 (en) 2011-10-04 2023-08-01 HYDRO-QUéBEC Positive-electrode materials: methods for their preparation and use in lithium secondary batteries
WO2013073561A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
KR20140103117A (en) 2011-11-15 2014-08-25 덴키 가가쿠 고교 가부시기가이샤 Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
KR20140096120A (en) 2011-11-15 2014-08-04 덴키 가가쿠 고교 가부시기가이샤 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
WO2013073562A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
US10873073B2 (en) 2011-11-15 2020-12-22 Denka Company Limited Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
JP2013127872A (en) * 2011-12-16 2013-06-27 Samsung Sdi Co Ltd Positive electrode for secondary battery, and secondary battery
KR20150021033A (en) 2012-05-08 2015-02-27 하이드로-퀘벡 Lithium-ion secondary battery and method of producing same
USRE49319E1 (en) 2012-05-08 2022-11-29 Hydro-Quebec Lithium-ion secondary battery and method of producing same
EP3869604A1 (en) 2012-05-08 2021-08-25 Hydro-Québec Lithium-ion secondary battery and method of producing same
WO2013166598A1 (en) 2012-05-08 2013-11-14 HYDRO-QUéBEC Lithium-ion secondary battery and method of producing same
US10050270B2 (en) 2012-05-08 2018-08-14 Hydro-Quebec Lithium-ion secondary battery and method of producing same
KR20200004922A (en) 2012-05-08 2020-01-14 하이드로-퀘벡 Lithium-ion secondary battery and method of producing same
KR20150086280A (en) 2012-10-22 2015-07-27 하이드로-퀘벡 Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
US12068484B2 (en) 2012-10-22 2024-08-20 HYDRO-QUéBEC Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
KR20230145493A (en) 2012-10-22 2023-10-17 하이드로-퀘벡 Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
EP3826087A1 (en) 2012-10-22 2021-05-26 Hydro-Québec Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
WO2014063244A1 (en) 2012-10-22 2014-05-01 HYDRO-QUéBEC Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
US11545668B2 (en) 2012-10-22 2023-01-03 Hydro-Quebec Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
KR20220046702A (en) 2012-10-22 2022-04-14 하이드로-퀘벡 Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP2016039146A (en) * 2014-08-07 2016-03-22 帝人株式会社 Complex suitable for nonaqueous electrolyte secondary battery
KR20160024776A (en) * 2014-08-26 2016-03-07 주식회사 엘지화학 Surface coated cathode active material, preparation method thereof and lithium secondary battery comprising the same
US10476082B2 (en) 2014-08-26 2019-11-12 Lg Chem, Ltd. Surface coated positive electrode active material, preparation method thereof and lithium secondary battery including the same
KR101714892B1 (en) * 2014-08-26 2017-03-09 주식회사 엘지화학 Surface coated cathode active material, preparation method thereof and lithium secondary battery comprising the same
KR20200073241A (en) 2017-10-10 2020-06-23 덴카 주식회사 Anode composition for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
WO2019073830A1 (en) 2017-10-10 2019-04-18 デンカ株式会社 Positive electrode composition for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20210006377A (en) 2018-05-08 2021-01-18 덴카 주식회사 Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019216275A1 (en) 2018-05-08 2019-11-14 デンカ株式会社 Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
KR20210094055A (en) 2018-11-28 2021-07-28 덴카 주식회사 The positive electrode composition for lithium ion secondary batteries, the positive electrode for lithium ion secondary batteries, and a lithium ion secondary battery
WO2020111201A1 (en) 2018-11-28 2020-06-04 デンカ株式会社 Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
WO2021200779A1 (en) * 2020-03-30 2021-10-07 パナソニックIpマネジメント株式会社 Electrochemical device
WO2022102692A1 (en) * 2020-11-13 2022-05-19 積水化学工業株式会社 Positive electrode material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2022270361A1 (en) 2021-06-25 2022-12-29 デンカ株式会社 Positive electrode composition, positive electrode, and battery
KR20230172023A (en) 2021-06-25 2023-12-21 덴카 주식회사 Positive electrode composition, positive electrode, and battery

Also Published As

Publication number Publication date
JP4595145B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP6236197B2 (en) Positive electrode for lithium battery and lithium battery
JP4595145B2 (en) Non-aqueous electrolyte battery
JP5315591B2 (en) Positive electrode active material and battery
KR100446828B1 (en) Graphite particles and lithium secondary battery using them as negative electrode
US7754381B2 (en) Anode and battery, and manufacturing methods thereof
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
US20070111102A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrolyte secondary batteries
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
CN105280880B (en) Positive electrode for nonaqueous electrolyte secondary battery, and system thereof
CN111183538B (en) Negative active material for lithium secondary battery and lithium secondary battery including the same
JP2004319129A (en) Anode active material and nonaqueous electrolyte secondary battery using it
JP2017520892A (en) Positive electrode for lithium battery
KR102065256B1 (en) Silicone based negative active material, preparing method of the same and lithium ion secondary battery including the same
JP2003077458A (en) Lithium secondary battery electrode and lithium secondary battery
WO2018179934A1 (en) Negative electrode material and nonaqueous electrolyte secondary battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
KR20090080909A (en) Battery
KR20190047196A (en) Silicon-carbon composite, and lithium secondary battery comprising the same
JP4354723B2 (en) Method for producing graphite particles
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
KR20180028797A (en) Anode with improved swelling phenomenon and Lithium secondary battery comprising the anode
JP4656710B2 (en) Non-aqueous electrolyte secondary battery
KR20050000318A (en) Negative-electrode material and battery using the same
JP5189466B2 (en) Lithium secondary battery
JP2005056581A (en) Carbon material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees