JP2001351627A - Lithium ion secondary battery - Google Patents
Lithium ion secondary batteryInfo
- Publication number
- JP2001351627A JP2001351627A JP2000169637A JP2000169637A JP2001351627A JP 2001351627 A JP2001351627 A JP 2001351627A JP 2000169637 A JP2000169637 A JP 2000169637A JP 2000169637 A JP2000169637 A JP 2000169637A JP 2001351627 A JP2001351627 A JP 2001351627A
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- lithium
- rhombohedral
- positive electrode
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、リチウムイオン
二次電池に関し、特に、負極合剤として用いられる黒鉛
材料の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery, and more particularly to an improvement in a graphite material used as a negative electrode mixture.
【0002】[0002]
【従来の技術】一般式LiCoO2で表現されるコバル
ト酸リチウムに代表される、リチウムを含んだ複合金属
酸化物を正極活物質とし、負極材料としてリチウムの吸
蔵・放出可能な炭素材料及びリチウム塩を含む非水電解
液を用いたリチウムイオン二次電池は、高起電力で充放
電サイクル中での容量劣化が少なく優れた耐久性を示す
ことで注目されている。これは正極及び負極に、リチウ
ムの吸蔵・放出が可逆的に行われる材料を用いているた
めで、充放電過程においてリチウムとの複合化合物が可
逆的に形成されることを利用したものである。 2. Description of the Related Art A lithium-containing composite metal oxide represented by lithium cobalt oxide represented by the general formula LiCoO 2 is used as a positive electrode active material, and a carbon material and a lithium salt capable of occluding and releasing lithium are used as a negative electrode material. Lithium ion secondary batteries using a non-aqueous electrolyte solution containing hydrogen are attracting attention because of their high electromotive force, little capacity degradation during charge / discharge cycles, and excellent durability. This is because a material capable of inserting and extracting lithium reversibly is used for the positive electrode and the negative electrode, and utilizes the fact that a complex compound with lithium is reversibly formed in the charging and discharging process.
【0003】例えば炭素材料を用いた負極と、セパレー
タを介して、コバルト酸リチウムを用いた正極と対向さ
せ、非水電解液と共に電池を構成した場合、この電池は
放電状態で組立てが完了することになる。このため、こ
の種の電池は、組立て後に充電しないと放電可能状態に
ならない。この電池に対して第1サイクル目の充電を行
うと、コバルト酸リチウムに含まれていたリチウムは放
出され、その正極電位は貴な方向に移行し、負極炭素材
料の層間にドープされる。そして放電を行うと、炭素材
料にドープされていたリチウムは脱ドープし、再び正極
のコバルト酸リチウムの中に吸蔵され、その正極電位は
卑な方向に移行する。For example, when a battery is formed together with a non-aqueous electrolyte by facing a negative electrode using a carbon material and a positive electrode using lithium cobalt oxide via a separator, the battery is required to be assembled in a discharged state. become. For this reason, this type of battery cannot be discharged unless it is charged after assembly. When the battery is charged in the first cycle, lithium contained in the lithium cobalt oxide is released, the positive electrode potential shifts to a noble direction, and is doped between layers of the negative electrode carbon material. When the discharge is performed, the lithium doped in the carbon material is undoped, and is occluded again in the lithium cobalt oxide of the positive electrode, and the positive electrode potential shifts to a lower direction.
【0004】この種の電池の充電上限電圧を4.1V〜
4.2V程度に設定した場合、正極電位は通常、リチウ
ム電位に対して4.3V以上の貴な電位に達することは
無く、負極電位はリチウム金属電位よりも卑に達するこ
とのないように、電池内に充填される正極材料及び負極
材料の重量比率が任意に決定される。しかし電池を充電
する際、充電器の突然の故障により電池へ一時的に大電
流が流れたり、電池が充電終止電圧に達してもなお通電
状態が続く場合がある。このような過充電状態に曝され
た場合、電池内にガスが発生し、内圧が上昇して破裂す
るという問題を生ずる。[0004] The charging upper limit voltage of this type of battery is from 4.1 V to
When set to about 4.2 V, the positive electrode potential does not usually reach a noble potential of 4.3 V or more with respect to the lithium potential, and the negative electrode potential does not reach a lower level than the lithium metal potential. The weight ratio of the positive electrode material and the negative electrode material filled in the battery is arbitrarily determined. However, when charging a battery, a large current may flow temporarily to the battery due to a sudden failure of the charger, or the power-on state may continue even if the battery reaches the charge end voltage. When the battery is exposed to such an overcharged state, gas is generated in the battery, causing a problem that the internal pressure increases and the battery ruptures.
【0005】ニッケル−カドミウム電池やニッケル−水
素電池のような二次電池では上記のように電池内部でガ
スが発生した場合、このガスを電極で吸収できるため、
破裂を未然に防止することが出来る。ところがこの種の
リチウム二次電池においては、電極による発生ガスの吸
収が行われないため、電池内圧の上昇により作動する安
全弁すなわち防爆弁を設けて、内圧が所定の値以上にな
った場合には、上記ガスを排出し、爆発を防いでいる。In a secondary battery such as a nickel-cadmium battery or a nickel-hydrogen battery, when gas is generated inside the battery as described above, the gas can be absorbed by the electrode.
Burst can be prevented beforehand. However, in this type of lithium secondary battery, since the generated gas is not absorbed by the electrode, a safety valve that operates by increasing the internal pressure of the battery, that is, an explosion-proof valve is provided, and when the internal pressure exceeds a predetermined value, The above gas is discharged to prevent explosion.
【0006】例えば特開平2−112151号、並びに
特開平2−288063号には、電池内の内圧の上昇に
伴い電流を遮断する防爆型リチウムイオン二次電池が提
案されている。この防爆型リチウムイオン二次電池は、
内圧の上昇にともない内圧方向に変形を生じる防爆弁
に、リード遮断用ストッパーを接触して取り付け、所定
の内圧に達したとき、リード板が防爆弁より剥離する
か、リード板が破断するようにして電流を遮断し、爆発
を防ぐようにしたものである。For example, JP-A-2-112151 and JP-A-2-288063 propose an explosion-proof lithium-ion secondary battery in which current is cut off as the internal pressure of the battery increases. This explosion-proof lithium-ion secondary battery is
The explosion-proof valve, which deforms in the direction of internal pressure as the internal pressure rises, is installed by contacting the stopper for reed shut-off. To cut off the current and prevent the explosion.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、前述し
た従来のリチウムイオン二次電池であっても、過充電状
態に陥ると急速な温度上昇を生じるものがあった。本発
明者らがこの原因を詳細に調査したところ、電池内圧が
それほど上昇する前に急激な発熱が起こり、前記電流遮
断機構が有効に機能する前に、急速な温度上昇を起こす
場合があることが判明した。またこの現象の主な原因の
一つとして、正極活物質である前記コバルト酸リチウム
が過充電時において、リチウムが全て放出される前に酸
素ガスを放出して急速に分解し、この時急激に発生する
酸素ガスと、負極のリチウム−黒鉛層間化合物が急速に
反応することによって、急速な温度上昇を伴う発熱が起
こることが判った。However, even in the above-mentioned conventional lithium ion secondary battery, there is a type in which the temperature rises rapidly when the battery is overcharged. The present inventors have investigated this cause in detail, and found that rapid heat generation occurs before the internal pressure of the battery rises so much, and that the temperature may rise rapidly before the current interruption mechanism functions effectively. There was found. One of the main causes of this phenomenon is that when the lithium cobalt oxide, which is the positive electrode active material, is overcharged, it releases oxygen gas before all the lithium is released, and rapidly decomposes. It has been found that the generated oxygen gas reacts rapidly with the lithium-graphite intercalation compound of the negative electrode to generate heat with a rapid temperature rise.
【0008】本発明は、このような過充電状態に陥った
電池の安全性を改良するものであって、その目的は、過
充電時における正極活物質の酸化分解に伴う酸素ガス
と、リチウム−黒鉛層間化合物との急速な反応を阻害
し、これにより急速な温度上昇を未然に防ぐことができ
るリチウムイオン二次電池を提供することにある。The present invention is intended to improve the safety of a battery that has fallen into such an overcharged state, and an object of the present invention is to provide an oxygen gas, which is generated by oxidative decomposition of a positive electrode active material during overcharge, and a lithium battery. It is an object of the present invention to provide a lithium ion secondary battery that can inhibit a rapid reaction with a graphite intercalation compound and thereby prevent a rapid temperature rise.
【0009】[0009]
【課題を解決するための手段】前記目的を達成するため
本発明のリチウムイオン二次電池にあっては、リチウム
の可逆的な吸蔵・放出が可能なリチウム含有複合金属酸
化物を正極活物質として含む正極合剤が金属箔上にシー
ト状に成形された正極部と、リチウムの吸蔵・放出可能
な黒鉛材料を主成分とする負極合剤が金属箔上にシート
状に成形されてなる負極部とをセパレータを介して重ね
合わせてなる電極体が、リチウム塩を含んだ非水電解液
と共に密閉容器内に配置されてなるリチウムイオン二次
電池において、前記黒鉛材料は、六方晶及び菱面体晶よ
り構成され、X線広角回折法でもって測定したときに、
(112)回折線から算出されるc軸方向の結晶子の大
きさLc(112)が200(Å)から400(Å)、
且つ平均粒子径が20(μm)から30(μm)であっ
て、前記菱面体晶に帰属される(101)回折線のピー
ク面積をr(101)とするとともに、前記六方晶に帰
属される(101)回折線のピーク面積をh(101)
として、{r(101)×12/15}/{r(10
1)×15/12+h(101)}の式で規定される前
記菱面体晶系の存在割合が15%以上25%以下の範囲
とする。In order to achieve the above object, in the lithium ion secondary battery of the present invention, a lithium-containing composite metal oxide capable of reversibly inserting and extracting lithium is used as a positive electrode active material. A positive electrode part in which a positive electrode mixture containing the same is formed into a sheet shape on a metal foil, and a negative electrode part in which a negative electrode mixture mainly containing a graphite material capable of absorbing and releasing lithium is formed into a sheet shape on a metal foil. And a non-aqueous electrolyte containing a lithium salt in a closed container, wherein the graphite material is hexagonal and rhombohedral. When measured by the X-ray wide-angle diffraction method,
(112) The crystallite size Lc (112) in the c-axis direction calculated from the diffraction line is from 200 (Å) to 400 (Å),
In addition, the average particle diameter is 20 (μm) to 30 (μm), the peak area of the (101) diffraction line belonging to the rhombohedral crystal is defined as r (101), and the peak area is attributed to the hexagonal crystal. (101) The peak area of the diffraction line is h (101)
{R (101) × 12/15} / {r (10
1) The existence ratio of the rhombohedral crystal system defined by the formula of × 15/12 + h (101)} is in the range of 15% or more and 25% or less.
【0010】黒鉛には、六方晶系(ABAB・・・積層
周期)に属する結晶の他に菱面体晶系(ABCABC・
・・積層周期)に属する形態がある。図1に六方晶系黒
鉛の単位格子を、図2に菱面体晶系黒鉛の単位格子を示
す。六方晶系黒鉛は図1に示されたように炭素の六角網
平面の積み重なりは、第1層に対して第2層は(2/
3,1/3)だけ平行移動し、第3層はちょうど第1層
に重なっている。即ち2層ごとに繰り返すABAB・・
・の構造を持つ。一方菱面体晶系の黒鉛は図2のように
第1層に対して第2層が(2/3,1/3)だけずれ、
第3層はさらに(1/3,2/3)だけずれて第4層は
第1層に重なっている。[0010] In graphite, in addition to crystals belonging to hexagonal system (ABAB ... lamination period), rhombohedral system (ABCABC.
・ ・ Lamination cycle). FIG. 1 shows a unit cell of hexagonal graphite, and FIG. 2 shows a unit cell of rhombohedral graphite. As shown in FIG. 1, the hexagonal graphite has a stack of carbon hexagonal mesh planes.
(3/3) and the third layer just overlaps the first layer. That is, ABAB repeated every two layers
・ It has a structure. On the other hand, in rhombohedral graphite, the second layer is shifted by (2/3, 1/3) with respect to the first layer as shown in FIG.
The third layer is further shifted by (1/3, 2/3) and the fourth layer overlaps the first layer.
【0011】菱面体晶系黒鉛は高度に結晶が発達した人
造黒鉛、あるいは黒鉛化度の極めて高い天然黒鉛などの
ような結晶子の平面方向(a軸)及び垂直積層(c軸)
方向の格子歪みが極めて小さい六方晶系の黒鉛材料を粉
砕することによってその一部に導入される結晶の形態で
ある。粉砕初期段階では黒鉛層面間の非常に弱い結合、
あるいは弾性定数の非常に小さな値(C44=4.5G
Pa)を反映して、層面に沿ってせん断変形が主として
生じて、菱面体構造が出現すると考えられている。異方
性弾性理論を用いて算出された菱面体構造が生じるため
の積層欠陥エネルギーは5.1〜5.8×10E(−
2)J/m2と小さいので、層面内の強い炭素−炭素結
合を多数破壊して欠陥を多量に導入するには至らず、粉
砕によって与えられた力学的なエネルギーを蓄える一環
として菱面体構造が導入されると理解されている。しか
しさらに粉砕を続けると、粉砕によって与えられた力学
的なエネルギーを蓄えることが不可能となり、黒鉛層面
に多量の欠陥が導入され、菱面体晶の導入と同時に層面
の破壊までも生じることがある。以上のように菱面体構
造は六方晶構造の積層欠陥によって生ずる形態であり、
その存在比が大きくなった場合構造自身が破壊されると
定性的に理解されている。The rhombohedral graphite is a plane direction (a-axis) and a vertical lamination (c-axis) of crystallites such as artificial graphite in which crystals are highly developed or natural graphite having a very high degree of graphitization.
This is a form of crystals introduced into a part of a hexagonal graphite material having an extremely small lattice strain in the direction by grinding. Very weak bonds between the graphite layers at the initial stage of grinding,
Alternatively, a very small value of the elastic constant (C44 = 4.5G)
Reflecting Pa), it is considered that shear deformation mainly occurs along the layer surface, and a rhombohedral structure appears. The stacking fault energy for generating the rhombohedral structure calculated using the anisotropic elasticity theory is 5.1 to 5.8 × 10E (−
2) Since it is as small as J / m 2 , a large number of strong carbon-carbon bonds in the layer surface are not broken to introduce a large amount of defects, and the rhombohedral structure is used as a part of storing mechanical energy given by grinding. Is understood to be introduced. However, if the grinding is continued further, it becomes impossible to store the mechanical energy given by the grinding, and a large amount of defects are introduced into the graphite layer surface, which may lead to the destruction of the layer surface simultaneously with the introduction of rhombohedral crystals. . As described above, the rhombohedral structure is a form caused by stacking faults of a hexagonal structure,
It is qualitatively understood that the structure itself is destroyed when its abundance ratio increases.
【0012】このような菱面体晶構造及び六方晶構造の
存在割合はX線広角回折法によって得られる回折ピーク
の強度比を検討することで検証可能である。管球に銅を
用いたガイガーフレックス型粉末X線広角回折装置で測
定する場合には、回折角(2θ/θ)が40〜50°付
近を走査すればよい(以下回折操作の状態を表現する場
合、及び単に回折角と表現された場合は、管球に銅を用
いたガイガーフレックス型粉末X線広角回折装置で測定
した場合を表現しているものとする)。ここで本発明範
囲内の菱面体晶径黒鉛の存在割合は15〜25%と規定
されているが、この値は測定条件に依存して微妙に変化
するため、特に以下のような手法によって測定された場
合に算出される値と限定する。The existence ratio of the rhombohedral structure and the hexagonal structure can be verified by examining the intensity ratio of diffraction peaks obtained by the X-ray wide-angle diffraction method. When measuring with a Geiger-flex type powder X-ray wide-angle diffractometer using copper for the tube, the diffraction angle (2θ / θ) may be scanned in the vicinity of 40 to 50 ° (hereinafter the state of the diffraction operation is expressed). In this case, and when simply expressed as a diffraction angle, it is assumed that the expression refers to a case where measurement is performed using a Geiger flex type powder X-ray wide-angle diffractometer using copper as a tube). Here, the proportion of the rhombohedral graphite within the range of the present invention is specified to be 15 to 25%. However, since this value slightly changes depending on the measurement conditions, it is particularly measured by the following method. It is limited to the value calculated in the case where it is performed.
【0013】先ず黒鉛試料を測定セルにつめ、グラファ
イトモノクロメータで単色化したCuKα線を線源と
し、反射式ディフラクトメーター法によって広角X線回
折曲線を測定する。X線管球への印可電圧及び電流は4
0kV及び40mAとし、発散スリットが1°、散乱ス
リットが1°、受光スリットが0.15mmに設定し、
2θが41°〜48°までを毎分0.25°の速度で走
査する。First, a graphite sample is filled in a measuring cell, and a wide angle X-ray diffraction curve is measured by a reflection type diffractometer method using a CuKα ray monochromatized by a graphite monochromator as a radiation source. The applied voltage and current to the X-ray tube are 4
0 kV and 40 mA, the divergence slit was set to 1 °, the scattering slit was set to 1 °, and the light receiving slit was set to 0.15 mm.
Scanning is performed at a speed of 0.25 ° per minute from 2θ of 41 ° to 48 °.
【0014】以上のような操作により測定した、平均粒
径100(μm)の市販の天然黒鉛をめのう乳鉢で粉砕
した黒鉛粉末の回折図形を図3に示す。特に結晶化度の
高い黒鉛を粉砕した試料の場合通常このスペクトル帯域
では4本の回折線を観察することができる。各々の回折
線は42.3°付近及び44.4°付近に六方晶系の
(100)面及び(101)面が、43.3°付近及び
46.0°付近に菱面体晶系の(101)面及び(01
2)面が出現する。なお菱面体晶系の面指数は、図2で
示されたように六方晶系と類似の単位格子をとった場合
の指数付けで表現されており、本発明ではこの単位格子
に従って面指数付けを行うこととする。FIG. 3 shows a diffraction pattern of a commercially available natural graphite having an average particle size of 100 (μm), which was measured by the above-mentioned operation, and which was pulverized in an agate mortar. In particular, in the case of a sample obtained by pulverizing graphite having high crystallinity, usually four diffraction lines can be observed in this spectral band. Each diffraction line has a hexagonal (100) plane and a (101) plane near 42.3 ° and 44.4 °, and a rhombohedral (100) plane near 43.3 ° and 46.0 °. 101) plane and (01)
2) A surface appears. The surface index of the rhombohedral system is expressed by indexing when a unit lattice similar to that of the hexagonal system is taken as shown in FIG. 2, and in the present invention, the surface index is assigned according to this unit lattice. I will do it.
【0015】本発明の負極部として用いられる黒鉛粉末
の菱面体晶の存在割合は、15%以上25%以下である
ことを特徴としており、下式1に示されているように菱
面体晶に特徴的な(101)回折線の面積と六方晶の
(101)面の回折線の面積の合計との比率によって得
られた値であり、より正確を期すために菱面体晶の(1
01)回折線の面積に補正計数15/12を乗算してい
る。この比率は同一の元素に関わるものであるから、原
子比、モル比または質量比で表現しても良い。The graphite powder used as the negative electrode part of the present invention has a rhombohedral content of 15% or more and 25% or less, and has a rhombohedral structure as shown in the following formula 1. This is a value obtained by the ratio of the characteristic area of the (101) diffraction line to the total area of the diffraction lines of the hexagonal (101) plane.
01) The area of the diffraction line is multiplied by the correction coefficient 15/12. Since this ratio relates to the same element, it may be expressed by an atomic ratio, a molar ratio, or a mass ratio.
【0016】(式1) {r(101)×12/15}/{r(101)×15
/12+h(101)} ここでr(101)はX線広角回折法によって測定され
た菱面体晶に帰属される(101)回折線のピーク面積
を、h(101)は同様にして測定された六方晶に帰属
される(101)回折線のピーク面積を示す。(Equation 1) {r (101) × 12/15} / Δr (101) × 15
/ 12 + h (101)} where r (101) is the peak area of the (101) diffraction line belonging to the rhombohedral crystal measured by the X-ray wide-angle diffraction method, and h (101) is measured in the same manner. The peak area of the (101) diffraction line attributed to the hexagonal crystal is shown.
【0017】ここで粉砕される原料黒鉛粉末の結晶化度
が低い場合には、粉砕の程度を大きくしたとしても菱面
体晶系に帰属されるピークを確認することはできない。
このことは前述のように菱面体晶系の黒鉛は積層欠陥に
よって生ずる形態であるため、結晶化度の低い黒鉛は元
々積層構造の発達が十分でなかったためであると考えら
れる。結晶化度が低いとはLc(112)が100Å以
下の場合であり、それ以上の場合は、平均粒子径が20
(μm)から30(μm)となるまで粉砕し、粉砕後の
Lc(112)が200(Å)から400(Å)であれ
ば、25%以上の菱面体が導入されているのが通常であ
る。If the crystallinity of the raw graphite powder to be pulverized is low, the peak attributed to the rhombohedral system cannot be confirmed even if the degree of pulverization is increased.
This is presumably because rhombohedral graphite is a form caused by stacking faults, as described above, and graphite with low crystallinity originally did not sufficiently develop a stacked structure. The crystallinity is low when Lc (112) is 100 ° or less, and when it is more than 100 ° C., the average particle diameter is 20 ° or less.
(Μm) to 30 (μm), and when the Lc (112) after pulverization is from 200 (Å) to 400 (Å), 25% or more of rhombohedral is usually introduced. is there.
【0018】しかしながら本発明に係る黒鉛材料は、粉
砕後のLc(112)が200(Å)から400
(Å)、平均粒子径が20(μm)から30(μm)で
あって、菱面体晶系の存在割合が15%以上25%以下
であることを特徴としている。従って結晶化度が高いに
もかかわらず、菱面体晶が導入され難い黒鉛材料と換言
できる。一般に黒鉛材料は熱処理温度と共に結晶が発達
し、その格子歪は減少するが、本発明に係る黒鉛材料は
結晶が発達してもなお格子歪が残存するため、結晶子は
大きいにも関わらず隣接六角網平面の対称性が低く、層
面に沿ってせん断変形が生じ難い結果、菱面体晶が導入
され難いことがその原因である。以下にこのような存在
割合で菱面体晶を含んだ黒鉛粉末を得るための具体的な
手法について述べる。However, the graphite material according to the present invention has an Lc (112) after pulverization of 200 (Å) to 400.
(Å), characterized in that the average particle size is from 20 (μm) to 30 (μm), and the ratio of the rhombohedral system is 15% or more and 25% or less. Therefore, it can be said that it is a graphite material into which rhombohedral crystals are hardly introduced despite high crystallinity. In general, the graphite material develops a crystal with the heat treatment temperature, and its lattice strain decreases.However, the graphite material according to the present invention still has a lattice strain even when the crystal develops, so that the crystallite is large despite the crystallite being large. The reason is that the hexagonal mesh plane has low symmetry, and it is difficult for shear deformation to occur along the layer plane, so that it is difficult to introduce rhombohedral crystals. Hereinafter, a specific method for obtaining graphite powder containing rhombohedral crystals in such a proportion will be described.
【0019】本発明に係る黒鉛材料は後述する原料Aと
原料Bとを各々平均粒子径が10(μm)以下となるよ
うに粉砕し、重量比80:20〜99:1程度の範囲
で、より好ましくは重量比95:5〜99:1程度の範
囲で混合した後に不活性雰囲気下2800℃以上の高温
で黒鉛化することによって得られる。このように混合比
率が限定されるのは99%よりも原料Aの混合比率が高
い場合には黒鉛化後の結晶内部に導入される格子歪が少
なく、平均粒子径が20(μm)から30(μm)とな
るように粉砕した後のLc(112)が200(Å)か
ら400(Å)であれば、導入される菱面体晶が25%
以上となるため好ましくない。逆に原料Aの混合比率が
80%以下である場合、導入される格子歪の量が多過ぎ
て、黒鉛化及び粉砕後のLc(112)が200Å以上
とはなり難く、黒鉛材料自体の可逆的なリチウムの吸蔵
・放出可能容量が低下するほか、同黒鉛材料が適用され
た電池は負荷特性も低下するため好ましくない。The graphite material according to the present invention is obtained by pulverizing a raw material A and a raw material B described below so that each has an average particle diameter of 10 (μm) or less, and a weight ratio of about 80:20 to 99: 1. More preferably, it is obtained by mixing at a weight ratio of about 95: 5 to 99: 1 and then graphitizing at a high temperature of 2800 ° C. or more in an inert atmosphere. The reason that the mixing ratio is limited as described above is that when the mixing ratio of the raw material A is higher than 99%, the lattice strain introduced into the crystal after graphitization is small, and the average particle diameter is 20 (μm) to 30%. (Lm) is from 200 (Å) to 400 (Å) after pulverization to have a rhombohedral crystal content of 25%.
This is not preferable because of the above. Conversely, when the mixing ratio of the raw material A is 80% or less, the amount of introduced lattice strain is too large, and the Lc (112) after graphitization and pulverization is unlikely to be 200 ° or more, and the reversibility of the graphite material itself is reduced. In addition to a reduction in the capacity capable of occluding and releasing lithium, a battery to which the graphite material is applied is also not preferable because load characteristics also deteriorate.
【0020】ここで原料Aは、不活性雰囲気下500℃
〜1700℃に熱処理することによって得られる焼成体
を偏向顕微鏡の下で観察した場合、モザイク構成単位が
数十μm以上の繊維状であって、広い範囲にわたって異
方性領域を持つ流れ構造を与えるような有機化合物であ
り、原料Bは同様にして得られた焼成体を偏向顕微鏡の
下で観察した場合、微細組織がいわゆる”粒状モザイク
組織”であって、モザイク構成単位が数μm〜十数μm
程度を与えるような有機化合物である。原料A及びBと
して使用可能な有機化合物は次の通りである。Here, the raw material A is 500 ° C. in an inert atmosphere.
When the fired body obtained by heat-treating to 11700 ° C. is observed under a deflection microscope, a mosaic constituent unit has a fibrous shape of several tens μm or more, and gives a flow structure having an anisotropic region over a wide range. When the fired body obtained in the same manner is observed under a deflection microscope, the fine structure is a so-called “granular mosaic structure”, and the raw material B has a mosaic constituent unit of several μm to a dozen or more. μm
Organic compounds that give a degree. The organic compounds usable as the raw materials A and B are as follows.
【0021】(1)石炭コークス コークス組織の形成は軟化過程でその大部分が決定され
る。良く軟化溶融する石炭では分子配向が進みやすく、
方向性のある組織(異方性組織)が生成する。逆に軟化
溶融しにくい石炭では分子の配列がランダムで等方性の
組織になる。具体的には、石炭組織成分のうち乾留中に
溶融変形して生成する組織(リアクティブ由来組織)の
モザイク構成単位が数μm〜10μm程度の微粒モザイ
ク状または中粗粒モザイク状であって、乾留中に軟化溶
融せず石炭中に存在する原形のままのコークス組織(イ
ナート由来組織)が異方性を帯びていないもの、例えば
高揮発分低流動性炭、高揮発分高流動性炭、中揮発分中
流動性炭等が原料Bとして用いられることが望ましい。
逆にリアクティブ由来組織のモザイク構成単位が数10
(μm)以上の葉片状であって、広い範囲にわたって異
方性領域を持つ流れ構造を与えるような高揮発分低流動
性炭、高揮発分高流動性炭、中揮発分高流動性炭等が原
料Aとして用いられることが望ましい。一方異方性を帯
びていないイナート由来組織成分が多く含まれ過ぎてい
る場合、黒鉛化処理を行ったとしても結晶化度の発達が
低く、Lc(112)が200(Å)以上とはならない
場合があるので好ましくない。(1) Coal coke The formation of coke structure is largely determined during the softening process. In coal that softens and melts well, the molecular orientation tends to advance,
A directional structure (anisotropic structure) is generated. Conversely, coal that is difficult to soften and melt has a random molecular isotropic structure. Specifically, a mosaic constituent unit of a structure (reactive-derived structure) formed by melting and deforming during carbonization of the coal structure components is a fine mosaic shape or a medium coarse mosaic shape of about several μm to 10 μm, Coke structure intact (inert-derived structure) that is not softened and melted during carbonization and exists in the coal without anisotropy, for example, high volatile low flow coal, high volatile high flow coal, It is desirable that medium volatile volatile fluid carbon or the like is used as the raw material B.
Conversely, there are several tens of mosaic constituent units of reactive origin tissue
(Μm) or more leaf-shaped, high-volatile low-flow coal, high-volatile high-flow coal, medium-volatile high-flow coal that gives a flow structure with an anisotropic region over a wide range And the like are desirably used as the raw material A. On the other hand, if too much inert-derived tissue component not having anisotropy is contained, the degree of crystallinity is low even if graphitization is performed, and Lc (112) does not become 200 (Å) or more. It is not preferable because it may occur.
【0022】(2)コールタールピッチ又は石油ピッチ 原料油にキノリン不溶分(QI成分)、キノリン可溶・
ベンゼン不溶分(BI・QS成分=βレジン)等を多く
含み比較的軟化点が高いもの、具体的には、H/C原子
比約0.6以下、軟化点約90℃以上の石油系ピッチが
好ましい。ベンゼン可溶・四塩化炭素不溶分、四塩化炭
素可溶・ヘプタン不溶分を多く含み、QI成分、BI・
QS成分の含有量が少なく、軟化点が比較的低いもの、
即ち、早期コーキング成分を含み比較的粘度の高い原料
油は原料Bとして使用可能である。この種の原料油を不
活性雰囲気下500℃〜1700℃に熱処理することに
よって得られる焼成体は、粒状モザイク組織が多く、微
細組織が複雑で、光学的等方性に近い特性を有してい
る。またピッチに空気吹き込みなどの処理を行ない、酸
素を含む官能基を導入(いわゆる酸素架橋)した改質ピ
ッチも原料Bとして使用可能である。ここで酸素を含む
官能基とは、母体であるピッチなどに化学結合された酸
素から構成された原子又は原子団のことである。例え
ば、キノン基、エーテル結合、ラクトン結合、水酸基、
エステル結合、カルボキシル基がある。(2) quinoline-insoluble matter (QI component), quinoline-soluble
Relatively high softening point containing a lot of benzene-insoluble matter (BI / QS component = β resin), specifically, petroleum pitch having an H / C atomic ratio of about 0.6 or less and a softening point of about 90 ° C. or more Is preferred. Contains a large amount of benzene-soluble / carbon tetrachloride-insoluble, carbon tetrachloride-soluble / heptane-insoluble, and QI, BI.
Low content of QS component, relatively low softening point,
That is, a feedstock oil containing an early caulking component and having a relatively high viscosity can be used as the feedstock B. A fired body obtained by heat-treating this type of raw oil at 500 ° C. to 1700 ° C. in an inert atmosphere has many granular mosaic structures, a complicated fine structure, and characteristics close to optical isotropy. I have. A modified pitch in which a process such as air blowing is performed on the pitch and a functional group containing oxygen is introduced (so-called oxygen cross-linking) can also be used as the raw material B. Here, the functional group containing oxygen refers to an atom or an atomic group composed of oxygen chemically bonded to a base material such as pitch. For example, quinone group, ether bond, lactone bond, hydroxyl group,
There are ester bonds and carboxyl groups.
【0023】このような操作は不溶・不融化処理によっ
て達成される。不溶・不融化処理の具体的な手段として
は、以下の方法に限定されるものではないが、例えば硝
酸、混酸、硫酸、次亜塩素酸等の水溶液による湿式法、
あるいは酸化性ガス(空気、酸素)による乾式法、さら
に硫黄、硝酸アンモニア、塩化第2鉄等の固体試薬によ
る反応等が用いられる。不溶・不融化処理によって改質
された石油系ピッチを炭素化したものは、微粒モザイク
組織が多く、微細組織が複雑で、光学的等方性に近い特
性を有している。ただし石油ピッチに導入される酸素の
量が多過ぎる場合、生成する黒鉛材料のLc(112)
が200(Å)以上とはならない場合があるので好まし
くない。また導入される酸素の量が少な過ぎてもその組
織の改質は不可能であるため、不溶・不融化処理によっ
て導入される酸素の量は、0.5重量%〜1.0重量%
程度が望ましい。Such an operation is achieved by an insoluble / infusible treatment. The specific means of the insoluble / infusible treatment is not limited to the following methods, for example, nitric acid, mixed acid, sulfuric acid, wet method with an aqueous solution of hypochlorous acid, etc.
Alternatively, a dry method using an oxidizing gas (air or oxygen), and a reaction using a solid reagent such as sulfur, ammonium nitrate, and ferric chloride are used. The carbonized petroleum pitch modified by the insoluble / infusible treatment has many fine mosaic structures, has a complicated fine structure, and has characteristics close to optical isotropy. However, if the amount of oxygen introduced into the petroleum pitch is too large, Lc (112)
Is not preferably 200 (Å) or more. Further, since the structure cannot be modified even if the amount of oxygen introduced is too small, the amount of oxygen introduced by the insoluble / infusible treatment is 0.5% by weight to 1.0% by weight.
A degree is desirable.
【0024】一方、原料油から早期コーキングを起こす
ようなアスファルテン、レジン成分等や、不純物(硫
黄、酸素、窒素、金属類、触媒、フリーカーボン)等の
ように結晶子の配列時の弊害となるような成分を除去、
あるいは少なくすることによって得られた原料油、また
はピッチの中でも比較的粘度が低く、キノリン不溶分
(QI成分)、キノリン可溶・ベンゼン不溶分(BI・
QS成分=βレジン)等の成分含有量が比較的低く、ベ
ンゼン可溶・四塩化炭素不溶分、四塩化炭素可溶・ヘプ
タン不溶分を多く含み、軟化点が比較的低い原料油は原
料Aとして使用可能である。このようなピッチを不活性
雰囲気下500℃〜1700℃に熱処理することによっ
て得られる焼成体は、偏向顕微鏡の下で観察すると光学
的異方性を有しており、その組織は流れ模様が主体とな
っている。On the other hand, asphaltene and resin components that cause early coking from the raw material oil, and impurities (sulfur, oxygen, nitrogen, metals, catalysts, free carbon), etc., are harmful when arranging crystallites. Remove such components,
Alternatively, the viscosity is relatively low even in the raw material oil or pitch obtained by reducing the amount, and quinoline-insoluble matter (QI component), quinoline-soluble / benzene-insoluble matter (BI ·
(QS component = β resin), etc., and contains a large amount of benzene-soluble / carbon tetrachloride-insoluble matter, carbon tetrachloride-soluble / heptane-insoluble matter, and has a relatively low softening point. Can be used as A fired body obtained by heat-treating such a pitch to 500 ° C. to 1700 ° C. in an inert atmosphere has optical anisotropy when observed under a deflection microscope, and its structure is mainly composed of a flow pattern. It has become.
【0025】(3)縮合性多環多核芳香族 縮合性多環多核芳香族とは、縮合多環芳香族炭化水素の
重縮合体の巨大分子を指す。例えばピレン、ペリレン、
イソビオラントロン等の有機化合物(主剤とも表現され
る)と、ベンズアルデヒド、9,10−ジハイドロアン
トラセン等の有機化合物(架橋材とも表現される)と
を、パラトルエンスルホンサン、無水マレイン酸等の有
機酸触媒下で100℃〜200℃程度で加熱・混合し、
得られた重合物を必要に応じて中和処理を行って、残留
溶液を吸引濾過等の手段で除去することによって得られ
る。このような縮合性多環多核芳香族は炭素化して得た
炭素材料の偏光顕微鏡の下で観察される集合組織は、主
剤及び結合材の選択に依存する。この場合も集合組織が
粒状モザイク組織であって、モザイク構成単位が数μm
〜十数μm程度を与えるような主剤及び結合材の組み合
わせを選択するれば原料Bとして使用可能であり、モザ
イク構成単位が数十μm以上の繊維状であって、広い範
囲にわたって異方性領域を持つ流れ構造を示すような焼
成体を与えるような主剤及び結合材の組み合わせを選択
すれば原料Aとして使用可能である。原料Bを与える主
剤としてはナフタレン、フェナンスレン、ペリレン等で
あり、原料Aを与える主剤としてはアントラセン、ピレ
ン、イソビオラントロン等が挙げられる。(3) Condensable polycyclic polynuclear aromatics The condensable polycyclic polynuclear aromatics refer to macromolecules of polycondensates of condensed polycyclic aromatic hydrocarbons. For example, pyrene, perylene,
An organic compound such as isoviolanthrone (also referred to as a main agent) and an organic compound such as benzaldehyde and 9,10-dihydroanthracene (also referred to as a cross-linking material) are converted into paratoluenesulfonane, maleic anhydride, and the like. Heating and mixing at about 100 ° C to 200 ° C under the organic acid catalyst of
It is obtained by subjecting the obtained polymer to a neutralization treatment as necessary, and removing the residual solution by means such as suction filtration. The texture of the carbon material obtained by carbonizing such a condensable polycyclic polynuclear aromatic, which is observed under a polarizing microscope, depends on the selection of the base material and the binder. Also in this case, the texture is a granular mosaic structure, and the mosaic constituent unit is several μm.
If a combination of a base material and a binder that gives about 10 to several tens of μm is selected, it can be used as a raw material B. The raw material A can be used by selecting a combination of a base material and a binder that gives a fired body having a flow structure having the following. Examples of the main agent for providing the raw material B include naphthalene, phenanthrene, and perylene, and examples of the main agent for providing the raw material A include anthracene, pyrene, and isobiolanthrone.
【0026】(4)特定の有機化合物を出発原料とした
有機高分子化合物 2〜4環芳香族炭化水素またはその誘導体を不活性ガス
による加圧下で熱処理して得た有機高分子化合物も原料
AまたはBとして使用可能である。2〜4環芳香族炭化
水素またはその誘導体の例としては、ナフタレン、フェ
ナンスレン、クリセン、アントラセン、ベンザンスレ
ン、トリフェニレン、ピクセン、アセナフチレン、ピレ
ン等が挙げられる。この中にあってもナフタレン、フェ
ナンスレンを原料として用いた有機高分子化合物は集合
組織が粒状モザイク組織であって、モザイク構成単位が
数μm〜十数μm程度であるため原料Bとして特に好ま
しい。一方アントラセン、アセナフチレンまたはピレン
を原料として用いた有機高分子化合物の集合組織はモザ
イク構成単位が数十μm以上の繊維状であって、広い範
囲にわたって異方性領域を持つ流れ構造を示すため原料
Aとして使用可能である。(4) Organic high molecular compound starting from a specific organic compound The organic high molecular compound obtained by heat-treating a 2- to 4-ring aromatic hydrocarbon or a derivative thereof under pressure with an inert gas is also used as raw material A. Or it can be used as B. Examples of the 2- to 4-ring aromatic hydrocarbon or a derivative thereof include naphthalene, phenanthrene, chrysene, anthracene, benzanthrene, triphenylene, pixelne, acenaphthylene, pyrene and the like. Among them, the organic polymer compound using naphthalene or phenanthrene as a raw material is particularly preferable as the raw material B because the texture is a granular mosaic structure and the mosaic constituent unit is about several μm to about several tens μm. On the other hand, since the texture of an organic polymer compound using anthracene, acenaphthylene or pyrene as a raw material is a fibrous structure having mosaic constituent units of several tens of μm or more and exhibits a flow structure having an anisotropic region over a wide range, the raw material A Can be used as
【0027】以上のような原料A及び原料Bを、各々平
均粒子径が10(μm)以下となるように粉砕し、重量
比99:1〜95:5程度の範囲で混合した後に不活性
雰囲気下2800℃以上の高温で黒鉛化し、さらに粉砕
することによって本発明に係る黒鉛材料が得られる。黒
鉛材料の粉砕には通常、大きく分類するとボールミル、
ジェットミル、コロイダルミルの3種が主に用いられて
いる。ボールミル粉砕とは、平均粒径100(μm)程
度に予備粉砕された原料黒鉛粉末及び粉砕媒体を所定量
だけポットミルに投入しポットに蓋をした後、ポット内
を一旦真空状態にした上で雰囲気ガスを封入し、封入ラ
インの弁を締めて密閉状態として前記ポットを所定の回
転速度に従って所望の時間回転させることにより粉砕を
行うものである。この場合粉砕媒体としては、金属製ま
たはセラミックス製のボールを、雰囲気ガスとしては窒
素またはアルゴンガスあるいはヘリウムガス、二酸化炭
素等の不活性ガスを使用するのが一般的である。ジェッ
トミル粉砕とは、超音波ノズルに粉体を連続的に供給
し、ノズル内での圧空気流の攪乱による黒鉛粒子相互間
の衝突と同時に、ノズル前方に設置した衝突板に固気混
合気流を強制的に衝突させて粉砕を行うものである。ま
たコロイダルミル粉砕とは、石臼の原理による方法で、
金属あるいはセラミックスで作製された臼と臼の間隔を
調節し、相互に逆方向へ回転させることにより粉砕する
方法である。The raw material A and the raw material B as described above are pulverized so that each has an average particle diameter of 10 (μm) or less, mixed in a weight ratio of about 99: 1 to 95: 5, and then mixed with an inert atmosphere. The graphite material according to the present invention can be obtained by graphitization at a high temperature of 2800 ° C. or higher and further pulverization. For grinding graphite materials, ball mills,
A jet mill and a colloidal mill are mainly used. Ball mill pulverization means that a predetermined amount of raw graphite powder and a pulverizing medium preliminarily pulverized to an average particle size of about 100 (μm) are put into a pot mill, and the pot is covered. The gas is sealed, the valve of the sealing line is closed, the pot is closed, and the pot is rotated at a predetermined rotation speed for a desired time to perform pulverization. In this case, generally, balls made of metal or ceramics are used as a grinding medium, and an inert gas such as nitrogen or argon gas, helium gas, carbon dioxide or the like is used as an atmospheric gas. Jet mill pulverization means that powder is continuously supplied to an ultrasonic nozzle, and at the same time as the graphite particles collide with each other due to the disturbance of the pressurized air flow in the nozzle, a solid-gas mixture flow is applied to the collision plate installed in front of the nozzle. Are forcibly collided to perform pulverization. Colloidal milling is a method based on the millstone principle.
This is a method of adjusting the distance between dies made of metal or ceramics and grinding them by rotating them in opposite directions.
【0028】以上のような粉砕方法の中にあっても本発
明範囲内の黒鉛粉末を得るためには、ジェットミル粉砕
の場合が特に好ましい。なぜなら、粉砕の手法及び粉砕
時間に依存して差はあるものの、粉砕操作によって黒鉛
粒子の結晶子は小さくなり結晶化度が低下するのが普通
であるが、ジェットミルによって粉砕された場合は他の
粉砕方法の場合と比較して、結晶化度の低下のしかたが
著しく小さいからである。この原因に関しては、他の粉
砕機と比べてジェットミル粉砕では炭素層面に垂直に作
用する力がより強いためであると考えられる。ただしジ
ェットミルで粉砕された場合でも、粉砕されることによ
る結晶化度の低下は雰囲気ガスの影響を強く受けるので
注意を要する。例えば雰囲気中に酸素あるいは水分が存
在すると、へき開的な粉砕になりやすく粒子は薄片状に
粉砕され結晶子が小さくなり易いが、ヘリウム、窒素、
真空中では粒子は立体的に且つ超微粉に粉砕され、結晶
子も立体的になり結晶化度は粉砕前と比較してそれほど
変化がないからである。従って粉砕雰囲気に水分あるい
は酸素の混入量を可能な限り低減させることが好まし
い。この現象は粉砕するときの黒鉛粒子の摩擦係数の差
によって説明されている。In order to obtain graphite powder within the scope of the present invention even among the above-mentioned pulverization methods, jet mill pulverization is particularly preferable. This is because although there is a difference depending on the pulverization method and the pulverization time, the crystallites of the graphite particles are usually reduced and the crystallinity is reduced by the pulverization operation. This is because the degree of reduction in crystallinity is remarkably small as compared with the case of the pulverization method. This is considered to be because the force acting perpendicular to the carbon layer surface in jet mill pulverization is stronger than in other pulverizers. However, even when pulverized by a jet mill, care must be taken because the reduction in crystallinity due to pulverization is strongly affected by atmospheric gas. For example, if oxygen or moisture is present in the atmosphere, the particles are liable to be cleaved by cleavage, and the particles are crushed into flakes and the crystallites are apt to be reduced, but helium, nitrogen,
This is because, in a vacuum, the particles are three-dimensionally and pulverized into ultrafine powder, the crystallites are three-dimensional, and the crystallinity is not significantly changed as compared to before the pulverization. Therefore, it is preferable to reduce the amount of moisture or oxygen mixed in the pulverizing atmosphere as much as possible. This phenomenon is explained by the difference in the coefficient of friction of the graphite particles when pulverized.
【0029】本発明に係る黒鉛材料は以上のような粉砕
処理後の菱面体の存在比率が15〜25%に限定され
る。15%以下であれば、黒鉛材料の平均粒子径が大き
いか、または元々の黒鉛材料の結晶化度が低く、粉砕を
行っても菱面体が導入され難い場合がある。平均粒子径
が大きい場合は、過充電状態に曝された電池の安全性は
向上するものの、負荷特性が著しく低下するため好まし
くない。また結晶化度が低い場合にはリチウムの吸蔵・
放出可能な可逆容量が低く、電池容量が低下するため好
ましくない。逆に25%以上であれば、黒鉛材料の平均
粒子径が小さいか、若しくは結晶内部の格子歪が極めて
小さい黒鉛材料が粉砕された場合がある。何れの場合に
おいても過充電状態に曝された電池の安全性が低下する
ため好ましくない。In the graphite material according to the present invention, the content ratio of the rhombohedral after the above-mentioned pulverization treatment is limited to 15 to 25%. If it is 15% or less, the average particle diameter of the graphite material may be large, or the crystallinity of the original graphite material may be low, and it may be difficult to introduce rhombohedral particles even when pulverized. When the average particle diameter is large, the safety of the battery exposed to the overcharged state is improved, but the load characteristics are remarkably reduced, which is not preferable. If the crystallinity is low, the lithium
It is not preferable because the reversible capacity that can be released is low and the battery capacity decreases. On the other hand, if it is 25% or more, the average particle diameter of the graphite material may be small, or the graphite material having extremely small lattice distortion inside the crystal may be crushed. In any case, it is not preferable because the safety of the battery exposed to the overcharged state is reduced.
【0030】また本発明に係る黒鉛材料は、以上のよう
な粉砕処理を行った後のLc(112)が200〜50
0(Å)であることを特徴としている。なぜなら黒鉛材
料のリチウム吸蔵・放出可能容量は結晶化度が高いほど
大きく、理論値に近い容量が得られるからである。Lc
(112)が200(Å)以下の場合、Lc(112)
の低下(結晶化度の低下)と共に充放電可能な容量が低
下するため好ましくない。またLc(112)が500
(Å)を超える黒鉛材料は、本発明者等が行った限り、
本発明に記載された製造方法では得ることが出来なかっ
たため、Lc(112)は200〜500(Å)に限定
される。The graphite material according to the present invention has an Lc (112) of 200 to 50 after the above-mentioned pulverization.
0 (Å). The reason for this is that the higher the crystallinity, the greater the lithium storage / release capacity of the graphite material, and a capacity closer to the theoretical value can be obtained. Lc
When (112) is 200 (以下) or less, Lc (112)
(Reduced crystallinity) decreases the chargeable / dischargeable capacity, which is not preferable. Lc (112) is 500
As far as the present inventors have performed, graphite materials exceeding (等)
Lc (112) is limited to 200 to 500 (Å) because it could not be obtained by the manufacturing method described in the present invention.
【0031】なおLc(112)は日本学術振興会11
7委員会が定めた方法(文献名:日本学術振興会第11
7委員会,炭素,25,(No.36),1963)に
準拠して算出した。先ず試料に対して約10重量%のX
線標準用高純度シリコン粉末を内部標準物質として加え
混合し、試料セルにつめ、グラファイトモノクロメータ
で単色化したCuKα線を線源とし、反射式ディフラク
トメーター法によって広角X線回折曲線を測定した。X
線管球への印可電圧及び電流は40kV及び40mAと
し、発散スリットが2°、散乱スリットが2°、受光ス
リットが0.3mmに設定し、2θが81°〜89°ま
でを毎分0.25°の速度で走査した。得られた回折図
形は、文献(1)に従って、2θが83.6°付近に出
現する黒鉛材料の(112)回折線の回折角及び半価幅
を、2θが88.1°付近に出現するシリコン粉末の
(422)回折線によって補正し、c軸方向の結晶子の
大きさLc(112)を算出した。Lc (112) is the Japan Society for the Promotion of Science 11
7 Committee established method (literature name: Japan Society for the Promotion of Science No. 11
7 committee, carbon, 25, (No. 36), 1963). First, about 10% by weight of X
High-purity silicon powder for X-ray standard was added as an internal standard substance, mixed, filled in a sample cell, and a wide angle X-ray diffraction curve was measured by a reflection type diffractometer method using a CuKα ray monochromatized with a graphite monochromator as a source. . X
The voltage and current applied to the tube were set to 40 kV and 40 mA, the divergence slit was set to 2 °, the scattering slit was set to 2 °, and the light receiving slit was set to 0.3 mm. Scanning was performed at a speed of 25 °. According to document (1), the obtained diffraction pattern shows the diffraction angle and half width of the (112) diffraction line of the graphite material whose 2θ appears around 83.6 °, and the 2θ appears around 88.1 °. Correction was performed using the (422) diffraction line of the silicon powder, and the crystallite size Lc (112) in the c-axis direction was calculated.
【0032】さらに本発明に係る黒鉛材料は上記粉砕処
理後の平均粒子径が20〜30(μm)に限定される。
平均粒子径が20(μm)以下の場合は、Lc(11
2)及び黒鉛材料に含まれる菱面体晶系の存在割合が本
発明範囲内に含まれたとしても、過充電状態に陥った場
合の電池の安全性が著しく低下するため好ましくない。
平均粒子径が小さい場合には、表面積が大きくなるた
め、過充電時に正極から発生する酸素ガスとの反応面積
が増加し、急速な温度上昇を伴う発熱が起こるからであ
り、この種の熱暴走反応を有効に食い止めることが出来
なくなるからである。また平均粒子径が30(μm)以
上の場合は、過充電状態に曝された電池の安全性は向上
するものの、負荷特性が著しく低下するため好ましくな
い。粒子径が大きい場合は電解液との接触面積が低下
し、黒鉛材料に吸蔵されたリチウムが放電時に電解液中
に拡散し難くなるためであると考えられる。Further, the graphite material according to the present invention is limited to an average particle diameter of 20 to 30 (μm) after the above pulverization.
When the average particle diameter is 20 (μm) or less, Lc (11
Even if the percentage of the rhombohedral system contained in 2) and the graphite material is within the scope of the present invention, it is not preferable because the safety of the battery in the event of an overcharged state is significantly reduced.
If the average particle size is small, the surface area increases, the reaction area with oxygen gas generated from the positive electrode during overcharge increases, and heat is generated with a rapid temperature rise. This is because the reaction cannot be effectively stopped. When the average particle diameter is 30 (μm) or more, the safety of the battery exposed to the overcharged state is improved, but the load characteristics are remarkably reduced, which is not preferable. It is considered that when the particle diameter is large, the contact area with the electrolyte decreases, and it becomes difficult for lithium occluded in the graphite material to diffuse into the electrolyte during discharge.
【0033】以上のようにして得られた黒鉛粉末を結着
剤と共に溶剤に分散させたスラリーを各種の処理を行っ
て銅箔に塗布・乾燥して作製した積層体を銅箔上に結着
させたシート電極作製し、これを圧縮・成形することで
本発明が適用されたリチウムイオン二次電池の負極のシ
ート電極が得られる。A slurry prepared by dispersing the graphite powder obtained as described above in a solvent together with a binder is subjected to various treatments, coated and dried on a copper foil, and the resulting laminate is bound on the copper foil. A sheet electrode of the negative electrode of the lithium ion secondary battery to which the present invention is applied is obtained by preparing the sheet electrode thus formed and compressing and molding the sheet electrode.
【0034】一方正極部はこの種の円筒型及び角形電池
に用いられる手法をそのまま適用することが可能であ
る。ここで正極材料はLiCoO2に代表されるような
Li含有複合酸化物が主流であるが、この酸化物自体の
導電性が非常に小さいことから導電剤としての黒鉛類及
びアセチレンブラックに代表されるようなカーボンブラ
ック類を導電助剤として併用するのが通常である。すな
わち正極部は、Li含有複合酸化物及び結着剤にさらに
導電材及び導電助剤を添加した正極合剤として構成され
る。例えばこの種の円筒型及び角形電池に用いられる正
極は、正極活物質粉末と導電剤を混合し、結着剤と共に
溶剤に分散させたスラリーを各種の処理を行ってアルミ
ニウム箔に塗布・乾燥して作製した積層体をアルミニウ
ム箔上に結着させたシート電極を作製した後、これを圧
縮・成形したものが用いられている。なお正極活物質、
結着剤としてはこの種のリチウムイオン二次電池で通常
用いられている材料が何れも使用可能である。例えば正
極活物質としては、特に十分な量のリチウムを含んだ材
料を用いることが電池の高容量化を達成させる観点から
特に好ましい。例えばLiMn2O4や一般式LiMO
2(ただしMはCo、Niの少なくとも一種を表す。従
って、例えばLiCoO2やLiCo0.8Ni0.2
O2等)で表される複合金属酸化物やリチウムを含んだ
層間化合物が好適である。また結着剤としては、電解液
に対して溶解しないこと、耐溶剤性に優れることからポ
リフッ化ビニリデン、ポリテトラフルオロエチレン、ポ
リフッ化ビニル等のフッ素系樹脂、カルボキシメチルセ
ルロ−ス、ポリアクリル酸ソ−ダ等の有機高分子化合物
が適当である。On the other hand, for the positive electrode portion, the method used for this type of cylindrical and prismatic batteries can be applied as it is. Here, as the positive electrode material, a Li-containing composite oxide represented by LiCoO 2 is mainly used, but since the conductivity of the oxide itself is very small, it is represented by graphites and acetylene black as a conductive agent. Usually, such carbon blacks are used in combination as a conductive aid. That is, the positive electrode portion is configured as a positive electrode mixture in which a conductive material and a conductive auxiliary are further added to the Li-containing composite oxide and the binder. For example, the positive electrode used in this type of cylindrical and prismatic batteries is prepared by mixing a positive electrode active material powder and a conductive agent, dispersing the slurry together with a binder in a solvent, performing various treatments, applying the slurry to an aluminum foil, and drying. A sheet electrode obtained by binding the laminated body produced as described above to an aluminum foil, and then compression and molding is used. In addition, the positive electrode active material,
As the binder, any material commonly used in this type of lithium ion secondary battery can be used. For example, it is particularly preferable to use a material containing a sufficient amount of lithium as the positive electrode active material from the viewpoint of achieving a high capacity of the battery. For example, LiMn 2 O 4 or the general formula LiMO
2 (where M represents at least one of Co and Ni. Therefore, for example, LiCoO 2 or LiCo 0.8 Ni 0.2
Intercalation compound containing composite metal oxide and lithium represented by O 2 or the like) is preferable. Further, as the binder, fluorine-based resins such as polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, etc., carboxymethyl cellulose, polyacrylic acid are used because they do not dissolve in the electrolytic solution and have excellent solvent resistance. Organic polymer compounds such as soda are suitable.
【0035】以上のように構成された正極部及び負極部
とをセパレータを介して構成された電極体に、リチウム
塩が溶解された非水電解液が注液された状態で密閉容器
内に配置することにより、本発明が適用されるリチウム
イオン二次電池が完成する。非水電解液としては、有機
溶媒と電解質を適宜組み合わせて調整されるが、これら
有機溶媒と電解質もこの種の電池に用いられるものであ
ればいずれも使用可能である。例示するならば、有機溶
媒としてはプロピレンカーボネート、エチレンカーボネ
ート、ビニレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、メチルエチルカーボネート、
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、γ−ブチロラクトン、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、1,3−ジオキソラン、4−
メチル−1,3−ジオキソラン、ジエチルエーテル、ス
ルホラン及びこれらの混合物等である。電解質としては
LiClO4、LiAsF6、LiBF4、LiP
F6、LiCF3SO3、LiCl等であり、これら電
解質は単独で用いても、あるいは2種以上を組み合わせ
て用いても良い。The positive electrode portion and the negative electrode portion configured as described above are placed in a closed container in a state where a non-aqueous electrolytic solution in which a lithium salt is dissolved is poured into an electrode body configured with a separator interposed therebetween. By doing so, a lithium ion secondary battery to which the present invention is applied is completed. The non-aqueous electrolyte is adjusted by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery. For example, as the organic solvent, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethyl carbonate,
Diethyl carbonate, methyl ethyl carbonate,
1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-
Methyl-1,3-dioxolan, diethyl ether, sulfolane, and mixtures thereof. As the electrolyte LiClO 4, LiAsF 6, LiBF 4 , LiP
F 6 , LiCF 3 SO 3 , LiCl and the like, and these electrolytes may be used alone or in combination of two or more.
【0036】====作用==== 前述のように本発明者等は過充電時において、正極活物
質である前記コバルト酸リチウムが、リチウムを全て放
出する前に酸素ガスを放出して急速に分解し、この時急
激に発生する酸素ガスと、負極のリチウム−黒鉛層間化
合物が急速に反応することによって、急激な温度上昇を
伴う発熱が起こること考えた。そこで黒鉛に吸蔵された
リチウムと当該酸素ガスとの反応速度を低下させれば、
両者が急速に反応することなく熱暴走反応を起こすまで
に至らないと考えた。酸素ガスとリチウムの反応過程に
おける律速段階は、黒鉛の結晶内部から粒子表面に移動
する拡散過程である。この拡散速度を更に低下させる手
段として、黒鉛結晶の隣接六角網平面の対称性を低下さ
せ、結晶子の大きさを低下させることなく格子歪を導入
することを試み、本発明を完成するに至った。本発明で
はその格子歪を評価する手段として、平均粒子径及び菱
面体晶系黒鉛の存在割合の相互関係を用いている。前述
のようにLc(112)が200(Å)から400
(Å)、平均粒子系が20〜30(μm)の黒鉛材料で
あればであれば、25%以上の菱面体が導入されている
のが通常であるが、本発明に係る黒鉛材料は同様なLc
(112)及び平均粒子径であっても、菱面体晶系の存
在割合が15%以上25%以下である。このことは結晶
化度が高く結晶子は大きいにもかかわらず、なお格子歪
が残存し、隣接六角網平面の対称性が低く、層面に沿っ
てせん断変形が生じ難い結果、菱面体晶が導入され難い
からである。このような格子歪が残存した黒鉛材料であ
っても結晶子が大きいため、従来の天然黒鉛に代表され
る高結晶性鱗片状黒鉛と同等な可逆的吸蔵・放出可能容
量を有し、且つ適切な平均粒子径を有するため従来の黒
鉛材料と同等の負荷特性の確保が可能となる。==== Action ==== As described above, the present inventors have found that during overcharging, the lithium cobalt oxide, which is the positive electrode active material, releases oxygen gas before releasing all lithium. It is considered that heat is generated with rapid temperature rise due to rapid reaction between oxygen gas, which is rapidly decomposed and rapidly generated at this time, and the lithium-graphite intercalation compound of the negative electrode. Therefore, if the reaction rate between the lithium occluded in graphite and the oxygen gas is reduced,
It was thought that both did not react rapidly and did not lead to a thermal runaway reaction. The rate-determining step in the reaction process of oxygen gas and lithium is a diffusion process in which graphite moves from inside the crystal to the particle surface. As means for further reducing the diffusion rate, the present inventors have attempted to reduce the symmetry of adjacent hexagonal mesh planes of the graphite crystal and introduce lattice strain without reducing the crystallite size, and have completed the present invention. Was. In the present invention, as a means for evaluating the lattice strain, the correlation between the average particle diameter and the existing ratio of rhombohedral graphite is used. As described above, Lc (112) is increased from 200 (Å) to 400.
(Å) If the average particle system is a graphite material of 20 to 30 (μm), usually 25% or more of rhombohedral is introduced, but the graphite material according to the present invention is the same. Lc
Even with (112) and the average particle size, the proportion of the rhombohedral system is 15% or more and 25% or less. This means that despite the high degree of crystallinity and large crystallites, lattice distortion still remains, the symmetry of the adjacent hexagonal mesh plane is low, and shear deformation is unlikely to occur along the layer plane. Because it is hard to be done. Even a graphite material having such a lattice strain has large crystallites, so it has a reversible occlusion / release capacity equivalent to that of highly crystalline flaky graphite represented by conventional natural graphite, and is suitable. Since it has a large average particle size, it is possible to secure load characteristics equivalent to those of conventional graphite materials.
【0037】[0037]
【発明の実施の形態】====電池の作製==== 本発明による単3型巻回式リチウム二次電池の構造を図
4に示す。同図において1は正極板であり、正極活物質
のLiCoO2と導電材の黒鉛粉末(窒素吸着比表面積
270m2/g)及び導電助剤としてのアセチレンブラッ
ク粉末、結着剤のポリフッ化ビニリデン樹脂を重量比で
94:2:1:3の割合で混合し、N−メチル−2−ピ
ロリジノン溶剤を加えてペースト状に混練したものを厚
さ20(μm)のアルミニウム箔4の両面に塗着した
後、乾燥、圧延し、所定の大きさに切断して帯状正極シ
ートを作製した。なお圧延工程において、当該シート電
極の合剤密度を3.4g/cm3となるように制御し
た。電極厚みは70(μm)である。このシートの一部
をシートの長手方向に対して垂直に合剤を掻き取り、ア
ルミニウム製正極リード板18を集電体上に超音波溶接
して取りつけた。活物質のLiCoO2は硫酸コバルト
水溶液に、水酸化カリウム水溶液を、当該混合溶液がp
H=11.2になるまで滴下し、水酸化コバルト(Co
(OH)2)を沈殿せ、この水酸化物を空気気流中、2
00℃に熱処理することにより四酸化三コバルトを得
た。この四酸化三コバルト及び炭酸リチウムとを、Li/C
o原子比が1.05になるように混合し、当該混合物を
空気気流中、所定の温度(4)で10時間焼成すること
によりコバルト酸リチウムを作製した。得られたコバル
ト酸リチウムは、ボールミル粉砕機あるいはジェットミ
ル粉砕機のような圧縮力、衝撃力を加えて粉砕すること
なく、軽く解砕することによって凝集状の粒子を解し
た。2は負極炭素材料極で種々の方法によって得た黒鉛
粉末と結着剤のカルボキシメチルセルロースとを重量比
で97:3の割合で混合し、イオン交換水加えてペース
ト状に混練したものを厚さ14(μm)の銅箔5の両面
に塗着した後、乾燥、圧延し、所定の大きさに切断して
帯状負極シートを作製した。このシートの一部をシート
の長手方向に対して垂直に合剤を掻き取り、ニッケル製
負極リード板7を集電体上にスポット溶接して取りつけ
た。DESCRIPTION OF THE PREFERRED EMBODIMENTS ==== Preparation of Battery ==== FIG. 4 shows the structure of an AA wound lithium secondary battery according to the present invention. In FIG. 1, reference numeral 1 denotes a positive electrode plate, which includes LiCoO 2 as a positive electrode active material, graphite powder as a conductive material (nitrogen adsorption specific surface area 270 m 2 / g), acetylene black powder as a conductive additive, and polyvinylidene fluoride resin as a binder. Were mixed at a weight ratio of 94: 2: 1: 3, and a mixture obtained by adding an N-methyl-2-pyrrolidinone solvent and kneading the mixture into a paste was applied to both surfaces of an aluminum foil 4 having a thickness of 20 (μm). After drying, rolling, and cutting into a predetermined size, a belt-shaped positive electrode sheet was produced. In the rolling step, the mixture density of the sheet electrode was controlled to be 3.4 g / cm 3 . The electrode thickness is 70 (μm). The mixture was scraped off a part of the sheet perpendicularly to the longitudinal direction of the sheet, and an aluminum positive electrode lead plate 18 was attached to the current collector by ultrasonic welding. For the active material LiCoO 2 , an aqueous solution of potassium sulfate and an aqueous solution of potassium hydroxide are added to an aqueous solution of cobalt sulfate.
H was dropped until 11.2, and cobalt hydroxide (Co
(OH) 2 ) is precipitated, and the hydroxide
Heat treatment at 00 ° C. gave tricobalt tetroxide. This tricobalt tetroxide and lithium carbonate are combined with Li / C
o Mixing was performed so that the atomic ratio became 1.05, and the mixture was fired in a stream of air at a predetermined temperature (4) for 10 hours to prepare lithium cobalt oxide. The obtained lithium cobaltate was lightly pulverized without pulverizing by applying a compressive force and an impact force as in a ball mill or a jet mill pulverizer to break up agglomerated particles. Reference numeral 2 denotes a negative electrode carbon material electrode in which graphite powder obtained by various methods and carboxymethylcellulose as a binder were mixed at a weight ratio of 97: 3, ion-exchanged water was added, and the mixture was kneaded into a paste. After coating on both sides of a 14 (μm) copper foil 5, it was dried, rolled, and cut into a predetermined size to produce a strip-shaped negative electrode sheet. The mixture was scraped off a part of the sheet perpendicularly to the longitudinal direction of the sheet, and a nickel negative electrode lead plate 7 was spot-welded onto the current collector.
【0038】なお圧延工程において、当該シート電極の
合剤密度を1.2g/cm3となるように制御した。電
極厚みは66(μm)である。これら正極と負極を3の
ポリプロピレン製の多孔質フィルムセパレータを介して
渦巻き状に巻回し、ケース17内に挿入する。以上の操
作の後、電解液を注入する。用いた電解液は、エチレン
カーボネートとジメチルカーボネート及びエチルメチル
カーボネートが体積比で2:1:7に混合されている混
合溶媒にLiPF6が1.3(mol/l)になるよう
に溶解されているものを用いた。挿入後電流遮断機構を
備えた防爆型蓋要素を、ガスケット13と共に嵌合し、
発電要素の封口を行う。当該蓋要素は、金属製の正極端
子板8と、中間感圧板14と、上方に突出する突部10
および基部11からなる導電部剤(10,11)と、絶
縁性のガスケット13とを有し、該正極端子板8及び該
固定板12はガス抜き穴が形成されており、該導電部剤
(10,11)は該固定板12の上面部に、該突出部1
0の上面部が露出すると共に該固定板12の下面側に該
基部11下面が露出し、該電池ケース4の開口部分の内
周に該ガスケット13が嵌入され、該ガスケット13の
内周に該固定板12がはめ込まれ、該固定板12の上に
該中間感圧板14と該正極端子板8とが積層され、該導
電部剤(10,11)と該中間感圧板14とは該導電部
剤(10,11)の突出部10で両者が接続して、その
接続部15を含む接触部分でのみ両者が導通しており、
該正極リード板5の先端が該導電部剤(10,11)の
基部11に接続されており、該電池ケース4の開口部分
が内側にかしめられることで該ガスケット13が圧縮さ
れて該電池ケース4が該蓋要素で密閉されている。該電
池ケース4の内部が所定の内圧に達することにより、外
側に膨出した該中間端子板14によって該導電部剤(1
0,11)の突出部10の該接続部15の周囲が破断す
ることにより該正極リード板18と該正極端子板8との
導電経路が遮断されるように構成されている。6はポリ
プロピレン製絶縁底板で、巻回時に生じる空間Aと同面
積になるように穴が開いている。また16は巻回状電極
群と正極リード板が短絡しないように挿入された絶縁板
である。なお完成電池のサイズは単3形(14.5φm
m×50mm)である。In the rolling step, the mixture density of the sheet electrode was controlled to be 1.2 g / cm 3 . The electrode thickness is 66 (μm). The positive electrode and the negative electrode are spirally wound through three polypropylene porous film separators, and inserted into the case 17. After the above operation, an electrolyte is injected. The used electrolyte solution was dissolved in a mixed solvent in which ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate were mixed at a volume ratio of 2: 1: 7 so that LiPF 6 was 1.3 (mol / l). Was used. After the insertion, an explosion-proof lid element having a current interrupting mechanism is fitted together with the gasket 13,
Seal the power generating element. The cover element includes a metal positive electrode terminal plate 8, an intermediate pressure-sensitive plate 14, and an upwardly projecting projection 10.
The positive electrode terminal plate 8 and the fixing plate 12 are provided with a gas vent hole, and the conductive member (10, 11) including the base member 11 and the conductive member (10, 11). 10 and 11) are provided on the upper surface of the fixing
The lower surface of the base 11 is exposed on the lower surface side of the fixing plate 12 and the lower surface of the base plate 11 is exposed. The gasket 13 is fitted into the inner periphery of the opening of the battery case 4. The fixing plate 12 is fitted, the intermediate pressure-sensitive plate 14 and the positive electrode terminal plate 8 are laminated on the fixing plate 12, and the conductive agent (10, 11) and the intermediate pressure-sensitive plate 14 are connected to the conductive portion. Both are connected at the projecting portion 10 of the agent (10, 11), and both are conductive only at the contact portion including the connecting portion 15,
The tip of the positive electrode lead plate 5 is connected to the base 11 of the conductive agent (10, 11), and the opening of the battery case 4 is crimped inward to compress the gasket 13 to compress the battery case 13. 4 is sealed with the lid element. When the inside of the battery case 4 reaches a predetermined internal pressure, the conductive member (1) is formed by the intermediate terminal plate 14 bulging outward.
The conductive path between the positive electrode lead plate 18 and the positive electrode terminal plate 8 is cut off by breaking the periphery of the connection portion 15 of the protruding portion 10 of (0, 11). Reference numeral 6 denotes an insulating bottom plate made of polypropylene, which has a hole so as to have the same area as the space A generated at the time of winding. Reference numeral 16 denotes an insulating plate inserted so that the wound electrode group and the positive electrode lead plate are not short-circuited. The size of the completed battery is AA (14.5φm
mx 50 mm).
【0039】====黒鉛材料のLc(112)の測定
==== 試料に対して約10重量%のX線標準用高純度シリコン
粉末を内部標準物質として加え混合し、試料セルにつ
め、グラファイトモノクロメータで単色化したCuKα
線を線源とし、反射式ディフラクトメーター法によって
広角X線回折曲線を測定した。X線管球への印可電圧及
び電流は40kV及び40mAとし、発散スリットが2
°、散乱スリットが2°、受光スリットが0.3mmに
設定し、2θが81°〜89°までを毎分0.25°の
速度で走査した。得られた回折図形は、文献(1)に従
って、2θが83.6°付近に出現する黒鉛材料の(1
12)回折線の回折角及び半価幅を、2θが88.1°
付近に出現するシリコン粉末の(422)回折線によっ
て補正し、c軸方向の結晶子の大きさLc(112)を
算出した。==== Measurement of Lc (112) of Graphite Material ==== About 10% by weight of high purity silicon powder for X-ray standard is added to the sample as an internal standard substance, mixed and packed in a sample cell. , CuKα monochromated by graphite monochromator
Using a line as a radiation source, a wide-angle X-ray diffraction curve was measured by a reflection type diffractometer method. The applied voltage and current to the X-ray tube were 40 kV and 40 mA, and the divergence slit was 2
°, the scattering slit was set to 2 °, and the light receiving slit was set to 0.3 mm, and scanning was performed at a speed of 0.25 ° per minute from 2 ° to 81 ° to 89 °. The obtained diffraction pattern is based on (1) of the graphite material in which 2θ appears around 83.6 ° according to the literature (1).
12) The diffraction angle and half width of the diffraction line are 28.1 = 88.1 °.
Correction was made by the (422) diffraction line of the silicon powder appearing in the vicinity, and the crystallite size Lc (112) in the c-axis direction was calculated.
【0040】====菱面体晶系黒鉛の存在割合の算出
==== 前述のX線広角回折装置を用い、内部標準物質を特に加
えずに黒鉛粉末のみを試料ホルダーにつめて測定を行っ
た。X線管球への印可電圧及び電流は40kV及び40
mAとし、分離スリットが1°、発散スリットが1°、
受光スリットが0.15mmに設定し、走査速度を毎分
0.25°として(2θ/θ)が41°から48°まで
を低角度側から高角度側に走査してX線回折図形を得
た。菱面体晶系黒鉛が少しでも存在していればこの測定
範囲内において4本の回折線を観察することができる。
各々の回折線は低角度側から(2θ/θ)が42.3°
付近に六方晶系の(100)回折線が、43.3°付近
に菱面体晶系の(101)回折線が、44.4°付近に
六方晶系の(101)回折線が、46.0°付近に菱面
体晶系の(012)回折線が出現する。X線回折は測定
条件によってその結果が著しく変化するため、本発明範
囲内で規定された菱面体晶の存在割合は以上の測定条件
で得られた結果から算出された場合に限定されるものと
する。得られた回折図形に対して任意にベースラインを
設定し、これらの回折線を図上で分離することにより各
々の回折線のピーク面積を算出した。菱面体晶に帰属さ
れる(101)回折線のピーク面積r(101)及び六
方晶に帰属される(101)回折線のピーク面積h(1
01)を下式1に代入し、菱面体晶系黒鉛の存在割合を
算出した。==== Calculation of Existence Ratio of Rhombohedral Graphite ==== Using the aforementioned X-ray wide-angle diffractometer, only the graphite powder was packed in the sample holder without adding any internal standard material, and the measurement was performed. went. The applied voltage and current to the X-ray tube were 40 kV and 40 kV.
mA, the separation slit is 1 °, the divergence slit is 1 °,
The light receiving slit is set to 0.15 mm, the scanning speed is set to 0.25 ° per minute, and (2θ / θ) is scanned from low to high angles from 41 ° to 48 ° to obtain an X-ray diffraction pattern. Was. If any rhombohedral graphite is present, four diffraction lines can be observed within this measurement range.
Each diffraction line has a (2θ / θ) of 42.3 ° from the low angle side.
A hexagonal (100) diffraction line near 43.3 °, a rhombohedral (101) diffraction line near 43.3 °, a hexagonal (101) diffraction line near 44.4 °, and 46. A rhombohedral (012) diffraction line appears around 0 °. Since the results of X-ray diffraction vary significantly depending on the measurement conditions, the existence ratio of rhombohedral crystals defined within the scope of the present invention is limited to the case where the ratio is calculated from the results obtained under the above measurement conditions. I do. A base line was arbitrarily set for the obtained diffraction pattern, and these diffraction lines were separated on the figure to calculate the peak area of each diffraction line. Peak area r (101) of (101) diffraction line attributed to rhombohedral crystal and peak area h (1) of (101) diffraction line attributed to hexagonal crystal
01) was substituted into Equation 1 below, and the abundance ratio of rhombohedral graphite was calculated.
【0041】(式1) {r(101)×15/12}/{r(101)×15
/12+h(101)}(Equation 1) {r (101) × 15/12} / Δr (101) × 15
/ 12 + h (101)}
【0042】====平均粒子径の測定==== 黒鉛粉末の平均粒径を、レーザー回折式粒度分布測定装
置(日本電子株式会社製HELOS)によって測定し
た。本明細書ではこの測定装置によって測定された累積
50%径を平均粒径と表現することにする。なお測定さ
れた平均粒径によって適宜測定レンズを変更した。==== Measurement of Average Particle Size ==== The average particle size of the graphite powder was measured by a laser diffraction particle size distribution analyzer (HELOS, manufactured by JEOL Ltd.). In the present specification, the cumulative 50% diameter measured by this measuring device will be referred to as the average particle diameter. The measurement lens was appropriately changed according to the measured average particle diameter.
【0043】====黒鉛材料の作製==== (黒鉛1) アセナフチレンをオートクレーブに入れ、
50kg/cm2の窒素ガスを封入し、700℃まで加
熱して炭化した。この際、昇温速度は室温から250℃
までを100℃/時間、250℃〜550℃までを50
℃/時間、550℃〜700℃までを100℃/時間と
した。このようにして得たコークスを電気炉に入れ窒素
気流中2800℃まで昇温し、5時間保持した後室温ま
で放冷した。==== Preparation of Graphite Material ==== (Graphite 1) Acenaphthylene was put in an autoclave,
A nitrogen gas of 50 kg / cm 2 was sealed and heated to 700 ° C. to carbonize. At this time, the heating rate is from room temperature to 250 ° C.
Up to 100 ° C / hour, 250 ° C to 550 ° C
100 ° C / hour from 550 ° C to 700 ° C. The coke thus obtained was placed in an electric furnace, heated to 2800 ° C. in a nitrogen stream, kept for 5 hours, and allowed to cool to room temperature.
【0044】(黒鉛2) アセナフチレン及びフェナン
スレンの各々を平均粒子径が5(μm)となるように粉
砕し、両者を90:10となるように混合した。この混
合物をオートクレーブに入れ、50kg/cm2の窒素
ガスを封入し、700℃まで加熱して炭化した。この
際、昇温速度は室温から250℃までを100℃/時
間、250℃〜550℃までを50℃/時間、550℃
〜700℃までを100℃/時間とした。このようにし
て得たコークスを電気炉に入れ窒素気流中2800℃ま
で昇温し、5時間保持した後室温まで放冷した。(Graphite 2) Acenaphthylene and phenanthrene were each pulverized so that the average particle diameter became 5 (μm), and both were mixed so that the ratio became 90:10. The mixture was placed in an autoclave, filled with 50 kg / cm 2 of nitrogen gas, and heated to 700 ° C. to carbonize. At this time, the heating rate is 100 ° C./hour from room temperature to 250 ° C., 50 ° C./hour from 250 ° C. to 550 ° C., and 550 ° C.
100 ° C./hour up to 700700 ° C. The coke thus obtained was placed in an electric furnace, heated to 2800 ° C. in a nitrogen stream, kept for 5 hours, and allowed to cool to room temperature.
【0045】(黒鉛3) アセナフチレン及びフェナン
スレンの各々を平均粒子径が5(μm)となるように粉
砕し、両者を重量比97:3となるように混合した。こ
の混合物をオートクレーブに入れ、50kg/cm2の
窒素ガスを封入し、700℃まで加熱して炭化した。こ
の際、昇温速度は室温から250℃までを100℃/時
間、250℃〜550℃までを50℃/時間、550℃
〜700℃までを100℃/時間とした。このようにし
て得たコークスを電気炉に入れ窒素気流中2800℃ま
で昇温し、5時間保持した後室温まで放冷した。(Graphite 3) Acenaphthylene and phenanthrene were each pulverized so that the average particle diameter was 5 (μm), and both were mixed so that the weight ratio was 97: 3. The mixture was placed in an autoclave, filled with 50 kg / cm 2 of nitrogen gas, and heated to 700 ° C. to carbonize. At this time, the heating rate is 100 ° C./hour from room temperature to 250 ° C., 50 ° C./hour from 250 ° C. to 550 ° C., and 550 ° C.
100 ° C./hour up to 700700 ° C. The coke thus obtained was placed in an electric furnace, heated to 2800 ° C. in a nitrogen stream, kept for 5 hours, and allowed to cool to room temperature.
【0046】(黒鉛4) フェナンスレンをオートクレ
ーブに入れ、50kg/cm2の窒素ガスを封入し、7
00℃まで加熱して炭化した。この際、昇温速度は室温
から250℃までを100℃/時間、250℃〜550
℃までを50℃/時間、550℃〜700℃までを10
0℃/時間とした。このようにして得たコークスを電気
炉に入れ窒素気流中2800℃まで昇温し、5時間保持
した後室温まで放冷した。(Graphite 4) Phenanthrene was charged into an autoclave, and nitrogen gas at 50 kg / cm 2 was charged.
It was heated to 00 ° C and carbonized. At this time, the heating rate is from room temperature to 250 ° C. at 100 ° C./hour, and 250 ° C. to 550.
50 ° C / hour to 550 ° C to 10 ° C
0 ° C./hour. The coke thus obtained was placed in an electric furnace, heated to 2800 ° C. in a nitrogen stream, kept for 5 hours, and allowed to cool to room temperature.
【0047】(黒鉛5) アントラセンとベンズアルデ
ヒドを,モル比で0.198:0.304となるように
混合し、この混合物にパラトルエンスルホン酸が5.1
9重量%となるように加えて充分に攪拌した。この状態
で160℃まで加熱し、1時間保持した。その後水分及
び未反応のベンズアルデヒドを真空蒸留によって除去
し、乾燥した。このようにして得られた縮合性多環多核
芳香族をボールミルで平均粒子径が5(μm)となるま
で粉砕した。この粉砕物を原料Bとする。一方ピレン、
ベンズアルデヒド、パラトルエンスルホン酸をモル比で
0.126:0.157:0.011となるように混合
し、充分に攪拌した。その後攪拌を続けながら150℃
まで加熱し、この状態を2時間保持して放冷した。この
ようにして得られた縮合性多環多核芳香族をボールミル
で平均粒子径が5(μm)となるまで粉砕した。この粉
砕物を原料Aとする。原料Aと原料Bとを重量比95:
5となるように混合し、700℃まで加熱して炭化し
た。この際、昇温速度は室温から250℃までを100
℃/時間、250℃〜550℃までを50℃/時間、5
50℃〜700℃までを100℃/時間とした。このよ
うにして得たコークスを電気炉に入れ窒素気流中280
0℃まで昇温し、5時間保持した後室温まで放冷した。(Graphite 5) Anthracene and benzaldehyde are mixed in a molar ratio of 0.198: 0.304, and paratoluenesulfonic acid is added to this mixture in 5.1.
The mixture was added to 9% by weight and stirred sufficiently. In this state, it was heated to 160 ° C. and kept for 1 hour. Thereafter, water and unreacted benzaldehyde were removed by vacuum distillation and dried. The condensable polycyclic polynuclear aromatic thus obtained was pulverized by a ball mill until the average particle diameter became 5 (μm). This pulverized material is used as a raw material B. Meanwhile, pyrene,
Benzaldehyde and p-toluenesulfonic acid were mixed at a molar ratio of 0.126: 0.157: 0.011, and sufficiently stirred. 150 ° C. with continuous stirring
, And kept in this state for 2 hours to cool. The condensable polycyclic polynuclear aromatic thus obtained was pulverized by a ball mill until the average particle diameter became 5 (μm). This pulverized product is referred to as a raw material A. Raw material A and raw material B are in a weight ratio of 95:
The mixture was heated to 700 ° C. and carbonized. At this time, the heating rate is from room temperature to 250 ° C.
50 ° C / hour, from 250 ° C to 550 ° C,
100 ° C / hour from 50 ° C to 700 ° C. The coke thus obtained is placed in an electric furnace and placed in a nitrogen stream at 280.
The temperature was raised to 0 ° C., maintained for 5 hours, and allowed to cool to room temperature.
【0048】(黒鉛6) 高純度化された市販のマダガ
スカル産鱗片状天然黒鉛粉末(平均粒子径100(μ
m))をそのまま用いた。(Graphite 6) A highly purified flaky natural graphite powder produced in Madagascar (average particle diameter 100 (μm)
m)) was used as is.
【0049】これら黒鉛1〜5を、アルゴンガスを気流
に用いたジェットミルで平均粒径が凡そ40,30,2
5,20及び10(μm)となるように適宜調整して各
々粉砕した。These graphites 1 to 5 were subjected to jet milling using an argon gas as a gas stream to have an average particle size of about 40, 30, 2
Each was pulverized by appropriately adjusting to 5, 20, and 10 (μm).
【0050】====電池の試験方法==== 前述のようにして得られた黒鉛粉末のLc(112)、
平均粒子径及び菱面体晶系黒鉛の存在比率を、対応する
実施例番号と共に表1に示す。==== Test Method for Battery ==== Lc (112) of the graphite powder obtained as described above,
The average particle diameter and the abundance ratio of rhombohedral graphite are shown in Table 1 together with the corresponding example numbers.
【0051】[0051]
【表1】 [Table 1]
【0052】実施例番号に対応した電池を(電池の作製
方法)に従って作製した。作製された電池に対し、充電
電流を50mAの定電流として電池電圧が充電終止電圧
4.2Vに達したところで充電操作を一時停止し、15
分間休止の後、放電電流を50mAの定電流として電池
電圧が放電終止電圧3.0Vに達したところで放電操作
を一時停止し、15分間休止して充電操作を行う、充放
電サイクルを5サイクル行った後に、後述する負荷特性
試験を行い、試験終了後に後述の過充電試験を行った。A battery corresponding to the example number was manufactured according to (battery manufacturing method). When the battery voltage reaches a constant charge current of 50 mA and the battery voltage reaches a charge end voltage of 4.2 V, the charging operation is temporarily stopped.
After a pause of one minute, the discharge operation is suspended when the battery voltage reaches a discharge end voltage of 3.0 V with a constant discharge current of 50 mA, and the charge operation is paused for 15 minutes to perform a charge / discharge cycle of five cycles. After that, a load characteristic test described later was performed, and an overcharge test described later was performed after the test.
【0053】(1)負荷特性試験 電池の充電は定電流/定電圧法により行った。充電電流
は400mA、充電電圧は4.2V、充電時間は5時間
である。以上の充電操作の終了後、15分間休止させ、
放電電流を200mAとした定電流法で放電を行い、電
池電圧が放電終止電圧である2.5Vに達したところで
放電操作を一時停止した。さらに同様な充電操作及び休
止を行った後、放電電流を600mAとした定電流法で
放電を行い、同様な放電終止電圧である2.5Vに達し
たところで放電操作を終了させた。各々の放電電流で得
られた見掛けの放電容量を表1中に示す。なお放電電流
が600mAの場合に得られた見掛けの放電容量に対す
る、200mAの場合に得られたそれとの割合(%)を
負荷特性と表現することとした。各電池で得られた負荷
特性も表3中に示す。(1) Load Characteristics Test The battery was charged by a constant current / constant voltage method. The charging current is 400 mA, the charging voltage is 4.2 V, and the charging time is 5 hours. After the end of the above charging operation, pause for 15 minutes,
Discharge was performed by a constant current method with a discharge current of 200 mA, and the discharge operation was temporarily stopped when the battery voltage reached a discharge end voltage of 2.5 V. Further, after performing the same charging operation and rest, discharging was performed by a constant current method with a discharging current of 600 mA, and the discharging operation was terminated when the same discharge termination voltage of 2.5 V was reached. Table 1 shows the apparent discharge capacities obtained at each discharge current. The ratio (%) of the apparent discharge capacity obtained when the discharge current was 600 mA to that obtained when the discharge current was 200 mA was expressed as the load characteristic. Table 3 also shows the load characteristics obtained for each battery.
【0054】(2)過充電試験 負荷特性が終了した電池に対し、400mAの定電流で
充電し続けて人為的に過充電状態を作り、電池の安全性
を確認した。これらの結果を表3に示す。過充電試験の
合否判断は、試験途中で過剰な発熱を生じるか否かで判
断した。過剰発熱を生じなかった電池は、電流遮断機構
を備えた安全弁が正常に作動したため、過充電途中で充
電電流が遮断されたためであり、過剰発熱を生じるに至
った電池は、電流遮断機構が正常に作動する前に、何ら
かの異常状態に陥ったことが原因であると考えられる。(2) Overcharge Test The battery having completed the load characteristics was continuously charged at a constant current of 400 mA to artificially create an overcharged state, and the safety of the battery was confirmed. Table 3 shows the results. The pass / fail judgment of the overcharge test was made based on whether or not excessive heat generation occurred during the test. For batteries that did not generate excessive heat, the safety valve with the current cutoff mechanism operated normally, and the charging current was cut off during overcharge.Batteries that generated excessive heat had normal current cutoff mechanisms. It is considered that the cause is that some abnormal condition has occurred before the operation is performed.
【0055】(3)実施例の結果 何れの黒鉛を用いた場合であっても平均粒子径が小さく
なると共に負荷特性は向上した。ただし負荷特性と安全
性試験の結果には明確な相関関係が認められなかった。(3) Results of Examples Regardless of the type of graphite used, the average particle size was reduced and the load characteristics were improved. However, no clear correlation was found between the load characteristics and the results of the safety test.
【0056】黒鉛1及び黒鉛6を用いた電池は、どのよ
うな平均粒子径であっても過充電試験は不合格であっ
た。両黒鉛は平均粒子径が約40(μm)であっても菱
面体晶の存在比率が相対的に高いことから、元々結晶内
部の格子歪が小さく、吸蔵されたリチウムの固相内拡散
速度が大きかったためであると考えられ、過充電時には
急激な熱暴走反応を引き起こしたと推定される。Batteries using graphite 1 and graphite 6 failed the overcharge test regardless of the average particle size. Since both graphites have a relatively high ratio of rhombohedral crystals even if the average particle diameter is about 40 (μm), the lattice strain inside the crystals is originally small, and the diffusion rate of occluded lithium in the solid phase is low. It is presumed that this was due to the large size, and it was presumed that a rapid thermal runaway reaction occurred during overcharge.
【0057】黒鉛2及び黒鉛5は平均粒子径が10(μ
m)以外の場合、過充電試験に合格した。ただし平均粒
子径が40(μm)及び30(μm)の場合には負荷特
性が80%未満となった。両黒鉛は菱面体晶の存在比率
が黒鉛1及び黒鉛4の場合と比較して低いことから、結
晶内部の格子歪が比較的大きく、吸蔵されたリチウムの
固相内拡散速度が小さかったと考えられる。平均粒子径
を少なくとも30(μm)未満にしなければ、負荷特性
を80%以上にすることは困難であると推定される。Graphite 2 and graphite 5 have an average particle diameter of 10 (μ
In cases other than m), the overcharge test was passed. However, when the average particle diameter was 40 (μm) and 30 (μm), the load characteristics were less than 80%. Since both graphites have a lower ratio of rhombohedral crystals than those of graphite 1 and graphite 4, it is considered that the lattice strain inside the crystals was relatively large and the diffusion rate of the stored lithium in the solid phase was low. . Unless the average particle diameter is at least less than 30 (μm), it is presumed that it is difficult to achieve a load characteristic of 80% or more.
【0058】黒鉛3は平均粒子径が10(μm)以外の
場合、過充電試験に合格した。ただし平均粒子径が40
(μm)の場合には負荷特性が80%未満となった。同
様な粒子径の黒鉛どうしを比較した場合、黒鉛2の菱面
体晶の存在比率は黒鉛1及び黒鉛6よりも低く、黒鉛2
及び5よりも高い。従って格子歪は少なくとも黒鉛2及
び黒鉛5よりも小さいと推察される。このために平均粒
子径が30(μm)の場合であっても負荷特性が80%
以上であった。黒鉛3の場合、平均粒子径を少なくとも
40(μm)未満にしなければ、負荷特性を80%以上
にすることは困難であると推定される。When the average particle diameter of graphite 3 was other than 10 (μm), it passed the overcharge test. However, the average particle size is 40
(Μm), the load characteristics were less than 80%. When graphites having similar particle diameters are compared with each other, the ratio of the rhombohedral crystal of graphite 2 is lower than that of graphite 1 and graphite 6, and that of graphite 2
And 5 higher. Therefore, it is inferred that the lattice strain is smaller than at least graphite 2 and graphite 5. For this reason, even when the average particle diameter is 30 (μm), the load characteristics are 80%.
That was all. In the case of graphite 3, it is presumed that it is difficult to achieve a load characteristic of 80% or more unless the average particle diameter is at least less than 40 (μm).
【0059】黒鉛4は平均粒子径が10(μm)以外の
場合、過充電試験には合格したが、どのような粒子径を
用いた場合であっても、電池容量が450mAh未満で
あった。このように電池容量が小さいのは、黒鉛の結晶
子の大きさLc(112)が小さいため、可逆的なリチ
ウムの吸蔵・放出可能容量が小さかったためであると考
えられる。またこの黒鉛は粉砕によって平均粒子径を小
さくしても、菱面体晶の存在割合が他の黒鉛材料と比較
して低く、結晶内部の格子歪が大きいことが推察され
る。このため負荷特性も、他の黒鉛材料の場合と比較し
て低い値を示したと考えられる。The graphite 4 passed the overcharge test when the average particle size was other than 10 (μm), but the battery capacity was less than 450 mAh regardless of the particle size. It is considered that the reason why the battery capacity is small is that the reversible lithium storage / release capacity is small due to the small crystallite size Lc (112) of graphite. Even if this graphite is pulverized to reduce the average particle diameter, it is presumed that the proportion of rhombohedral crystals is lower than that of other graphite materials, and that the lattice strain inside the crystal is large. For this reason, it is considered that the load characteristics also showed lower values as compared with the case of other graphite materials.
【0060】以上のように本発明範囲内の黒鉛材料を用
いた電池は、容量が450mAh以上、負荷特性が80
%以上を達成して、過充電試験にも合格している。As described above, a battery using a graphite material within the scope of the present invention has a capacity of 450 mAh or more and a load characteristic of 80 mAh.
% And passed the overcharge test.
【0061】[0061]
【発明の効果】本発明に係る黒鉛材料を用いたリチウム
イオン二次電池は、容量及び負荷特性を低下させること
なく、耐過充電特性、すなわち過充電における安全性を
向上させることが可能になった。According to the lithium ion secondary battery using the graphite material according to the present invention, overcharge resistance, that is, safety in overcharge can be improved without lowering capacity and load characteristics. Was.
【図1】本発明に係る六方晶系黒鉛の単位格子構造を示
す図である。FIG. 1 is a diagram showing a unit cell structure of hexagonal graphite according to the present invention.
【図2】本発明に係る菱面体晶系黒鉛の単位格子構造を
示す図である。FIG. 2 is a diagram showing a unit cell structure of rhombohedral graphite according to the present invention.
【図3】本発明に係る天然黒鉛を粉砕した黒鉛粉末の回
折図である。FIG. 3 is a diffraction diagram of graphite powder obtained by pulverizing natural graphite according to the present invention.
【図4】本発明による単3型巻回式リチウム二次電池の
構造を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing the structure of an AA wound lithium secondary battery according to the present invention.
1 正極板 2 負極炭素材料 3 ポリプロピレン製の多孔質フィルムセパレータ 4 電池ケース 6 ポリプロピレン製絶縁底板 7 ニッケル製負極リード板 8 正極端子板 10 突出部 11 基部 12 固定板 13 ガスケット 14 中間感圧板 15 接続部 16 巻回状電極群 17 ケース 18 アルミニウム製正極リード板 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode carbon material 3 Polypropylene porous film separator 4 Battery case 6 Polypropylene insulating bottom plate 7 Nickel negative electrode lead plate 8 Positive electrode terminal plate 10 Protrusion 11 Base 12 Fixing plate 13 Gasket 14 Intermediate pressure sensing plate 15 Connection part 16 wound electrode group 17 case 18 aluminum positive electrode lead plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 吉郎 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 Fターム(参考) 5H029 AJ01 AJ12 AK03 AL07 AM03 AM04 AM05 AM07 BJ02 DJ16 DJ17 HJ01 HJ05 5H050 AA03 AA15 BA17 CA08 CA09 CB08 EA10 EA24 FA17 FA19 HA02 HA05 HA13 ────────────────────────────────────────────────── ─── Continued on the front page (72) Yoshiro Harada Inventor 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. F-term (reference) 5H029 AJ01 AJ12 AK03 AL07 AM03 AM04 AM05 AM07 BJ02 DJ16 DJ17 HJ01 HJ05 5H050 AA03 AA15 BA17 CA08 CA09 CB08 EA10 EA24 FA17 FA19 HA02 HA05 HA13
Claims (1)
リチウム含有複合金属酸化物を正極活物質として含む正
極合剤が金属箔上にシート状に成形された正極部と、リ
チウムの吸蔵・放出可能な黒鉛材料を主成分とする負極
合剤が金属箔上にシート状に成形されてなる負極部とを
セパレータを介して重ね合わせてなる電極体が、リチウ
ム塩を含んだ非水電解液と共に密閉容器内に配置されて
なるリチウムイオン二次電池において、 前記黒鉛材料は、六方晶及び菱面体晶より構成され、X
線広角回折法でもって測定したときに、(112)回折
線から算出されるc軸方向の結晶子の大きさLc(11
2)が200(Å)から400(Å)、且つ平均粒子径
が20(μm)から30(μm)であって、前記菱面体
晶に帰属される(101)回折線のピーク面積をr(1
01)とするとともに、前記六方晶に帰属される(10
1)回折線のピーク面積をh(101)として、{r
(101)×12/15}/{r(101)×15/1
2+h(101)}の式で規定される前記菱面体晶系の
存在割合が15%以上25%以下の範囲であることを特
徴とするリチウムイオン二次電池。1. A positive electrode part comprising a positive electrode mixture containing a lithium-containing composite metal oxide capable of reversibly occluding and releasing lithium as a positive electrode active material formed in a sheet shape on a metal foil; A non-aqueous electrolyte containing a lithium salt is formed by laminating a negative electrode mixture composed mainly of a releasable graphite material as a sheet on a metal foil and a negative electrode part via a separator. And a lithium ion secondary battery arranged in a closed container, wherein the graphite material is composed of hexagonal and rhombohedral, and X
When measured by the line wide angle diffraction method, the crystallite size Lc (11) in the c-axis direction calculated from the (112) diffraction line
2) is 200 (Å) to 400 (Å), the average particle size is 20 (μm) to 30 (μm), and the peak area of the (101) diffraction line attributed to the rhombohedral is r ( 1
01) and belonging to the hexagonal crystal (10)
1) Assuming that the peak area of the diffraction line is h (101), Δr
(101) × 12/15} / {r (101) × 15/1
The lithium ion secondary battery, wherein the proportion of the rhombohedral system defined by the formula of 2 + h (101)} is in the range of 15% or more and 25% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000169637A JP4739486B2 (en) | 2000-06-06 | 2000-06-06 | Lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000169637A JP4739486B2 (en) | 2000-06-06 | 2000-06-06 | Lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001351627A true JP2001351627A (en) | 2001-12-21 |
JP4739486B2 JP4739486B2 (en) | 2011-08-03 |
Family
ID=18672469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000169637A Expired - Fee Related JP4739486B2 (en) | 2000-06-06 | 2000-06-06 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4739486B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002110157A (en) * | 2000-09-29 | 2002-04-12 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
WO2004001880A1 (en) * | 2002-06-20 | 2003-12-31 | Sony Corporation | Electrode and cell comprising the same |
WO2004034491A1 (en) * | 2002-10-11 | 2004-04-22 | Fdk Corporation | Nonaqueous electrolyte secondary battery and process for producing positive electrode for use in nonaqueous electrolyte secondary battery |
JP2006273615A (en) * | 2005-03-28 | 2006-10-12 | Sanyo Electric Co Ltd | Method for manufacturing graphite-based carbon material |
WO2012046802A1 (en) * | 2010-10-08 | 2012-04-12 | Jx日鉱日石エネルギー株式会社 | Graphite material with lattice distortion for use in lithium-ion secondary battery negative electrodes, and lithium-ion secondary battery |
CN112368864A (en) * | 2019-01-17 | 2021-02-12 | 株式会社Lg化学 | Negative electrode active material for secondary battery, negative electrode comprising same, and method for producing same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0636760A (en) * | 1992-07-21 | 1994-02-10 | Fuji Elelctrochem Co Ltd | Nonaqueous electrolyte secondary battery |
JPH1032003A (en) * | 1996-07-17 | 1998-02-03 | Fuji Elelctrochem Co Ltd | Lithium secondary battery |
JPH1097870A (en) * | 1996-09-20 | 1998-04-14 | Fuji Elelctrochem Co Ltd | Lithium secondary battery |
JPH1125974A (en) * | 1997-07-01 | 1999-01-29 | Fuji Elelctrochem Co Ltd | Lithium secondary battery |
JPH11111297A (en) * | 1993-03-10 | 1999-04-23 | Toshiba Corp | Lithium secondary battery |
JPH11204145A (en) * | 1998-01-20 | 1999-07-30 | Yuasa Corp | Lithium secondary battery |
JPH11283622A (en) * | 1998-03-31 | 1999-10-15 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2000348727A (en) * | 1999-06-01 | 2000-12-15 | Fuji Elelctrochem Co Ltd | Nonaqueous electrolyte secondary battery |
-
2000
- 2000-06-06 JP JP2000169637A patent/JP4739486B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0636760A (en) * | 1992-07-21 | 1994-02-10 | Fuji Elelctrochem Co Ltd | Nonaqueous electrolyte secondary battery |
JPH11111297A (en) * | 1993-03-10 | 1999-04-23 | Toshiba Corp | Lithium secondary battery |
JPH1032003A (en) * | 1996-07-17 | 1998-02-03 | Fuji Elelctrochem Co Ltd | Lithium secondary battery |
JPH1097870A (en) * | 1996-09-20 | 1998-04-14 | Fuji Elelctrochem Co Ltd | Lithium secondary battery |
JPH1125974A (en) * | 1997-07-01 | 1999-01-29 | Fuji Elelctrochem Co Ltd | Lithium secondary battery |
JPH11204145A (en) * | 1998-01-20 | 1999-07-30 | Yuasa Corp | Lithium secondary battery |
JPH11283622A (en) * | 1998-03-31 | 1999-10-15 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2000348727A (en) * | 1999-06-01 | 2000-12-15 | Fuji Elelctrochem Co Ltd | Nonaqueous electrolyte secondary battery |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002110157A (en) * | 2000-09-29 | 2002-04-12 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP4656710B2 (en) * | 2000-09-29 | 2011-03-23 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery |
WO2004001880A1 (en) * | 2002-06-20 | 2003-12-31 | Sony Corporation | Electrode and cell comprising the same |
US7229713B2 (en) | 2002-06-20 | 2007-06-12 | Sony Corporation | Electrode and battery using the same |
WO2004034491A1 (en) * | 2002-10-11 | 2004-04-22 | Fdk Corporation | Nonaqueous electrolyte secondary battery and process for producing positive electrode for use in nonaqueous electrolyte secondary battery |
US7452633B2 (en) | 2002-10-11 | 2008-11-18 | Fdk Corporation | Non-aqueous electrolyte secondary battery and process for producing positive electrode for use in non-aqueous electrolyte secondary battery |
JP2006273615A (en) * | 2005-03-28 | 2006-10-12 | Sanyo Electric Co Ltd | Method for manufacturing graphite-based carbon material |
JP4738039B2 (en) * | 2005-03-28 | 2011-08-03 | 三洋電機株式会社 | Method for producing graphite-based carbon material |
WO2012046802A1 (en) * | 2010-10-08 | 2012-04-12 | Jx日鉱日石エネルギー株式会社 | Graphite material with lattice distortion for use in lithium-ion secondary battery negative electrodes, and lithium-ion secondary battery |
JP2012084360A (en) * | 2010-10-08 | 2012-04-26 | Jx Nippon Oil & Energy Corp | Graphite material with lattice strain for use in lithium-ion secondary battery negative electrodes, and lithium-ion secondary battery |
US9214666B2 (en) | 2010-10-08 | 2015-12-15 | Jx Nippon Oil & Energy Corporation | Graphite material with lattice distortion for use in lithium-ion secondary battery negative electrodes, and lithium-ion secondary battery |
CN112368864A (en) * | 2019-01-17 | 2021-02-12 | 株式会社Lg化学 | Negative electrode active material for secondary battery, negative electrode comprising same, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP4739486B2 (en) | 2011-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7537862B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same | |
JP6181590B2 (en) | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
US6576369B1 (en) | Graphite powder suitable for negative electrode material of lithium ion secondary batteries | |
JP3632686B2 (en) | Positive electrode active material and non-aqueous electrolyte secondary battery | |
KR102102105B1 (en) | Lithium secondary cell and nonaqueous electrolytic solution for use therein | |
KR101661050B1 (en) | Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
JP3436033B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3499584B2 (en) | Lithium secondary battery | |
JP2002117833A (en) | Nonaqueous electrolyte secondary battery | |
JPH08124559A (en) | Manufacture of lithium secondary battery and of negative electrode active material | |
JP2010073618A (en) | Negative electrode and secondary battery | |
US10693128B2 (en) | Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery including the same, and battery pack | |
JP3082557B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP2017520892A (en) | Positive electrode for lithium battery | |
JP4933092B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2004134207A (en) | Positive electrode active material and non-aqueous electrolyte secondary battery | |
JPWO2004034491A1 (en) | Nonaqueous electrolyte secondary battery and method for producing positive electrode used in this nonaqueous electrolyte secondary battery | |
JP2000348727A (en) | Nonaqueous electrolyte secondary battery | |
JPH1145715A (en) | Manufacture of nonaqueous electrolytic secondary battery and of its negative electrode | |
JPH07335216A (en) | Nonaqueous electrolytic secondary battery | |
JP2001351687A (en) | Lithium ion secondary cell | |
JP4739486B2 (en) | Lithium ion secondary battery | |
JPH10308236A (en) | Nonaqueous electrolyte secondary battery | |
JP3406843B2 (en) | Lithium secondary battery | |
JP4781545B2 (en) | Non-aqueous electrolyte lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040917 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100329 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100329 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110428 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4739486 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |