JP4656710B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4656710B2
JP4656710B2 JP2000298233A JP2000298233A JP4656710B2 JP 4656710 B2 JP4656710 B2 JP 4656710B2 JP 2000298233 A JP2000298233 A JP 2000298233A JP 2000298233 A JP2000298233 A JP 2000298233A JP 4656710 B2 JP4656710 B2 JP 4656710B2
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
peak intensity
discharge capacity
crystallite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000298233A
Other languages
Japanese (ja)
Other versions
JP2002110157A (en
JP2002110157A5 (en
Inventor
康文 高橋
良浩 小路
昌利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000298233A priority Critical patent/JP4656710B2/en
Publication of JP2002110157A publication Critical patent/JP2002110157A/en
Publication of JP2002110157A5 publication Critical patent/JP2002110157A5/ja
Application granted granted Critical
Publication of JP4656710B2 publication Critical patent/JP4656710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は負極に黒鉛(但し、(002)面の面間隔(d002)が0.3380nm以下であり、c軸方向の結晶子の大きさ(Lc)が15nm以上)を用いるとともに正極にリチウムイオンの吸蔵・放出が可能な材料を用い、かつ有機溶媒にリチウム塩からなる溶質を溶解した非水電解液を備えた非水電解液二次電池に係り、特に、負極の改良に関する。
【0002】
【従来の技術】
近年、小型軽量でかつ高容量で充放電可能な電池としてリチウム二次電池が実用化されるようになり、小型ビデオカメラ、携帯電話、ノートパソコン等の携帯用電子・通信機器等に用いられるようになった。この種のリチウム二次電池は、負極活物質としてリチウムイオンを吸蔵・放出し得る炭素系材料を用い、正極活物質として、LiCoO2,LiNiO2,LiMn24,LiFeO2等のリチウム含有遷移金属酸化物を用い、有機溶媒にリチウム塩からなる溶質を溶解した非水電解液を用いて構成される二次電池である。
【0003】
ところで、このようなリチウム二次電池の負極に用いられる炭素系材料は、充放電サイクル中の容量劣化が少なく、優れた耐久性を有することで注目されている。これは炭素系材料は卑な電位でリチウムの吸蔵・放出を可逆的に行うことが可能であるためで、リチウムと炭素系材料との層間化合物が可逆的に形成されることを利用したためである。例えば、十分な量のリチウムを含有する正極と、負極としての炭素系材料とをセパレータを介して対向させて電池缶内に挿入し、これに有機溶媒にリチウム塩からなる溶質を溶解した非水電解液を注入することで、この電池は放電状態で組立が完了することになる。
【0004】
この電池に対して第1サイクル目の充電を行うと、正極中のリチウムは電気化学的に負極炭素系材料の層間にドープされ、放電を行うと、ドープされていたリチウムは負極炭素材料の層間から脱ドープされて、再び正極中に戻る。
この場合の炭素系材料の単位質量当たりの放電容量(mAh/g)は、リチウムの吸蔵・放出可能容量によって決まるため、このような負極ではリチウムの電気化学的な可逆的吸蔵量をできる限り大きくすることが望ましい。そして、電池内で電気化学的にリチウムと炭素の層間化合物を生成させる場合、理論的には炭素原子6個に対してリチウム原子1個の割合で吸蔵された状態が上限で、リチウムと炭素系材料との層間化合物の飽和状態となる。
【0005】
【発明が解決しようとする課題】
上述のような条件を満たす炭素系材料としては、天然に存在する天然黒鉛、コークスを黒鉛化した人造黒鉛、有機系高分子またはその複合物を黒鉛化した人造黒鉛、ピッチ等を黒鉛化した人造黒鉛などが検討されており、これらの黒鉛材料はリチウムの吸蔵・放出量が大きく、作動電位が全領域にわたって卑で平坦であるため特に注目されている。
【0006】
ところで、電池容量は限られた電池缶内にいかに多くの活物質を充填するかに係っているので、活物質の単位体積当たりの容量、換言すると、炭素系材料の充填密度をいかに多くするかが重要である。そこで、黒鉛結晶が発達している天然黒鉛やコークスを黒鉛化した人造黒鉛を高密度に充填した炭素電極を得て、この炭素電極を用いてリチウム二次電池を作製したところ、確かに容量が大きな電池が得られるが、反面、高率充放電特性が低下するという問題を生じた。
【0007】
そこで、高率充放電特性が低下した原因を追求したところ、以下のような知見を得た。即ち、黒鉛結晶が発達している天然黒鉛やコークスを黒鉛化した人造黒鉛は、菱面体構造の結晶子と六方晶構造の結晶子とを有していることが明らかになった。そして、菱面体構造の結晶子が多い黒鉛を用いると放電容量が増加するが、高率放電特性が低下することが分かった。一方、菱面体構造の結晶子が少ない黒鉛を用いると放電容量が低下するが、高率放電特性が向上することが分かった。
本発明は上記知見に基づいてなされたものであって、特定の黒鉛を高密度に充填して、電池容量が大きく、かつ高率充放電特性が低下しない負極を得て、高容量で高率充放電特性に優れた非水電解液二次電池を提供できるようにすることを目的とする。
【0008】
【課題を解決するための手段およびその作用・効果】
上記目的を達成するため、本発明の非水電解液二次電池は、負極に黒鉛(但し、(002)面の面間隔(d002)が0.3380nm以下であり、c軸方向の結晶子の大きさ(Lc)が15nm以上)を用いるとともに正極にリチウムイオンの挿入・脱離が可能な材料を用い、かつ有機溶媒にリチウム塩からなる溶質を溶解した非水電解液を備えている。
そして、負極に用いられる黒鉛は、少なくとも六方晶構造の結晶子と菱面体構造の結晶子を有するとともに、菱面体構造の結晶子のCu−Kα線源を用いたX線回折法による(101)面のピーク強度(P1:回折角43.2°±0.5°)と、六方晶構造の結晶子のCu−Kα線源を用いたX線回折法による(101)面のピーク強度(P2:回折角44.3°±0.5°)とのピーク強度比(P1/P2)が0.20以上で0.30以下となるように最適化している。
なお、本発明でいうピーク強度P1,P2とは、図1〜図4および図9に示すX線回折図におけるバックグランド線(各図の点線)から各回折角でのピークまでの高さを表している。
【0009】
ここで、六方晶構造の結晶子と菱面体構造の結晶子を有する黒鉛を負極に用いた場合、菱面体構造の結晶子のピーク強度(P1:回折角43.2°±0.5°)と、六方晶構造の結晶子のピーク強度(P2:回折角44.3°±0.5°)とのピーク強度比(P1/P2)が0.20未満であると低負荷であっても放電容量が低下し、また、ピーク強度比(P1/P2)が0.30より大きくなると、高負荷時に容量低下が著しく増大するという結果が得られた。
【0010】
このような実験結果からすると、上記ピーク強度比が0.20以上である黒鉛を負極に用いれば高容量が達成でき、逆に上記ピーク強度比が0.30以下である黒鉛を負極に用いれば高密度充填下であってもリチウムイオンの挿入・脱離反応が円滑に行われて、高負荷であっも容量が低下しないと考えられる。したがって、高容量で高率放電特性に優れた負極とするためには、菱面体構造の結晶子のピーク強度(P1:回折角43.2°±0.5°)と、六方晶構造の結晶子のピーク強度(P2:回折角44.3°±0.5°)とのピーク強度比(P1/P2)が0.20以上で0.30以下となるように最適化する必要がある。
【0011】
また、ピーク強度比(P1/P2)がこの範囲にない黒鉛でも、二種類以上の結晶性の異なる黒鉛を混合した混合黒鉛とすることにより、ピーク強度比(P1/P2)が0.20以上で0.30以下となるように混合調製することで、上述と同様な効果を奏するようになる。そして、黒鉛の充填密度が1.60g/cm3未満であると、結晶子のピーク強度比(P1/P2)を0.20以上で0.30以下に最適化しても、高率放電容量および放電容量比を向上させるという効果、即ち高負荷であっても容量が低下しない効果を発揮されにくいので、黒鉛負極に用いる結晶子のピーク強度比(P1/P2)を0.20以上で0.30以下に最適化する場合には、黒鉛の充填密度を1.60g/cm3以上に高密度充填するのが望ましい。
【0012】
なお、本発明は、正極活物質、非水電解液、セパレータの種類などについては制限することなく使用することができる。例えば、正極活物質としては、マンガン、コバルト、ニッケル、バナジウム、ニオブを少なくとも1種含む金属酸化物、具体的には、組成式がLiaMOb(MはMn,Co,Ni,V,Nbなどから選択される1種の金属元素で、0≦a≦2で1≦b≦5)で表される金属MとLiとの複合酸化物を用いることができる。例えば、LiMn24,LiCoO2,LiNiO2,LiMn1.5Ni0.54などが好ましい。
【0013】
非水電解液の溶媒としては、ジメチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジエチルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチルなどの単体、2成分混合物あるいは3成分混合物等が使用される。また、これらの溶媒に溶解される溶質としては、LiPF6、LiBF4、LiCF3SO3、LiAsF6、LiN(CF3SO22、LiC(CF3SO23、LiCF3(CF23SO3等が使用される。
【0014】
【発明の実施の形態】
以下に、本発明の非水電解液電池の実施の形態を説明する。
1.原料黒鉛粉末
(002)面の面間隔(d002)が0.3363nmで、c軸方向の結晶子の大きさ(Lc)が90nmで平均粒径が20μmの塊状黒鉛(2950℃で焼成した人造黒鉛)を用意し、これを黒鉛粉末αとした。また、(002)面の面間隔(d002)が0.3370nmで、c軸方向の結晶子の大きさ(Lc)が60nmで平均粒径が20μmの塊状黒鉛(2800℃で焼成した人造黒鉛)を用意し、これを黒鉛粉末βとした。
【0015】
また、(002)面の面間隔(d002)が0.3380nmで、c軸方向の結晶子の大きさ(Lc)が40nmで平均粒径が20μmの塊状黒鉛(2650℃で焼成した人造黒鉛)を用意し、これを黒鉛粉末γとした。さらに、(002)面の面間隔(d002)が0.3357nmで、c軸方向の結晶子の大きさ(Lc)が200nmで平均粒径が20μmの塊状黒鉛(天然黒鉛)を用意し、これを黒鉛粉末δとした。
【0016】
2.単極セルの作製
(1)負極の作製
ついで、上述のように用意した各黒鉛粉末α,β,γ,δをそれぞれ用い、これらの各黒鉛粉末α,β,γ,δとスチレン−ブタジエンゴム(SBR)とのディスパージョン(固形分は48質量%)を水に分散させた後、増粘剤となるカルボキシメチルセルロース(CMC)を添加、混合してそれぞれスラリーを調製した。なお、塊状黒鉛とSBRとCMCとの乾燥後の質量組成比が塊状黒鉛:SBR:CMC=95:3:2となるように調製した。
【0017】
ついで、銅箔からなる負極集電体を用意し、上述のように調製したそれぞれのスラリーをこの負極集電体の両面にドクターブレード法により塗布し、厚みが80μmの黒鉛材料層(なお、表面の面積が8cm2となるようにした)をそれぞれ形成した。この後、黒鉛材料の充填密度が1.60g/cm3になるように圧延し、100℃で2時間真空乾燥させて、黒鉛負極をそれぞれ作製した。なお、黒鉛粉末αを用いた黒鉛負極を負極aとし、黒鉛粉末βを用いた黒鉛負極を負極bとし、黒鉛粉末γを用いた黒鉛負極を負極cとし、黒鉛粉末δを用いた黒鉛負極を負極dとした。
【0018】
(2)ピーク強度比の測定
上述のよう作製した各黒鉛負極a,b,c,dから黒鉛層をそれぞれ剥離させた後、これらの剥離した各黒鉛層をCu−Kα線源を用いたX線回折装置でそれぞれX線回折した結果、図1(黒鉛負極a)、図2(黒鉛負極b)、図3(黒鉛負極c)および図4(黒鉛負極d)に示すようなX線回折図を得た。ついで、これらの回折図に基づいて、菱面体構造の結晶子の(101)面のピーク強度(cps)P1(回折角43.2°±0.5°)と、六方晶構造の結晶子の(101)面のピーク強度(cps)P2(回折角44.3°±0.5°)とのピーク強度比(P1/P2)を求めると、下記の表1に示すような結果となった。なお、各ピーク強度P1,P2は、図1〜図4のX線回折図におけるバックグランド線(各図の点線)から各回折角でのピークまでの高さを表している。
【0019】
(3)単極セルの作製
上述のよう作製した各黒鉛負極a,b,c,dを用い、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比が50対50となるように混合した混合溶媒にLiPF6を1モル/リットル溶解した溶液を有機電解液とし、ポリプロピレン製の微多孔膜をセパレータとし、各黒鉛負極a,b,c,dの対極および参照極としてリチウム金属板を用いて三電極式単極セルA,B,C,Dをそれぞれ作製した。なお、黒鉛負極aを用いた三電極式単極セルを単極セルAとし、黒鉛負極bを用いた三電極式単極セルを単極セルBとし、黒鉛負極cを用いた三電極式単極セルを単極セルCとし、黒鉛負極dを用いた三電極式単極セルを単極セルDとした。
【0020】
(4)単極充放電試験
これらの各単極セルA,B,C,Dを用いて、室温(約25℃)で、0.5mA/cm2の電流密度で、電池電圧が2.0mVになるまで定電流充電し、2.0mVで電流密度が0.10mA/cm2に達するまで定電圧充電した後、0.5mA/cm2の電流密度で、電池電圧1.0Vになるまで放電させるという充放電を1回だけ行い、放電時間から負極の黒鉛材料1g当たりの放電容量(単極放電容量)(mAh/g)を求めると下記の表1に示すような結果となった。
【0021】
【表1】

Figure 0004656710
【0022】
上記表1の結果から、菱面体構造の結晶子の(101)面のピーク強度P1(回折角43.2°±0.5°)と、六方晶構造の結晶子の(101)面のピーク強度P2(回折角44.3°±0.5°)とのピーク強度比(P1/P2)を横軸とし、単極放電容量(mAh/g)を縦軸としてグラフにすると、図5に示すような結果となった。図5の結果から明らかなように、ピーク強度比(P1/P2)が大きくなるほど単極放電容量(mAh/g)が大きくなることが分かる。
そして、単極容量が大きい電極を用いた方が容量が大きい電池が得られるので、ピーク強度比(P1/P2)ができるだけ大きな黒鉛を用いた方が良いということができるが、実用的には単極容量が350mAh/g以上であれば、かなり高容量の電池が得られる。したがって、ピーク強度比(P1/P2)は0.20以上にするのが好ましいということができる。
【0023】
3.非水電解液二次電池
(1)負極の作製
ついで、上述のように用意した各黒鉛粉末α,β,δをそれぞれ用い、これらの各黒鉛粉末α,β,δと、結着剤としてのスチレン−ブタジエンゴム(SBR)とのディスパージョン(固形分は48質量%)を水に分散させた後、増粘剤となるカルボキシメチルセルロース(CMC)を添加、混合してそれぞれスラリーを調製した。なお、塊状黒鉛とSBRとCMCとの乾燥後の質量組成比が塊状黒鉛:SBR:CMC=95:3:2となるように調製した。
【0024】
なお、結着剤としては、スチレン−ブタジエンゴム(SBR)に代えて、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレートなどのエチレン性不飽和カルボン酸エステル、あるいはアクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸などのエチレン性不飽和カルボン酸を用いてもよい。また、増粘剤としては、カルボキシメチルセルロース(CMC)に代えて、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどを用いてもよい。
【0025】
ついで、銅箔からなる負極集電体を用意し、上述のように作製したそれぞれのスラリーをこの負極集電体の両面に、ドクターブレード法により、負極集電体の単位面積当たり100g/m2をそれぞれ塗布して負極黒鉛材料層をそれぞれ形成した。この後、黒鉛材料の充填密度が1.6g/cm3になるように圧延し、100℃で2時間真空乾燥させて、黒鉛負極をそれぞれ作製した。なお、黒鉛粉末αを用いた黒鉛負極を負極eとし、黒鉛粉末βを用いた黒鉛負極を負極fとし、黒鉛粉末δを用いた黒鉛負極を負極gとした。
【0026】
(2)ピーク強度比の測定
上述のよう作製した各黒鉛負極e,f,gから黒鉛層をそれぞれ剥離させた後、これらの剥離した各黒鉛層をCu−Kα線源を用いたX線回折装置でそれぞれX線回折して上述と同様にX線回折図を得た。ついで、これらの回折図に基づいて、菱面体構造の結晶子の(101)面のピーク強度(cps)P1(回折角43.2°±0.5°)と、六方晶構造の結晶子の(101)面のピーク強度(cps)P2(回折角44.3°±0.5°)とのピーク強度比(P1/P2)を求め、これらの各ピーク強度P1,P2に基づいてピーク強度比(P1/P2)を求めると、下記の表2に示すような結果となった。
【0027】
(3)正極の作製
平均粒径5μmのコバルト酸リチウム(LiCoO2)粉末と導電剤としての人造黒鉛粉末を質量比で9:1の割合で混合して正極合剤を調製した。この正極合剤と、N−メチル−2−ピロリドン(NMP)にポリフッ化ビニリデン(PVdF)を5質量%溶解した結着剤溶液とを固形分の質量比で95:5となるように混練して、正極スラリーを調製した。
ついで、アルミニウム箔からなる正極集電体を用意し、上述のように作製した正極スラリーを正極集電体の両面に、ドクターブレード法により、正極集電体の単位面積当たり240g/m2を塗布して正極合剤層を形成した。この後、正極合剤の充填密度が3.2g/cm3になるように圧延し、150℃で2時間真空乾燥させて正極を作製した。
なお、正極活物質として、LiCoO2に代えて、LiMn24,LiNiO2,LiMn1.5Ni0.54などの組成式がLiaMOb(MはMn,Co,Ni,V,Nbなどから選択される1種の金属元素で、0≦a≦2で1≦b≦5)で表される金属MとLiとの複合酸化物を用いてもよい。
【0028】
(4)リチウム二次電池の作製
ついで、リチウム二次電池の作製例を図6に基づいて説明する。ここで、図6において、上述のようにして作製した各黒鉛負極e,f,gを負極板10とし、上述のようにして作製した正極を正極板20として示している。そして、図6に示すように、負極板10と正極板20とをこれらの間にポリエチレン製微多孔膜からなるセパレータ30を介在させて重ね合わせた後、渦巻状に巻回して渦巻状電極体を作製した。この電極体の上下にそれぞれ絶縁板41を配置した後、1枚板からプレス加工により円筒状に成形した負極端子を兼ねるスチール製の外装缶40の開口部より、この電極体を挿入した。
【0029】
ついで、電極体の負極板10より延出する負極集電タブ10aを外装缶40の内底部に溶接するとともに、電極体の正極板20より延出する正極集電タブ20aを電流遮断封口体50の底板54とを溶接した。そして、エチレンカーボネート(EC)とジエチルカーボネート(DEC)からなる混合溶媒(EC:DEC=50:50:体積比)にLiPF6を1モル/リットル溶解した有機電解液を外装缶40内に注入した後、外装缶40の開口部にポリプロピレン(PP)製の外装缶用絶縁ガスケット42を介して電流遮断封口体50を載置し、外装缶40の開口部の上端部を電流遮断封口体50側にかしめて液密に封口して、公称容量が1450mAhのリチウム二次電池E,F,Gをそれぞれ作製した。なお、黒鉛負極板eを用いたリチウム二次電池を電池Eとし、黒鉛負極板fを用いたリチウム二次電池を電池Fとし、黒鉛負極板gを用いたリチウム二次電池を電池Gとした。
【0030】
なお、電流遮断封口体50は、逆皿状(キャップ状)に形成されたステンレス製の正極キャップ51と、皿状に形成されたステンレス製の底板54とから構成されている。これらの正極キャップ51と底板54との内部には、電池内部のガス圧が上昇して所定の圧力以上になると変形する図示しないアルミニウム箔からなる電力導出板が収容されているとともに、PTC(Positive Temperature Coefficient)サーミスタ素子が配設されている。そして、電池内に過電流が流れて異常な発熱現象を生じると、このPTCサーミスタ素子の抵抗値が増大して過電流を減少させる。また、電池内部のガス圧が上昇して所定の圧力以上になると電力導出板が変形するため、電力導出板と正極キャップ51との接触が遮断されて過電流あるいは短絡電流が遮断されるようになされている。
【0031】
なお、有機電解液の溶媒としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)からなる混合溶媒に代えて、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチルなどの単体、2成分混合物あるいは3成分混合物を用いてもよい。
また、有機電解液の溶質としては、LiPF6に代えて、LiBF4、LiCF3SO3、LiAsF6、LiN(CF3SO22、LiC(CF3SO23、LiCF3(CF23SO3などを用いてもよい。
【0032】
(5)リチウム二次電池の充放電試験
これらの各電池E,F,Gを用いて、室温(約25℃)で、1450mA(1C:Cは電極容量を表し、Itともいう)の充電電流で、電池電圧が4.2Vになるまで定電流充電し、4.2Vの定電圧で電流値が20mAに達するまで定電圧充電した後、1450mA(1C)の放電電流で、電池電圧が2.75Vになるまで放電させるという充放電を1回だけ行って、放電時間から1Cでの放電容量(mAh)を求めた。
【0033】
また、これらの各電池E,F,Gを用いて、室温(約25℃)で、1450mA(1C)の充電電流で、電池電圧が4.2Vになるまで定電流充電し、4.2Vの定電圧で電流値が20mAに達するまで定電圧充電した後、3625mA(2.5C)の放電電流で、電池電圧が2.75Vになるまで放電させるという充放電を1回だけ行って、放電時間から2.5Cでの放電容量(高率放電容量)(mAh)を求めた。ついで、2.5Cでの放電容量に対する1Cでの放電容量の比率を算出して、放電容量比(放電容量比=(1Cでの放電容量/2.5Cでの放電容量)×100%)を求めると下記の表2に示すような結果となった。
【0034】
【表2】
Figure 0004656710
【0035】
上記表2の結果から、菱面体構造の結晶子の(101)面のピーク強度P1(回折角43.2°±0.5°)と、六方晶構造の結晶子の(101)面のピーク強度P2(回折角44.3°±0.5°)とのピーク強度比(P1/P2)を横軸とし、放電容量、高率放電容量および放電容量比を縦軸としてグラフにすると、図7に示すような結果となった。図7の結果から明らかなように、1Cでの放電容量(図7の黒丸印)はピーク強度比(P1/P2)に関わらずほぼ一定であるが、2.5Cでの放電容量(図7の白丸印)および放電容量比(図7の×印)はピーク強度比(P1/P2)が大きくなるに伴って低下することが分かる。
【0036】
図7の結果から高率放電容量および放電容量比はピーク強度比(P1/P2)が0.30まではほぼ一定であるが、特にピーク強度比(P1/P2)が0.30を越えると低下率が増大することから、ピーク強度比(P1/P2)は0.30以下に規制すれば、高率放電容量および放電容量比の優れたリチウム二次電池が得られることが分かる。そして、図5の結果から単極放電容量はピーク強度比(P1/P2)が大きくなるに伴って増加し、ピーク強度比(P1/P2)を0.20以上にすれば容量が大きい電池が得られることを考慮すると、ピーク強度比(P1/P2)は0.20以上で0.30以下に最適化するのが好ましいということができる。
【0037】
4.黒鉛負極の充填密度の検討
(1)充填密度が1.55g/cm3の黒鉛負極を用いたリチウム二次電池
上述のように用意した各黒鉛粉末α,β,δをそれぞれ用いて、これらの各黒鉛粉末α,β,δとスチレン−ブタジエンゴム(SBR)とのディスパージョン(固形分は48質量%)を水に分散させた後、増粘剤となるカルボキシメチルセルロース(CMC)を添加、混合してそれぞれスラリーを調製した。なお、塊状黒鉛とSBRとCMCとの乾燥後の質量組成比が塊状黒鉛:SBR:CMC=95:3:2となるように調製した。
【0038】
ついで、銅箔からなる負極集電体を用意し、上述のように作製したそれぞれのスラリーをこの負極集電体の両面に、ドクターブレード法により、負極集電体の単位面積当たり100g/m2をそれぞれ塗布して負極黒鉛材料層をそれぞれ形成した。この後、黒鉛材料の充填密度が1.55g/cm3になるように圧延し、100℃で2時間真空乾燥させて、黒鉛負極板をそれぞれ作製した。なお、黒鉛粉末αを用いた黒鉛負極板を負極板hとし、黒鉛粉末βを用いた黒鉛負極板を負極板iとし、黒鉛粉末δを用いた黒鉛負極板を負極板jとした。
【0039】
ついで、上述のよう作製した各黒鉛負極h,i,jから黒鉛層をそれぞれ剥離させた後、これらの剥離した各黒鉛層をCu−Kα線源を用いたX線回折装置でそれぞれX線回折して上述と同様にX線回折図を得た。ついで、これらの回折図に基づいて、菱面体構造の結晶子の(101)面のピーク強度(cps)P1(回折角43.2°±0.5°)と、六方晶構造の結晶子の(101)面のピーク強度(cps)P2(回折角44.3°±0.5°)を求め、これらの各ピーク強度P1,P2に基づいてピーク強度比(P1/P2)を求めると、下記の表3に示すような結果となった。
【0040】
ついで、上述のよう作製した各黒鉛負極板h,i,jを用いて、上述と同様に公称容量1450mAhのリチウム二次電池をそれぞれ作製した。なお、黒鉛負極板hを用いたリチウム二次電池を電池Hとし、黒鉛負極板iを用いたリチウム二次電池を電池Iとし、黒鉛負極板jを用いたリチウム二次電池を電池Jとした。ついで、上述と同様に、これらの各電池H,I,Jを用いて、上述と同様に充放電を行って、1Cでの放電容量(mAh)および2.5Cでの放電容量(高率放電容量)(mAh)を求めて、放電容量比(放電容量比=(1Cでの放電容量/2.5Cでの放電容量)×100%)を求めると下記の表3に示すような結果となった。
【0041】
【表3】
Figure 0004656710
【0042】
上記表3の結果から、菱面体構造の結晶子の(101)面のピーク強度P1(回折角43.2°±0.5°)と、六方晶構造の結晶子の(101)面のピーク強度P2(回折角44.3°±0.5°)とのピーク強度比(P1/P2)を横軸とし、1Cでの放電容量、2.5Cでの放電容量および放電容量比を縦軸としてグラフにすると、図8に示すような結果となった。図8の結果から明らかなように、1Cでの放電容量(図8の黒丸印)はピーク強度比(P1/P2)が大きくなるに伴って若干増大するが、高率放電容量および放電容量比はピーク強度比(P1/P2)が大きくなってもほぼ一定であることが分かる。
このことから、黒鉛の充填密度が1.55g/cm3で低充填密度の黒鉛負極を用いたリチウム二次電池にあっては、黒鉛負極に用いる結晶子のピーク強度比(P1/P2)を0.20以上で0.30以下に最適化しても、高率放電容量および放電容量比が向上させるという効果を発揮しにくいということができる。
【0043】
(2)充填密度が1.70g/cm3の黒鉛負極を用いたリチウム二次電池
上述のように用意した各黒鉛粉末α,β,δおよびγとδを混合した混合黒鉛粉末をそれぞれ用いて、これらの各黒鉛粉末α,β,δおよびγとδの混合黒鉛粉末と、スチレン−ブタジエンゴム(SBR)とのディスパージョン(固形分は48質量%)を水に分散させた後、増粘剤となるカルボキシメチルセルロース(CMC)を添加、混合してそれぞれスラリーを調製した。なお、塊状黒鉛とSBRとCMCとの乾燥後の質量組成比が塊状黒鉛:SBR:CMC=95:3:2となるように調製した。
【0044】
ついで、銅箔からなる負極集電体を用意し、上述のように作製したそれぞれのスラリーをこの負極集電体の両面に、ドクターブレード法により、負極集電体の単位面積当たり110g/m2をそれぞれ塗布して負極黒鉛材料層をそれぞれ形成した。この後、黒鉛材料の充填密度が1.70g/cm3になるように圧延し、100℃で2時間真空乾燥させて、黒鉛負極板をそれぞれ作製した。なお、黒鉛粉末αを用いた黒鉛負極板を負極板kとし、黒鉛粉末βを用いた黒鉛負極板を負極板lとし、黒鉛粉末δを用いた黒鉛負極板を負極板mとし、黒鉛粉末γとδを混合した混合黒鉛粉末を用いた黒鉛負極板を負極板nとした。
【0045】
ついで、上述のよう作製した各黒鉛負極k,l,m,nから黒鉛層をそれぞれ剥離させた後、これらの剥離した各黒鉛層をCu−Kα線源を用いたX線回折装置でそれぞれX線回折して上述と同様にX線回折図を得た。ついで、これらの回折図に基づいて、菱面体構造の結晶子の(101)面のピーク強度(cps)P1(回折角43.2°±0.5°)と、六方晶構造の結晶子の(101)面のピーク強度(cps)P2(回折角44.3°±0.5°)を求め、これらの各ピーク強度P1,P2に基づいてピーク強度比(P1/P2)を求めると、下記の表4に示すような結果となった。なお、図9は黒鉛負極nのX線回折図を示している。
【0046】
ついで、上述のよう作製した各黒鉛負極板k,l,m,nを用いて、上述と同様に公称容量1600mAhのリチウム二次電池をそれぞれ作製した。なお、この場合は、各黒鉛負極板k,l,m,nの容量が大きいため、正極スラリーを正極集電体の単位面積当たり250g/m2になるように塗布して正極合剤層を形成し、正極合剤の充填密度が3.2g/cm3になるように圧延した正極板を用いている。そして、黒鉛負極板kを用いたリチウム二次電池を電池Kとし、黒鉛負極板lを用いたリチウム二次電池を電池Lとし、黒鉛負極板mを用いたリチウム二次電池を電池Mとし、黒鉛負極板nを用いたリチウム二次電池を電池Nとした。ついで、これらの各電池K,L,M,Nを用いて、上述と同様に充放電を行って、1Cでの放電容量(mAh)および2.5Cでの放電容量(高率放電容量)(mAh)を求めて、放電容量比(放電容量比=(1Cでの放電容量/2.5Cでの放電容量)×100%)を求めると下記の表4に示すような結果となった。
【0047】
【表4】
Figure 0004656710
【0048】
上記表4の結果から、菱面体構造の結晶子の(101)面のピーク強度P1(回折角43.2°±0.5°)と、六方晶構造の結晶子の(101)面のピーク強度P2(回折角44.3°±0.5°)とのピーク強度比(P1/P2)を横軸とし、1Cでの放電容量、2.5Cでの放電容量および放電容量比を縦軸としてグラフにすると、図10に示すような結果となった。図10の結果から明らかなように、1Cでの放電容量(図10の黒丸印)はピーク強度比(P1/P2)が大きくなるに伴って容量が多少増大するが、2.5Cでの放電容量(図10の白丸印)および放電容量比(図10の×印)はピーク強度比(P1/P2)が大きくなるに伴って低下し、特にピーク強度比(P1/P2)が0.3を越えると低下率が大きいことが分かる。また、ピーク強度比(P1/P2)が0.2より小さい黒鉛粉末(γ)と、ピーク強度比(P1/P2)が0.3より大きい黒鉛粉末(δ)を混合して、ピーク強度比(P1/P2)が0.2以上0.3以下になるように調製した混合黒鉛粉末を用いて作製した負極板nを用いた電池Nは、黒鉛粉末を混合していない黒鉛粉末(α,β,δ)を用いて作製した正極板(k,l,m)を用いた電池K,L,Mと遜色がない性能を有していることが分かる。
【0049】
(3)充填密度が1.80g/cm3の黒鉛負極を用いたリチウム二次電池
上述のように用意した各黒鉛粉末α,β,δをそれぞれ用いて、これらの各黒鉛粉末α,β,δとスチレン−ブタジエンゴム(SBR)とのディスパージョン(固形分は48質量%)を水に分散させた後、増粘剤となるカルボキシメチルセルロース(CMC)を添加、混合してそれぞれスラリーを調製した。なお、塊状黒鉛とSBRとCMCとの乾燥後の質量組成比が塊状黒鉛:SBR:CMC=95:3:2となるように調製した。
【0050】
ついで、銅箔からなる負極集電体を用意し、上述のように作製したそれぞれのスラリーをこの負極集電体の両面に、ドクターブレード法により、負極集電体の単位面積当たり115g/m2をそれぞれ塗布して負極黒鉛材料層をそれぞれ形成した。この後、黒鉛材料の充填密度が1.80g/cm3になるように圧延し、100℃で2時間真空乾燥させて、黒鉛負極板をそれぞれ作製した。なお、黒鉛粉末αを用いた黒鉛負極板を負極板oとし、黒鉛粉末βを用いた黒鉛負極板を負極板pとし、黒鉛粉末δを用いた黒鉛負極板を負極板qとした。
【0051】
ついで、上述のよう作製した各黒鉛負極o,p,qから黒鉛層をそれぞれ剥離させた後、これらの剥離した各黒鉛層をCu−Kα線源を用いたX線回折装置でそれぞれX線回折して上述と同様にX線回折図を得た。ついで、これらの回折図に基づいて、菱面体構造の結晶子の(101)面のピーク強度(cps)P1(回折角43.2°±0.5°)と、六方晶構造の結晶子の(101)面のピーク強度(cps)P2(回折角44.3°±0.5°)を求め、これらの各ピーク強度P1,P2に基づいてピーク強度比(P1/P2)を求めると、下記の表5に示すような結果となった。
【0052】
ついで、上述のよう作製した各黒鉛負極板o,p,qを用いて、上述と同様に公称容量1700mAhのリチウム二次電池をそれぞれ作製した。なお、この場合は、各黒鉛負極板o,p,qの容量が大きいため、正極スラリーを正極集電体の単位面積当たり260g/m2になるように塗布して正極合剤層を形成し、正極合剤の充填密度が3.3g/cm3になるように圧延した正極板を用いている。なお、黒鉛負極板oを用いたリチウム二次電池を電池Oとし、黒鉛負極板pを用いたリチウム二次電池を電池Pとし、黒鉛負極板qを用いたリチウム二次電池を電池Qとした。ついで、これらの各電池O,P,Qを用いて、上述と同様に充放電を行って、1Cでの放電容量(mAh)および2.5Cでの放電容量(高率放電容量)(mAh)を求めて、放電容量比(放電容量比=(1Cでの放電容量/2.5Cでの放電容量)×100%)を求めると下記の表5に示すような結果となった。
【0053】
【表5】
Figure 0004656710
【0054】
上記表5の結果から、菱面体構造の結晶子の(101)面のピーク強度P1(回折角43.2°±0.5°)と、六方晶構造の結晶子の(101)面のピーク強度P2(回折角44.3°±0.5°)とのピーク強度比(P1/P2)を横軸とし、1Cでの放電容量、2.5Cでの放電容量および放電容量比を縦軸としてグラフにすると、図11に示すような結果となった。図11の結果から明らかなように、1Cでの放電容量はピーク強度比(P1/P2)が大きくなるに伴って若干大きくなるが、2.5Cでの放電容量および放電容量比はピーク強度比(P1/P2)が0.30を越えると急激に低下することが分かる。
【0055】
そして、以上の図7,図8,図10,図11の各結果から次のことが明らかとなった。即ち、黒鉛の充填密度が1.55g/cm3で低充填密度の黒鉛負極を用いたリチウム二次電池にあっては、黒鉛負極に用いる結晶子のピーク強度比(P1/P2)を0.20以上で0.30以下に最適化しても、高率放電容量および放電容量比を向上させるという効果を発揮しにくいので、黒鉛負極に用いる結晶子のピーク強度比(P1/P2)を0.20以上で0.30以下に最適化する場合には、黒鉛の充填密度を1.60g/cm3以上に高密度充填するのが好ましい。
【0056】
また、黒鉛の充填密度を1.60g/cm3以上に高密度充填する場合は、図5の結果から、ピーク強度比(P1/P2)を0.20以上にすれば容量が大きい電池が得られ、図8、図10および図11の結果から、ピーク強度比(P1/P2)が0.30を越えると高率放電容量および放電容量比が低下することを考慮すると、ピーク強度比(P1/P2)は0.20以上で0.30以下に最適化するのが好ましいということができる。また、結晶性の異なる二種類以上の黒鉛を混合することにより、ピーク強度比(P1/P2)を0.2以上で0.3以下となるように調製しても同等の効果を奏する。
【0057】
上述したように、本発明においては、菱面体構造の結晶子のCu−Kα線源を用いたX線回折法による(101)面のピーク強度(P1:回折角43.2°±0.5°)と、六方晶構造の結晶子のCu−Kα線源を用いたX線回折法による(101)面のピーク強度(P2:回折角44.3°±0.5°)とのピーク強度比(P1/P2)が0.20以上で0.30以下となるように最適化している。このため、高容量で、かつ高密度充填下であってもリチウムイオンの挿入・脱離反応が円滑に行われて、高負荷であっても容量が低下しないリチウム二次電池が得られるようになる。
【図面の簡単な説明】
【図1】 黒鉛負極aのX線回折角(2θ)に対する強度の関係を示すX線回折図である。
【図2】 黒鉛負極bのX線回折角(2θ)に対する強度の関係を示すX線回折図である。
【図3】 黒鉛負極cのX線回折角(2θ)に対する強度の関係を示すX線回折図である。
【図4】 黒鉛負極dのX線回折角(2θ)に対する強度の関係を示すX線回折図である。
【図5】 ピーク強度比(P1/P2)と単極放電容量(mAh/g)との関係を示す図である。
【図6】 本発明の一実施形態のリチウム二次電池の断面を示す図である。
【図7】 黒鉛の充填密度が1.60g/cm3の場合のピーク強度比(P1/P2)と、1Cでの放電容量および2.5Cでの放電容量ならびに放電容量比との関係を示す図である。
【図8】 黒鉛の充填密度が1.55g/cm3の場合のピーク強度比(P1/P2)と、1Cでの放電容量および2.5Cでの放電容量ならびに放電容量比との関係を示す図である。
【図9】 黒鉛負極nのX線回折角(2θ)に対する強度の関係を示すX線回折図である。
【図10】 黒鉛の充填密度が1.70g/cm3の場合のピーク強度比(P1/P2)と、1Cでの放電容量および2.5Cでの放電容量ならびに放電容量比との関係を示す図である。
【図11】 黒鉛の充填密度が1.80g/cm3の場合のピーク強度比(P1/P2)と、1Cでの放電容量および2.5Cでの放電容量ならびに放電容量比との関係を示す図である。
【符号の説明】
10…黒鉛負極板、10a…負極集電タブ、20…正極板、20a…正極集電タブ、30…セパレータ、40…外装缶、41…スペーサ、42…外装缶用絶縁ガスケット、50…電流遮断封口体[0001]
BACKGROUND OF THE INVENTION
In the present invention, the negative electrode has a graphite (however, (002) plane spacing (d 002 ) Is 0.3380 nm or less, the crystallite size in the c-axis direction (Lc) is 15 nm or more), a material capable of occluding and releasing lithium ions is used for the positive electrode, and a lithium salt is used for the organic solvent. The present invention relates to a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte solution in which a solute is dissolved, and particularly to improvement of a negative electrode.
[0002]
[Prior art]
In recent years, lithium secondary batteries have come into practical use as compact, lightweight, high-capacity chargeable / dischargeable batteries, and are used in portable electronic and communication devices such as small video cameras, mobile phones, and notebook computers. Became. This type of lithium secondary battery uses a carbon-based material capable of occluding and releasing lithium ions as a negative electrode active material, and LiCoO as a positive electrode active material. 2 , LiNiO 2 , LiMn 2 O Four , LiFeO 2 And a non-aqueous electrolyte solution in which a solute composed of a lithium salt is dissolved in an organic solvent.
[0003]
By the way, the carbonaceous material used for the negative electrode of such a lithium secondary battery attracts attention because it has little capacity deterioration during the charge / discharge cycle and has excellent durability. This is because carbon-based materials can reversibly store and release lithium at a low potential, making use of the reversible formation of intercalation compounds between lithium and carbon-based materials. . For example, a non-aqueous solution in which a positive electrode containing a sufficient amount of lithium and a carbon-based material as a negative electrode are opposed to each other through a separator and inserted into a battery can, and a solute composed of a lithium salt is dissolved in an organic solvent. By injecting the electrolyte, the battery is assembled in a discharged state.
[0004]
When the battery is charged in the first cycle, lithium in the positive electrode is electrochemically doped between the layers of the negative electrode carbon-based material, and when discharged, the doped lithium is added between the layers of the negative electrode carbon material. Is dedoped and returns to the positive electrode again.
In this case, since the discharge capacity per unit mass (mAh / g) of the carbon-based material is determined by the capacity capable of occluding and releasing lithium, the electrochemical reversible storage capacity of lithium is increased as much as possible in such a negative electrode. It is desirable to do. When electrochemically generating an intercalation compound of lithium and carbon in the battery, the upper limit is the state in which it is occluded at a ratio of one lithium atom to six carbon atoms. The intercalation compound with the material becomes saturated.
[0005]
[Problems to be solved by the invention]
Examples of carbon-based materials that satisfy the above conditions include naturally occurring natural graphite, artificial graphite obtained by graphitizing coke, artificial graphite obtained by graphitizing organic polymers or composites thereof, and artificial graphite obtained by graphitizing pitch, etc. Graphite and the like have been studied, and these graphite materials are particularly attracting attention because they have a large amount of lithium occlusion and release, and the operating potential is flat and flat over the entire region.
[0006]
By the way, since the battery capacity depends on how many active materials are filled in a limited battery can, how much the capacity per unit volume of the active material, in other words, the packing density of the carbon-based material is increased. Is important. Therefore, we obtained a carbon electrode filled with natural graphite with graphite crystals and artificial graphite graphitized from coke, and produced a lithium secondary battery using this carbon electrode. A large battery can be obtained, but on the other hand, there is a problem in that the high rate charge / discharge characteristics deteriorate.
[0007]
Then, the following knowledge was acquired when the cause which the high rate charge-and-discharge characteristic fell was pursued. That is, it has been clarified that natural graphite in which graphite crystals are developed and artificial graphite obtained by graphitizing coke have crystallites having a rhombohedral structure and crystallites having a hexagonal structure. Then, it was found that when graphite having a large number of rhombohedral crystallites is used, the discharge capacity increases, but the high-rate discharge characteristics deteriorate. On the other hand, it was found that when graphite having a small rhombohedral structure crystallite is used, the discharge capacity is lowered, but the high rate discharge characteristics are improved.
The present invention has been made on the basis of the above knowledge, and it is possible to obtain a negative electrode that is filled with specific graphite at a high density, has a large battery capacity, and does not deteriorate high rate charge / discharge characteristics. An object of the present invention is to provide a non-aqueous electrolyte secondary battery excellent in charge / discharge characteristics.
[0008]
[Means for solving the problems and their functions and effects]
In order to achieve the above object, the non-aqueous electrolyte secondary battery of the present invention has a negative electrode with a spacing (d) of graphite (however, (002) plane) 002 ) Is 0.3380 nm or less, the crystallite size in the c-axis direction (Lc) is 15 nm or more), a material capable of inserting / extracting lithium ions in the positive electrode, and a lithium salt in the organic solvent A non-aqueous electrolyte in which a solute consisting of
The graphite used for the negative electrode has at least a hexagonal crystallite and a rhombohedral crystallite, and is obtained by an X-ray diffraction method using a rhombohedral crystallite Cu-Kα ray source (101). The peak intensity (P1: diffraction angle 43.2 ° ± 0.5 °) of the plane and the peak intensity (P2) of the (101) plane by X-ray diffraction using a Cu—Kα radiation source of hexagonal crystallites : Optimization is made so that the peak intensity ratio (P1 / P2) with respect to the diffraction angle 44.3 ° ± 0.5 ° is 0.20 or more and 0.30 or less.
The peak intensities P1 and P2 referred to in the present invention represent the height from the background line (dotted line in each figure) to the peak at each diffraction angle in the X-ray diffraction diagrams shown in FIGS. ing.
[0009]
Here, when graphite having hexagonal crystallites and rhombohedral crystallites is used for the negative electrode, the peak intensity of the rhombohedral crystallites (P1: diffraction angle 43.2 ° ± 0.5 °). When the peak intensity ratio (P1 / P2) to the peak intensity (P2: diffraction angle 44.3 ° ± 0.5 °) of the hexagonal crystallite is less than 0.20, even when the load is low When the discharge capacity is reduced and the peak intensity ratio (P1 / P2) is larger than 0.30, the result is that the capacity reduction is remarkably increased at high load.
[0010]
From these experimental results, high capacity can be achieved if graphite having a peak intensity ratio of 0.20 or more is used for the negative electrode, and conversely if graphite having the peak intensity ratio of 0.30 or less is used for the negative electrode. Even under high-density filling, lithium ion insertion / extraction reactions are carried out smoothly, and it is considered that the capacity does not decrease even at high loads. Therefore, in order to obtain a negative electrode having a high capacity and an excellent high rate discharge characteristic, the peak intensity (P1: diffraction angle 43.2 ° ± 0.5 °) of the rhombohedral crystallite and the hexagonal crystal It is necessary to optimize so that the peak intensity ratio (P1 / P2) to the child peak intensity (P2: diffraction angle 44.3 ° ± 0.5 °) is 0.20 or more and 0.30 or less.
[0011]
Further, even if graphite whose peak intensity ratio (P1 / P2) is not within this range, a peak intensity ratio (P1 / P2) of 0.20 or more can be obtained by mixing two or more types of graphite having different crystallinity. By mixing and preparing so that it may become 0.30 or less, there exists an effect similar to the above-mentioned. The graphite packing density is 1.60 g / cm. Three If the ratio is less than 0.30, even if the peak intensity ratio (P1 / P2) of the crystallite is optimized to 0.20 or more and 0.30 or less, the effect of improving the high rate discharge capacity and the discharge capacity ratio, that is, at high load. Since the effect of not reducing the capacity is hardly exhibited even if it is, when the peak intensity ratio (P1 / P2) of the crystallite used for the graphite negative electrode is optimized to 0.20 or more and 0.30 or less, the graphite filling Density 1.60 g / cm Three It is desirable to perform high-density filling as described above.
[0012]
In addition, this invention can be used without restrict | limiting about a positive electrode active material, a non-aqueous electrolyte, the kind of separator. For example, as the positive electrode active material, a metal oxide containing at least one kind of manganese, cobalt, nickel, vanadium, and niobium, specifically, a composition formula of Li a MO b (M is a metal element selected from Mn, Co, Ni, V, Nb, etc., and a composite oxide of metal M and Li represented by 0 ≦ a ≦ 2 and 1 ≦ b ≦ 5) Can be used. For example, LiMn 2 O Four , LiCoO 2 , LiNiO 2 , LiMn 1.5 Ni 0.5 O Four Etc. are preferable.
[0013]
As a solvent for the non-aqueous electrolyte, dimethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl- 1,3-oxazolidine-2-one, γ-butyrolactone, diethyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3 -A simple substance such as dioxolane, methyl acetate or ethyl acetate, a two-component mixture or a three-component mixture is used. Moreover, as a solute dissolved in these solvents, LiPF 6 , LiBF Four , LiCF Three SO Three , LiAsF 6 , LiN (CF Three SO 2 ) 2 , LiC (CF Three SO 2 ) Three , LiCF Three (CF 2 ) Three SO Three Etc. are used.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the non-aqueous electrolyte battery of the present invention will be described.
1. Raw material graphite powder
(002) Surface spacing (d 002 ) Is 0.3363 nm, the c-axis direction crystallite size (Lc) is 90 nm, and the average particle size is 20 μm, which is a lump graphite (artificial graphite fired at 2950 ° C.), which is used as graphite powder α. . In addition, the distance between the (002) planes (d 002 ) Is 0.3370 nm, and the c-axis direction crystallite size (Lc) is 60 nm and the average particle diameter is 20 μm, which is a lump graphite (artificial graphite fired at 2800 ° C.). .
[0015]
In addition, the distance between the (002) planes (d 002 ) Is 0.3380 nm, a massive graphite (artificial graphite fired at 2650 ° C.) having a crystallite size (Lc) in the c-axis direction of 40 nm and an average particle diameter of 20 μm is prepared, and this is used as graphite powder γ. . Further, the (002) plane spacing (d 002 ) Is 0.3357 nm, a lump graphite (natural graphite) having a crystallite size (Lc) in the c-axis direction of 200 nm and an average particle diameter of 20 μm is prepared, and this is used as graphite powder δ.
[0016]
2. Monopolar cell fabrication
(1) Production of negative electrode
Next, using each of the graphite powders α, β, γ, and δ prepared as described above, dispersion of these graphite powders α, β, γ, and δ and styrene-butadiene rubber (SBR) (solid content is 48 mass%) was dispersed in water, and then carboxymethyl cellulose (CMC) as a thickener was added and mixed to prepare respective slurries. In addition, it prepared so that the mass composition ratio after drying of massive graphite, SBR, and CMC might be massive graphite: SBR: CMC = 95: 3: 2.
[0017]
Next, a negative electrode current collector made of copper foil was prepared, and each slurry prepared as described above was applied to both surfaces of the negative electrode current collector by a doctor blade method, and a graphite material layer having a thickness of 80 μm (note that the surface Area is 8cm 2 Were formed). Thereafter, the packing density of the graphite material is 1.60 g / cm. Three And vacuum dried at 100 ° C. for 2 hours to prepare graphite negative electrodes. A graphite negative electrode using graphite powder α is a negative electrode a, a graphite negative electrode using graphite powder β is a negative electrode b, a graphite negative electrode using graphite powder γ is a negative electrode c, and a graphite negative electrode using graphite powder δ is a negative electrode. A negative electrode d was obtained.
[0018]
(2) Measurement of peak intensity ratio
After the graphite layers were peeled off from the graphite negative electrodes a, b, c and d produced as described above, the peeled graphite layers were each subjected to X-ray diffraction by an X-ray diffractometer using a Cu-Kα radiation source. As a result, X-ray diffraction patterns as shown in FIG. 1 (graphite negative electrode a), FIG. 2 (graphite negative electrode b), FIG. 3 (graphite negative electrode c) and FIG. 4 (graphite negative electrode d) were obtained. Then, based on these diffraction diagrams, the peak intensity (cps) P1 (diffraction angle 43.2 ° ± 0.5 °) of the (101) plane of the rhombohedral crystallite and the crystallite of the hexagonal crystal structure When the peak intensity ratio (P1 / P2) with the peak intensity (cps) P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane was obtained, the results shown in Table 1 below were obtained. . Each of the peak intensities P1 and P2 represents the height from the background line (dotted line in each figure) to the peak at each diffraction angle in the X-ray diffraction diagrams of FIGS.
[0019]
(3) Fabrication of monopolar cell
Using each of the graphite negative electrodes a, b, c, d produced as described above, LiPF was mixed with a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed so that the volume ratio was 50:50. 6 A solution in which 1 mol / liter is dissolved is used as an organic electrolytic solution, a polypropylene microporous membrane is used as a separator, and a lithium metal plate is used as a counter electrode and a reference electrode of each graphite negative electrode a, b, c, d. Polar cells A, B, C, and D were produced, respectively. A three-electrode single electrode cell using a graphite negative electrode a is a single electrode cell A, a three-electrode single electrode cell using a graphite negative electrode b is a single electrode cell B, and a three-electrode single cell using a graphite negative electrode c. The electrode cell was a single electrode cell C, and the three electrode type single electrode cell using the graphite negative electrode d was a single electrode cell D.
[0020]
(4) Single electrode charge / discharge test
Using each of these monopolar cells A, B, C, D, 0.5 mA / cm at room temperature (about 25 ° C.) 2 Constant current charging until the battery voltage reaches 2.0 mV, and at 2.0 mV, the current density is 0.10 mA / cm. 2 After charging at a constant voltage until reaching 0.5 mA / cm 2 When the discharge capacity (single electrode discharge capacity) per 1 g of the graphite material of the negative electrode (mAh / g) is obtained from the discharge time, the battery is charged and discharged only once until the battery voltage reaches 1.0V. The results shown in Table 1 below were obtained.
[0021]
[Table 1]
Figure 0004656710
[0022]
From the results of Table 1 above, the peak intensity P1 (diffraction angle 43.2 ° ± 0.5 °) of the (101) plane of the rhombohedral crystallite and the peak of the (101) plane of the hexagonal crystallite are shown. When the peak intensity ratio (P1 / P2) with the intensity P2 (diffraction angle 44.3 ° ± 0.5 °) is plotted on the horizontal axis and the unipolar discharge capacity (mAh / g) is plotted on the vertical axis, the graph is shown in FIG. The result was as shown. As is clear from the results of FIG. 5, it can be seen that the unipolar discharge capacity (mAh / g) increases as the peak intensity ratio (P1 / P2) increases.
Since a battery having a large capacity can be obtained by using an electrode having a large single electrode capacity, it is better to use graphite having a peak intensity ratio (P1 / P2) as large as possible. If the single electrode capacity is 350 mAh / g or more, a battery with a considerably high capacity can be obtained. Therefore, it can be said that the peak intensity ratio (P1 / P2) is preferably 0.20 or more.
[0023]
3. Non-aqueous electrolyte secondary battery
(1) Production of negative electrode
Next, using each of the graphite powders α, β, and δ prepared as described above, a dispersion (solid) of the graphite powders α, β, and δ and a styrene-butadiene rubber (SBR) as a binder is used. 48% by mass was dispersed in water, and carboxymethyl cellulose (CMC) as a thickener was added and mixed to prepare slurries. In addition, it prepared so that the mass composition ratio after drying of massive graphite, SBR, and CMC might be massive graphite: SBR: CMC = 95: 3: 2.
[0024]
As the binder, instead of styrene-butadiene rubber (SBR), methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate, etc. Ethylenically unsaturated carboxylic acid esters or ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid may be used. As the thickener, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein and the like may be used instead of carboxymethylcellulose (CMC).
[0025]
Next, a negative electrode current collector made of copper foil was prepared, and each slurry prepared as described above was applied to both sides of the negative electrode current collector by a doctor blade method to 100 g / m per unit area of the negative electrode current collector. 2 Were respectively applied to form negative electrode graphite material layers. Thereafter, the packing density of the graphite material is 1.6 g / cm. Three And vacuum dried at 100 ° C. for 2 hours to prepare graphite negative electrodes. A graphite negative electrode using graphite powder α was used as negative electrode e, a graphite negative electrode using graphite powder β was used as negative electrode f, and a graphite negative electrode using graphite powder δ was used as negative electrode g.
[0026]
(2) Measurement of peak intensity ratio
After the graphite layers were peeled off from the graphite negative electrodes e, f, and g produced as described above, the peeled graphite layers were X-ray diffracted by an X-ray diffractometer using a Cu-Kα radiation source. An X-ray diffraction pattern was obtained in the same manner as described above. Then, based on these diffraction diagrams, the peak intensity (cps) P1 (diffraction angle 43.2 ° ± 0.5 °) of the (101) plane of the rhombohedral crystallite and the crystallite of the hexagonal crystal structure The peak intensity ratio (P1 / P2) with the peak intensity (cps) P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane is obtained, and the peak intensity is based on these peak intensities P1 and P2. When the ratio (P1 / P2) was determined, the results shown in Table 2 below were obtained.
[0027]
(3) Fabrication of positive electrode
Lithium cobalt oxide (LiCoO) with an average particle size of 5 μm 2 ) Powder and artificial graphite powder as a conductive agent were mixed at a mass ratio of 9: 1 to prepare a positive electrode mixture. This positive electrode mixture and a binder solution in which 5% by mass of polyvinylidene fluoride (PVdF) is dissolved in N-methyl-2-pyrrolidone (NMP) are kneaded so that the mass ratio of the solid content is 95: 5. Thus, a positive electrode slurry was prepared.
Next, a positive electrode current collector made of aluminum foil was prepared, and the positive electrode slurry produced as described above was applied to both surfaces of the positive electrode current collector by 240 g / m per unit area of the positive electrode current collector by the doctor blade method. 2 Was applied to form a positive electrode mixture layer. Thereafter, the packing density of the positive electrode mixture is 3.2 g / cm. Three And then vacuum-dried at 150 ° C. for 2 hours to produce a positive electrode.
As the positive electrode active material, LiCoO 2 Instead of LiMn 2 O Four , LiNiO 2 , LiMn 1.5 Ni 0.5 O Four And the composition formula is Li a MO b (M is a metal element selected from Mn, Co, Ni, V, Nb, etc., and a composite oxide of metal M and Li represented by 0 ≦ a ≦ 2 and 1 ≦ b ≦ 5) It may be used.
[0028]
(4) Preparation of lithium secondary battery
Next, an example of manufacturing a lithium secondary battery will be described with reference to FIGS. Here, in FIG. 6, the graphite negative electrodes e, f, and g produced as described above are shown as the negative electrode plate 10, and the positive electrode produced as described above is shown as the positive electrode plate 20. Then, as shown in FIG. 6, the negative electrode plate 10 and the positive electrode plate 20 are overlapped with a separator 30 made of a polyethylene microporous film interposed therebetween, and then wound in a spiral shape to form a spiral electrode body. Was made. After the insulating plates 41 were respectively arranged above and below the electrode body, the electrode body was inserted from an opening of a steel outer can 40 that also served as a negative electrode terminal formed into a cylindrical shape by pressing from a single plate.
[0029]
Next, the negative electrode current collecting tab 10a extending from the negative electrode plate 10 of the electrode body is welded to the inner bottom portion of the outer can 40, and the positive electrode current collecting tab 20a extending from the positive electrode plate 20 of the electrode body is welded to the current blocking sealing body 50. The bottom plate 54 was welded. Then, LiPF is added to a mixed solvent (EC: DEC = 50: 50: volume ratio) composed of ethylene carbonate (EC) and diethyl carbonate (DEC). 6 1 mol / liter of an organic electrolyte solution is injected into the outer can 40, and then a current blocking sealing body 50 is placed in the opening of the outer can 40 through an insulating gasket 42 for outer can made of polypropylene (PP). And the upper end part of the opening part of the armored can 40 was crimped to the electric current interruption sealing body 50 side, and it sealed liquid-tightly, and produced the lithium secondary batteries E, F, and G whose nominal capacity is 1450 mAh, respectively. The lithium secondary battery using the graphite negative electrode plate e is referred to as battery E, the lithium secondary battery using the graphite negative electrode plate f is referred to as battery F, and the lithium secondary battery using the graphite negative electrode plate g is referred to as battery G. .
[0030]
In addition, the electric current interruption sealing body 50 is comprised from the stainless steel positive electrode cap 51 formed in the reverse dish shape (cap shape), and the stainless steel baseplate 54 formed in the dish shape. The positive electrode cap 51 and the bottom plate 54 accommodate a power lead plate made of an aluminum foil (not shown) that deforms when the gas pressure inside the battery rises to a predetermined pressure or higher, and is PTC (Positive). Temperature Coefficient) thermistor element is provided. When an overcurrent flows in the battery and an abnormal heat generation phenomenon occurs, the resistance value of the PTC thermistor element increases to reduce the overcurrent. Further, when the gas pressure inside the battery rises and exceeds a predetermined pressure, the power lead plate is deformed, so that the contact between the power lead plate and the positive electrode cap 51 is cut off so that overcurrent or short circuit current is cut off. Has been made.
[0031]
In addition, as a solvent for the organic electrolyte, instead of a mixed solvent composed of ethylene carbonate (EC) and diethyl carbonate (DEC), ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methyl Sulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, etc. Things may be used.
Moreover, as a solute of the organic electrolyte, LiPF 6 Instead of LiBF Four , LiCF Three SO Three , LiAsF 6 , LiN (CF Three SO 2 ) 2 , LiC (CF Three SO 2 ) Three , LiCF Three (CF 2 ) Three SO Three Etc. may be used.
[0032]
(5) Lithium secondary battery charge / discharge test
Using each of these batteries E, F, and G, at room temperature (about 25 ° C.), with a charging current of 1450 mA (1C: C represents electrode capacity, also referred to as It), until the battery voltage becomes 4.2V Charging / discharging is performed with constant current charging, constant voltage charging at a constant voltage of 4.2 V until the current value reaches 20 mA, and then discharging with a discharge current of 1450 mA (1 C) until the battery voltage reaches 2.75 V. The discharge capacity (mAh) at 1 C was determined from the discharge time.
[0033]
Further, using each of these batteries E, F, and G, the battery was charged at a constant current at a room temperature (about 25 ° C.) with a charging current of 1450 mA (1C) until the battery voltage reached 4.2 V, and 4.2 V After charging at a constant voltage until the current value reaches 20 mA, charging and discharging are performed only once with a discharge current of 3625 mA (2.5 C) until the battery voltage reaches 2.75 V, and the discharge time The discharge capacity (high rate discharge capacity) at 2.5 C (mAh) was determined. Next, the ratio of the discharge capacity at 1 C to the discharge capacity at 2.5 C is calculated, and the discharge capacity ratio (discharge capacity ratio = (discharge capacity at 1 C / discharge capacity at 2.5 C) × 100%) is calculated. As a result, the results shown in Table 2 below were obtained.
[0034]
[Table 2]
Figure 0004656710
[0035]
From the results of Table 2, the peak intensity P1 (diffraction angle 43.2 ° ± 0.5 °) of the (101) plane of the rhombohedral crystallite and the peak of the (101) plane of the hexagonal crystallite are shown. When the peak intensity ratio (P1 / P2) with the intensity P2 (diffraction angle 44.3 ° ± 0.5 °) is plotted on the horizontal axis and the discharge capacity, high-rate discharge capacity, and discharge capacity ratio are plotted on the vertical axis, Results were as shown in FIG. As is apparent from the results of FIG. 7, the discharge capacity at 1C (black circles in FIG. 7) is substantially constant regardless of the peak intensity ratio (P1 / P2), but the discharge capacity at 2.5C (FIG. 7). It can be seen that the white circle mark) and the discharge capacity ratio (x mark in FIG. 7) decrease as the peak intensity ratio (P1 / P2) increases.
[0036]
From the results of FIG. 7, the high rate discharge capacity and the discharge capacity ratio are almost constant until the peak intensity ratio (P1 / P2) is 0.30, but particularly when the peak intensity ratio (P1 / P2) exceeds 0.30. Since the decrease rate increases, it can be seen that a lithium secondary battery having an excellent high rate discharge capacity and discharge capacity ratio can be obtained by limiting the peak intensity ratio (P1 / P2) to 0.30 or less. From the results of FIG. 5, the unipolar discharge capacity increases as the peak intensity ratio (P1 / P2) increases, and if the peak intensity ratio (P1 / P2) is 0.20 or more, a battery having a large capacity is obtained. Considering that it is obtained, it can be said that the peak intensity ratio (P1 / P2) is preferably optimized to 0.20 or more and 0.30 or less.
[0037]
4). Examination of packing density of graphite negative electrode
(1) Packing density is 1.55 g / cm Three Lithium secondary battery using graphite negative electrode
Using each of the graphite powders α, β, and δ prepared as described above, a dispersion of each of these graphite powders α, β, and δ and styrene-butadiene rubber (SBR) (solid content is 48% by mass). After dispersing in water, carboxymethyl cellulose (CMC) as a thickener was added and mixed to prepare respective slurries. In addition, it prepared so that the mass composition ratio after drying of massive graphite, SBR, and CMC might be massive graphite: SBR: CMC = 95: 3: 2.
[0038]
Next, a negative electrode current collector made of copper foil was prepared, and each slurry prepared as described above was applied to both sides of the negative electrode current collector by a doctor blade method to 100 g / m per unit area of the negative electrode current collector. 2 Were respectively applied to form negative electrode graphite material layers. Thereafter, the packing density of the graphite material is 1.55 g / cm. Three And vacuum-dried at 100 ° C. for 2 hours to prepare graphite negative electrode plates, respectively. A graphite negative electrode plate using graphite powder α was used as a negative electrode plate h, a graphite negative electrode plate using graphite powder β was used as a negative electrode plate i, and a graphite negative electrode plate using graphite powder δ was used as a negative electrode plate j.
[0039]
Next, after peeling the graphite layer from each of the graphite negative electrodes h, i, j produced as described above, each of the peeled graphite layers was subjected to X-ray diffraction by an X-ray diffractometer using a Cu-Kα radiation source. As described above, an X-ray diffraction pattern was obtained. Then, based on these diffraction diagrams, the peak intensity (cps) P1 (diffraction angle 43.2 ° ± 0.5 °) of the (101) plane of the rhombohedral crystallite and the crystallite of the hexagonal crystal structure When the peak intensity (cps) P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane is obtained and the peak intensity ratio (P1 / P2) is obtained based on these peak intensities P1 and P2, The results shown in Table 3 below were obtained.
[0040]
Next, lithium secondary batteries having a nominal capacity of 1450 mAh were respectively produced using the graphite negative electrode plates h, i, j produced as described above. The lithium secondary battery using the graphite negative electrode plate h is referred to as battery H, the lithium secondary battery using the graphite negative electrode plate i is referred to as battery I, and the lithium secondary battery using the graphite negative electrode plate j is referred to as battery J. . Then, similarly to the above, using each of these batteries H, I, and J, charging and discharging was performed in the same manner as described above, and the discharge capacity (mAh) at 1C and the discharge capacity (high rate discharge) at 2.5C. When the capacity (mAh) is obtained and the discharge capacity ratio (discharge capacity ratio = (discharge capacity at 1 C / discharge capacity at 2.5 C) × 100%) is obtained, the results shown in Table 3 below are obtained. It was.
[0041]
[Table 3]
Figure 0004656710
[0042]
From the results of Table 3 above, the peak intensity P1 (diffraction angle 43.2 ° ± 0.5 °) of the (101) plane of the rhombohedral crystallite and the peak of the (101) plane of the hexagonal crystallite are shown. The horizontal axis represents the peak intensity ratio (P1 / P2) with the intensity P2 (diffraction angle 44.3 ° ± 0.5 °), and the vertical axis represents the discharge capacity at 1C, the discharge capacity at 2.5C, and the discharge capacity ratio. As a graph, the result shown in FIG. 8 was obtained. As is clear from the results of FIG. 8, the discharge capacity at 1C (black circles in FIG. 8) slightly increases as the peak intensity ratio (P1 / P2) increases, but the high-rate discharge capacity and discharge capacity ratio It can be seen that even if the peak intensity ratio (P1 / P2) increases, it is substantially constant.
From this, the packing density of graphite is 1.55 g / cm. Three In a lithium secondary battery using a graphite negative electrode with a low packing density, even if the peak intensity ratio (P1 / P2) of the crystallite used in the graphite negative electrode is optimized from 0.20 to 0.30, It can be said that the effect of improving the high rate discharge capacity and the discharge capacity ratio is hardly exhibited.
[0043]
(2) Packing density is 1.70 g / cm Three Lithium secondary battery using graphite negative electrode
Using each of the graphite powders α, β, δ, and γ and δ mixed as prepared above, the graphite powders α, β, δ, γ and δ mixed graphite powder, and styrene -Dispersion with butadiene rubber (SBR) (solid content is 48% by mass) was dispersed in water, and then carboxymethyl cellulose (CMC) as a thickener was added and mixed to prepare respective slurries. In addition, it prepared so that the mass composition ratio after drying of massive graphite, SBR, and CMC might be massive graphite: SBR: CMC = 95: 3: 2.
[0044]
Next, a negative electrode current collector made of copper foil was prepared, and each slurry prepared as described above was applied to both sides of the negative electrode current collector by a doctor blade method to 110 g / m per unit area of the negative electrode current collector. 2 Were respectively applied to form negative electrode graphite material layers. After this, the packing density of the graphite material is 1.70 g / cm. Three And vacuum-dried at 100 ° C. for 2 hours to prepare graphite negative electrode plates, respectively. A graphite negative electrode plate using graphite powder α is a negative electrode plate k, a graphite negative electrode plate using graphite powder β is a negative electrode plate l, a graphite negative electrode plate using graphite powder δ is a negative electrode plate m, and a graphite powder γ. A negative electrode plate made of graphite mixed with δ and δ was used as negative electrode plate n.
[0045]
Next, after peeling the graphite layer from each of the graphite negative electrodes k, l, m, and n produced as described above, each of the peeled graphite layers was X-diffracted with an X-ray diffractometer using a Cu-Kα radiation source. X-ray diffraction patterns were obtained by line diffraction. Then, based on these diffraction diagrams, the peak intensity (cps) P1 (diffraction angle 43.2 ° ± 0.5 °) of the (101) plane of the rhombohedral crystallite and the crystallite of the hexagonal crystal structure When the peak intensity (cps) P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane is obtained and the peak intensity ratio (P1 / P2) is obtained based on these peak intensities P1 and P2, The results shown in Table 4 below were obtained. FIG. 9 shows an X-ray diffraction pattern of the graphite negative electrode n.
[0046]
Next, lithium secondary batteries having a nominal capacity of 1600 mAh were produced in the same manner as described above using the graphite negative electrode plates k, l, m, and n produced as described above. In this case, since the capacity of each graphite negative electrode plate k, l, m, n is large, the positive electrode slurry is 250 g / m per unit area of the positive electrode current collector. 2 To form a positive electrode mixture layer, and the packing density of the positive electrode mixture is 3.2 g / cm Three The positive electrode plate rolled to become is used. A lithium secondary battery using the graphite negative electrode plate k is referred to as a battery K, a lithium secondary battery using the graphite negative electrode plate l is referred to as a battery L, and a lithium secondary battery using the graphite negative electrode plate m is referred to as a battery M. A lithium secondary battery using the graphite negative electrode plate n was designated as battery N. Then, using each of these batteries K, L, M, and N, charging / discharging was performed in the same manner as described above, and the discharge capacity at 1 C (mAh) and the discharge capacity at 2.5 C (high rate discharge capacity) ( mAh) was obtained, and the discharge capacity ratio (discharge capacity ratio = (discharge capacity at 1 C / discharge capacity at 2.5 C) × 100%) was obtained, and the results shown in Table 4 below were obtained.
[0047]
[Table 4]
Figure 0004656710
[0048]
From the results in Table 4 above, the peak intensity P1 (diffraction angle 43.2 ° ± 0.5 °) of the (101) plane of the rhombohedral crystallite and the peak of the (101) plane of the hexagonal crystallite are shown. The horizontal axis represents the peak intensity ratio (P1 / P2) with the intensity P2 (diffraction angle 44.3 ° ± 0.5 °), and the vertical axis represents the discharge capacity at 1C, the discharge capacity at 2.5C, and the discharge capacity ratio. As a graph, the result shown in FIG. 10 was obtained. As is apparent from the results of FIG. 10, the discharge capacity at 1C (black circles in FIG. 10) increases slightly as the peak intensity ratio (P1 / P2) increases, but the discharge at 2.5C The capacity (white circle in FIG. 10) and the discharge capacity ratio (x in FIG. 10) decrease as the peak intensity ratio (P1 / P2) increases, and in particular, the peak intensity ratio (P1 / P2) is 0.3. It can be seen that the decrease rate is large when the value exceeds. Further, a graphite powder (γ) having a peak intensity ratio (P1 / P2) of less than 0.2 and a graphite powder (δ) having a peak intensity ratio (P1 / P2) of more than 0.3 are mixed to obtain a peak intensity ratio. Battery N using negative electrode plate n produced using mixed graphite powder prepared so that (P1 / P2) is 0.2 or more and 0.3 or less is graphite powder (α, It can be seen that the battery has the same performance as the batteries K, L, M using the positive plates (k, l, m) produced using β, δ).
[0049]
(3) Packing density is 1.80 g / cm Three Lithium secondary battery using graphite negative electrode
Using each of the graphite powders α, β, and δ prepared as described above, a dispersion of each of these graphite powders α, β, and δ and styrene-butadiene rubber (SBR) (solid content is 48% by mass). After dispersing in water, carboxymethyl cellulose (CMC) as a thickener was added and mixed to prepare respective slurries. In addition, it prepared so that the mass composition ratio after drying of massive graphite, SBR, and CMC might be massive graphite: SBR: CMC = 95: 3: 2.
[0050]
Next, a negative electrode current collector made of copper foil was prepared, and each slurry prepared as described above was applied to both surfaces of the negative electrode current collector by 115 g / m per unit area of the negative electrode current collector by a doctor blade method. 2 Were respectively applied to form negative electrode graphite material layers. After this, the packing density of the graphite material is 1.80 g / cm. Three And vacuum-dried at 100 ° C. for 2 hours to prepare graphite negative electrode plates, respectively. A graphite negative electrode plate using graphite powder α was used as a negative electrode plate o, a graphite negative electrode plate using graphite powder β was used as a negative electrode plate p, and a graphite negative electrode plate using graphite powder δ was used as a negative electrode plate q.
[0051]
Next, the graphite layers were peeled off from the graphite negative electrodes o, p, q prepared as described above, and then the peeled graphite layers were each subjected to X-ray diffraction by an X-ray diffractometer using a Cu-Kα radiation source. As described above, an X-ray diffraction pattern was obtained. Then, based on these diffraction diagrams, the peak intensity (cps) P1 (diffraction angle 43.2 ° ± 0.5 °) of the (101) plane of the rhombohedral crystallite and the crystallite of the hexagonal crystal structure When the peak intensity (cps) P2 (diffraction angle 44.3 ° ± 0.5 °) of the (101) plane is obtained and the peak intensity ratio (P1 / P2) is obtained based on these peak intensities P1 and P2, The results shown in Table 5 below were obtained.
[0052]
Next, lithium secondary batteries having a nominal capacity of 1700 mAh were prepared using the graphite negative electrode plates o, p, and q produced as described above in the same manner as described above. In this case, since the capacity of each graphite negative electrode plate o, p, q is large, the positive electrode slurry is 260 g / m per unit area of the positive electrode current collector. 2 To form a positive electrode mixture layer, and the packing density of the positive electrode mixture is 3.3 g / cm Three The positive electrode plate rolled to become is used. A lithium secondary battery using the graphite negative electrode plate o is referred to as a battery O, a lithium secondary battery using the graphite negative electrode plate p is referred to as a battery P, and a lithium secondary battery using the graphite negative electrode plate q is referred to as a battery Q. . Then, using each of these batteries O, P, and Q, charging and discharging were performed in the same manner as described above, and the discharge capacity at 1 C (mAh) and the discharge capacity at 2.5 C (high rate discharge capacity) (mAh) And the discharge capacity ratio (discharge capacity ratio = (discharge capacity at 1 C / discharge capacity at 2.5 C) × 100%) was obtained as shown in Table 5 below.
[0053]
[Table 5]
Figure 0004656710
[0054]
From the results of Table 5, the peak intensity P1 (diffraction angle 43.2 ° ± 0.5 °) of the (101) plane of the rhombohedral crystallite and the peak of the (101) plane of the hexagonal crystallite are shown. The horizontal axis represents the peak intensity ratio (P1 / P2) with the intensity P2 (diffraction angle 44.3 ° ± 0.5 °), and the vertical axis represents the discharge capacity at 1C, the discharge capacity at 2.5C, and the discharge capacity ratio. As a graph, the result shown in FIG. 11 was obtained. As is clear from the results of FIG. 11, the discharge capacity at 1C increases slightly as the peak intensity ratio (P1 / P2) increases, but the discharge capacity and discharge capacity ratio at 2.5C increase with the peak intensity ratio. It can be seen that when (P1 / P2) exceeds 0.30, it rapidly decreases.
[0055]
And the following became clear from each result of FIG. 7, FIG. 8, FIG. 10, and FIG. That is, the packing density of graphite is 1.55 g / cm. Three In a lithium secondary battery using a graphite negative electrode with a low packing density, even if the peak intensity ratio (P1 / P2) of the crystallite used in the graphite negative electrode is optimized from 0.20 to 0.30, Since the effect of improving the high rate discharge capacity and the discharge capacity ratio is hardly exhibited, the peak intensity ratio (P1 / P2) of the crystallite used for the graphite negative electrode is optimized to 0.20 or more and 0.30 or less. The graphite packing density is 1.60 g / cm Three It is preferable to perform high-density filling as described above.
[0056]
Moreover, the packing density of graphite is 1.60 g / cm. Three In the case of high-density filling as described above, from the results of FIG. 5, if the peak intensity ratio (P1 / P2) is 0.20 or more, a battery having a large capacity can be obtained. From the results of FIGS. Considering that the high rate discharge capacity and the discharge capacity ratio decrease when the peak intensity ratio (P1 / P2) exceeds 0.30, the peak intensity ratio (P1 / P2) is 0.20 or more and 0.30 or less. It can be said that it is preferable to optimize. Moreover, even if it adjusts so that peak intensity ratio (P1 / P2) may be 0.2 or more and 0.3 or less by mixing 2 or more types of graphite from which crystallinity differs, there exists an equivalent effect.
[0057]
As described above, in the present invention, the peak intensity of the (101) plane (P1: diffraction angle 43.2 ° ± 0.5 by the X-ray diffraction method using a rhombohedral crystallite Cu—Kα ray source is used. And the peak intensity of the (101) plane (P2: diffraction angle 44.3 ° ± 0.5 °) by X-ray diffraction using a Cu—Kα ray source of hexagonal crystallites. Optimization is performed so that the ratio (P1 / P2) is 0.20 or more and 0.30 or less. Therefore, a lithium secondary battery can be obtained that has a high capacity and can smoothly insert and desorb lithium ions even under high-density filling, and that does not decrease in capacity even under high loads. Become.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction diagram showing the relationship of strength with respect to an X-ray diffraction angle (2θ) of a graphite negative electrode a.
FIG. 2 is an X-ray diffraction diagram showing a relationship of intensity with respect to an X-ray diffraction angle (2θ) of a graphite negative electrode b.
FIG. 3 is an X-ray diffraction diagram showing the relationship between the strength of a graphite negative electrode c and the X-ray diffraction angle (2θ).
FIG. 4 is an X-ray diffraction diagram showing the relationship of strength with respect to an X-ray diffraction angle (2θ) of a graphite negative electrode d.
FIG. 5 is a graph showing a relationship between a peak intensity ratio (P1 / P2) and a single electrode discharge capacity (mAh / g).
FIG. 6 is a cross-sectional view of a lithium secondary battery according to an embodiment of the present invention.
FIG. 7 is a graphite packing density of 1.60 g / cm. Three It is a figure which shows the relationship between the peak intensity ratio in the case of (P1 / P2), the discharge capacity in 1C, the discharge capacity in 2.5C, and the discharge capacity ratio.
FIG. 8 is a graphite packing density of 1.55 g / cm. Three It is a figure which shows the relationship between the peak intensity ratio in the case of (P1 / P2), the discharge capacity in 1C, the discharge capacity in 2.5C, and the discharge capacity ratio.
FIG. 9 is an X-ray diffraction diagram showing the relationship of strength with respect to the X-ray diffraction angle (2θ) of graphite negative electrode n.
FIG. 10 is a graphite packing density of 1.70 g / cm. Three It is a figure which shows the relationship between the peak intensity ratio in the case of (P1 / P2), the discharge capacity in 1C, the discharge capacity in 2.5C, and the discharge capacity ratio.
FIG. 11 is a graphite packing density of 1.80 g / cm. Three It is a figure which shows the relationship between the peak intensity ratio in the case of (P1 / P2), the discharge capacity in 1C, the discharge capacity in 2.5C, and the discharge capacity ratio.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Graphite negative electrode plate, 10a ... Negative electrode current collection tab, 20 ... Positive electrode plate, 20a ... Positive electrode current collection tab, 30 ... Separator, 40 ... Exterior can, 41 ... Spacer, 42 ... Insulation gasket for exterior can, 50 ... Current interruption Sealing body

Claims (3)

負極に黒鉛(但し、(002)面の面間隔(d002)が0.3380nm以下であり、c軸方向の結晶子の大きさ(Lc)が15nm以上)を用いるとともに正極にリチウムイオンの吸蔵・放出が可能な材料を用い、かつ有機溶媒にリチウム塩からなる溶質を溶解した非水電解液を備えた非水電解液二次電池であって、
前記黒鉛は少なくとも菱面体構造の結晶子と六方晶構造の結晶子とを有するとともに、
前記菱面体構造の結晶子のX線回折法による(101)面のピーク強度(P1)と、前記六方晶構造の結晶子のX線回折法による(101)面のピーク強度(P2)とのピーク強度比(P1/P2)が0.20以上で0.30以下であることを特徴とする非水電解液二次電池。
Graphite (however, the (002) plane spacing (d 002 ) is 0.3380 nm or less and the c-axis crystallite size (Lc) is 15 nm or more) is used for the negative electrode, and lithium ions are occluded in the positive electrode. A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte using a releasable material and having a solute composed of a lithium salt dissolved in an organic solvent,
The graphite has at least rhombohedral crystallites and hexagonal crystallites,
The peak intensity (P1) of the (101) plane of the rhombohedral crystallite by X-ray diffraction and the peak intensity (P2) of the (101) plane by X-ray diffraction of the hexagonal crystallite. A non-aqueous electrolyte secondary battery having a peak intensity ratio (P1 / P2) of 0.20 or more and 0.30 or less.
負極に黒鉛(但し、(002)面の面間隔(d002)が0.3380nm以下であり、c軸方向の結晶子の大きさ(Lc)が15nm以上)を用いるとともに正極にリチウムイオンの吸蔵・放出が可能な材料を用い、かつ有機溶媒にリチウム塩からなる溶質を溶解した非水電解液を備えた非水電解液二次電池であって、
前記黒鉛は少なくとも菱面体構造の結晶子と六方晶構造の結晶子とを有する2種類以上の結晶構造の異なる黒鉛が混合された混合黒鉛を備えるとともに、
前記菱面体構造の結晶子のX線回折法による(101)面のピーク強度(P1)と、前記六方晶構造の結晶子のX線回折法による(101)面のピーク強度(P2)とのピーク強度比(P1/P2)が0.20以上で0.30以下になるように調製されていることを特徴とする非水電解液二次電池。
Graphite (however, the (002) plane spacing (d 002 ) is 0.3380 nm or less and the c-axis crystallite size (Lc) is 15 nm or more) is used for the negative electrode, and lithium ions are occluded in the positive electrode. A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte using a releasable material and having a solute composed of a lithium salt dissolved in an organic solvent,
The graphite includes a mixed graphite in which two or more kinds of graphite having different crystal structures, each having at least a rhombohedral crystallite and a hexagonal crystallite, are mixed.
The peak intensity (P1) of the (101) plane of the rhombohedral crystallite by X-ray diffraction and the peak intensity (P2) of the (101) plane by X-ray diffraction of the hexagonal crystallite. A non-aqueous electrolyte secondary battery prepared so that a peak intensity ratio (P1 / P2) is 0.20 or more and 0.30 or less.
前記黒鉛の充填密度は1.60g/cm3以上であることを特徴とする請求項1または請求項2に記載の非水電解液二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the graphite has a packing density of 1.60 g / cm 3 or more.
JP2000298233A 2000-09-29 2000-09-29 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4656710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000298233A JP4656710B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000298233A JP4656710B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2002110157A JP2002110157A (en) 2002-04-12
JP2002110157A5 JP2002110157A5 (en) 2007-10-04
JP4656710B2 true JP4656710B2 (en) 2011-03-23

Family

ID=18780220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000298233A Expired - Fee Related JP4656710B2 (en) 2000-09-29 2000-09-29 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4656710B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4809676B2 (en) * 2005-12-27 2011-11-09 Jx日鉱日石エネルギー株式会社 Petroleum coke and method for producing the same
WO2007074939A1 (en) 2005-12-27 2007-07-05 Nippon Oil Corporation Raw coal for making carbonaceous material for electricity storage or needle coke
ES2701178T3 (en) 2007-06-22 2019-02-21 Nippon Petroleum Refining Company Ltd Procedure to produce petroleum coke
CN101494302B (en) * 2008-01-22 2012-10-03 索尼株式会社 Battery
EP2400586B1 (en) * 2009-02-20 2020-04-01 Mitsubishi Chemical Corporation Carbon material for lithium ion secondary batteries
JP6301619B2 (en) 2013-09-20 2018-03-28 株式会社東芝 Non-aqueous electrolyte secondary battery, battery pack and car
WO2016038692A1 (en) * 2014-09-09 2016-03-17 グラフェンプラットフォーム株式会社 Graphite-based carbon material which is used as graphene precursor, graphene dispersion and graphene composite including same, and method for producing same
KR102439850B1 (en) * 2015-08-27 2022-09-01 삼성에스디아이 주식회사 Negative electrode active material for rechargeable lithium battery, method for preparing the same, and negative electrode and rechargeable lithium battery including same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318459A (en) * 1993-03-10 1994-11-15 Toshiba Corp Lithium secondary battery
JPH07282812A (en) * 1994-04-08 1995-10-27 Nippon Steel Corp Carbon negative electrode material for lithium secondary battery
JPH08507408A (en) * 1993-12-22 1996-08-06 サフト Carbon negative electrode for rechargeable lithium electrochemical cell and method of manufacturing the same
JPH08287910A (en) * 1995-04-10 1996-11-01 Hitachi Ltd Nonaqueous secondary battery and manufacture of graphite powder
JPH1097870A (en) * 1996-09-20 1998-04-14 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH11214042A (en) * 1998-01-29 1999-08-06 Sony Corp Nonaqueous electrolyte secondary battery
JPH11217266A (en) * 1998-01-29 1999-08-10 Hitachi Chem Co Ltd Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JPH11283622A (en) * 1998-03-31 1999-10-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2001351627A (en) * 2000-06-06 2001-12-21 Fdk Corp Lithium ion secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318459A (en) * 1993-03-10 1994-11-15 Toshiba Corp Lithium secondary battery
JPH08507408A (en) * 1993-12-22 1996-08-06 サフト Carbon negative electrode for rechargeable lithium electrochemical cell and method of manufacturing the same
JPH07282812A (en) * 1994-04-08 1995-10-27 Nippon Steel Corp Carbon negative electrode material for lithium secondary battery
JPH08287910A (en) * 1995-04-10 1996-11-01 Hitachi Ltd Nonaqueous secondary battery and manufacture of graphite powder
JPH1097870A (en) * 1996-09-20 1998-04-14 Fuji Elelctrochem Co Ltd Lithium secondary battery
JPH11214042A (en) * 1998-01-29 1999-08-06 Sony Corp Nonaqueous electrolyte secondary battery
JPH11217266A (en) * 1998-01-29 1999-08-10 Hitachi Chem Co Ltd Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JPH11283622A (en) * 1998-03-31 1999-10-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2001351627A (en) * 2000-06-06 2001-12-21 Fdk Corp Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2002110157A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP4626568B2 (en) Lithium ion secondary battery
JP5315591B2 (en) Positive electrode active material and battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2007194202A (en) Lithium ion secondary battery
KR20020069148A (en) Lithium Secondary Cell
KR20070065803A (en) Cathode active material and lithium ion secondary battery
JPH103920A (en) Lithium secondary battery, and manufacture of the same
JP4595145B2 (en) Non-aqueous electrolyte battery
JP2008060033A (en) Positive-electrode active material, positive electrode using the same, nonaqueous electrolyte secondary battery, and positive-electrode active material manufacturing method
JP2017520892A (en) Positive electrode for lithium battery
JP2012003997A (en) Nonaqueous electrolyte secondary cell
JP2001345101A (en) Secondary battery
JP2002117836A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery using it
KR20150065078A (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP4656710B2 (en) Non-aqueous electrolyte secondary battery
JP2006134758A (en) Secondary battery
JP2003086177A (en) Negative electrode active material and nonaqueous electrolyte battery
JP2002203556A (en) Non-aqueous electrolyte secondary battery
US8227100B2 (en) Negative active material for lithium ion battery and lithium ion battery including the same
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2003263979A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2022077319A (en) Anode active material
JP3720959B2 (en) Secondary battery electrode material
JP4983124B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte battery using the same
JP2002110155A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4656710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees