JPH0636760A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0636760A
JPH0636760A JP4193966A JP19396692A JPH0636760A JP H0636760 A JPH0636760 A JP H0636760A JP 4193966 A JP4193966 A JP 4193966A JP 19396692 A JP19396692 A JP 19396692A JP H0636760 A JPH0636760 A JP H0636760A
Authority
JP
Japan
Prior art keywords
lithium
graphite
carbonaceous material
carbon material
natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4193966A
Other languages
Japanese (ja)
Other versions
JP3068712B2 (en
Inventor
Takashi Suzuki
貴志 鈴木
Kohei Yamamoto
浩平 山本
Yoshihisa Hino
義久 日野
Yoshiro Harada
吉郎 原田
Hideaki Nagura
秀哲 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP4193966A priority Critical patent/JP3068712B2/en
Publication of JPH0636760A publication Critical patent/JPH0636760A/en
Application granted granted Critical
Publication of JP3068712B2 publication Critical patent/JP3068712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To keep the discharge potential high and flat and prevent the sudden voltage reduction and a trouble caused by it by using a material mixed with another carbon material capable of storing or releasing a preset quantity of lithium into graphite for a carbon material. CONSTITUTION:A mixture of natural or artificial graphite and another carbon material capable of storing or releasing lithium at 5-30vol.% against graphite is used for a carbon material in a nonaqueous electrolyte secondary battery using the carbon material for a negative electrode. The vol.% is defined as B/AX100, where A is the undoped volume obtained when lithium is doped into the carbon material made of natural or artificial graphite at a certain current density with counter electrodes made of a lithium metal used until the inter-terminal voltage is made 0v then lithium is released until 1.0v is attained, and B is the undoped volume obtained after the similar action for another carbon material capable of storing and releasing lithium. The discharge voltage is kept high and flat, and the sudden voltage reduction can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電池作動中に残存容
量が僅かになった場合に両極間電圧が緩やかに減少すべ
く特性を改良した非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery whose characteristics are improved so that the voltage between both electrodes can be gently reduced when the remaining capacity becomes small during the operation of the battery.

【0002】[0002]

【従来の技術】002面の面間隔に相当するX線回折ピ
ークの半幅値が1°以下で、002面の面間隔d002
が3.35〜3.42オングストローム、結晶子の大き
さ(Lc)が100〜500オングストロームの黒鉛構
造を有する微粉状炭素質材料を負極に用いたリチウム二
次電池は、電池の放電中に閉回路電圧が高電圧を長時間
維持できるため、他の炭素質材料を負極に用いるよりも
エネルギー密度が高く、高性能である。
2. Description of the Related Art The half-width value of the X-ray diffraction peak corresponding to the spacing between 002 planes is 1 ° or less, and the spacing between 002 planes is d002.
Is 3.35-3.42 angstroms and the crystallite size (Lc) is 100-500 angstroms. A lithium secondary battery using a pulverized carbonaceous material having a graphite structure as a negative electrode is closed during discharge of the battery. Since the circuit voltage can be maintained at a high voltage for a long time, it has a higher energy density and higher performance than those using other carbonaceous materials for the negative electrode.

【0003】これに対し、例えば任意の有機高分子化合
物や、その複合物を不活性ガスまたは窒素ガス雰囲気下
で最高温度900〜1800℃で高温焼成したものや、
ピッチコークスを微粉砕した炭素物質等、x線回折によ
り求めた002面の面間隔d002が3.43〜3.9
オングストローム、C軸方向の結晶子の大きさLcが9
〜99オングストロームの黒鉛構造を有するものをリチ
ウム二次電池の負極に用いた場合、すぐれた寿命特性を
示すものの、充放電カーブにおいて放電深度に対する電
圧変化が大きくその電池容量は前記黒鉛構造を有する炭
素質材料を負極に用いた場合よりも放電終止電圧の設定
値に大きく依存することになる。
On the other hand, for example, an arbitrary organic polymer compound or a composite thereof is fired at a maximum temperature of 900 to 1800 ° C. under an inert gas or nitrogen gas atmosphere,
A carbon substance obtained by finely pulverizing pitch coke or the like has a surface spacing d002 of 002 planes determined by x-ray diffraction of 3.43 to 3.9.
Angstrom, C-axis crystallite size Lc is 9
When a lithium secondary battery having a graphite structure of about 99 Å is used as the negative electrode of the lithium secondary battery, the battery has excellent life characteristics, but has a large voltage change with respect to the depth of discharge in the charge / discharge curve, and its battery capacity is the carbon having the graphite structure. It depends much more on the set value of the discharge end voltage than when the quality material is used for the negative electrode.

【0004】一例として、除湿空気雰囲気中で、高純度
化処理を行った天然黒鉛に、電解質としてLiClO4
1Mをエチレンカーボネート、1,2−ジメトキシエタ
ンの混合溶媒中に溶解させたものを非水電解液、対極を
リチウム金属として、Li/Li+ 電位基準で0Vにな
るまで電流密度0.5mA/cm2 の定電流でリチウムを
吸蔵した後、電流密度0.5mA/cm2 の定電流でリチ
ウムを放出させた場合の電圧曲線を図1に示す。なお、
この時天然黒鉛は純度99.99%、平均粒度7μm 、
X線広角回折によって求めた002面の面間隔が3.3
6オングストローム、C軸方向の結晶子の大きさLcが
480オングストロームの中国産燐片状天然黒鉛であっ
て、この黒鉛には結着剤として5重量%のPTFEが含
まれている。
As an example, natural graphite that has been subjected to high-purification treatment in a dehumidified air atmosphere and LiClO 4 as an electrolyte are used.
A solution obtained by dissolving 1 M in a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane was used as a non-aqueous electrolytic solution and a counter electrode was lithium metal, and a current density of 0.5 mA / cm until it reached 0 V on the basis of Li / Li + potential. after inserting lithium in second constant current, shows the voltage curve when to release lithium at a constant current of current density of 0.5 mA / cm 2 in Figure 1. In addition,
At this time, the natural graphite has a purity of 99.99%, an average particle size of 7 μm,
The spacing between the 002 planes determined by X-ray wide-angle diffraction is 3.3.
This is a flaky natural graphite produced in China having a crystallite size Lc of 6 angstroms in the C-axis direction of 480 angstroms, and this graphite contains 5% by weight of PTFE as a binder.

【0005】この図1からも明らかなように、天然黒鉛
はリチウム放出時の端子間電圧0〜0.3Vの電圧領域
でなだらかな平坦部を生じ、低い電圧範囲内で3.0V
まで放出できるリチウム量の85%以上を放出してい
る。このような特性のため、該黒鉛材料を電池の負極材
料として用いると、電池の放電中に閉回路電圧を高く長
時間維持できることになり、他の炭素質材料を負極に用
いるよりもエネルギー密度が高く高性能である。なおこ
の平坦部の長さおよびその平坦性は天然黒鉛の産地およ
び種類によっても異なる。
As is clear from FIG. 1, natural graphite produces a smooth flat portion in the voltage range of 0 to 0.3 V between terminals when releasing lithium, and 3.0 V in a low voltage range.
It releases over 85% of the amount of lithium that can be released. Due to such characteristics, when the graphite material is used as the negative electrode material of the battery, the closed circuit voltage can be maintained high during the discharge of the battery for a long time, and the energy density is higher than that when other carbonaceous materials are used for the negative electrode. High and high performance. The length and flatness of this flat portion also differ depending on the origin and type of natural graphite.

【0006】この天然黒鉛を負極とし、負極のリチウム
吸蔵容量より過剰量のLiCo O2を正極とし、電解質
としてLiClO4 1Mをエチレンカーボネート、1,
2−ジメトキシエタンの混合溶媒中に溶解させたものを
非水電解液とし、ポリプロピレン製セパレータと組合わ
せてリチウム二次電池を作製し、作動させると図2に示
す放電カーブが得られる。但し、図2は電池組立後4.
1Vまで充電させた後の放電曲線であり、放電末期まで
平坦な電圧曲線を描いている。
This natural graphite is used as a negative electrode, LiCoO 2 in excess of the lithium storage capacity of the negative electrode is used as a positive electrode, and LiClO 4 1M is used as an electrolyte for ethylene carbonate, 1,
A non-aqueous electrolyte prepared by dissolving in a mixed solvent of 2-dimethoxyethane is used in combination with a polypropylene separator to prepare a lithium secondary battery, and when operated, the discharge curve shown in FIG. 2 is obtained. However, in FIG.
It is a discharge curve after charging to 1 V, and a flat voltage curve is drawn until the end of discharge.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、負極を
前記黒鉛構造を有する炭素質材料によって構成した電池
は容量がなくなる直前、すなわち図2中の変極点A付近
から電池電圧が急に降下する。このために電池使用者は
使用されている電池の容量低下に気がつきにくく、電池
使用機器を用いた作業の突然の中断や電池切れに伴う機
器の一部破損を余儀無くされることがあった。
However, in a battery in which the negative electrode is made of the carbonaceous material having the above graphite structure, the battery voltage suddenly drops just before the capacity is exhausted, that is, near the inflection point A in FIG. For this reason, it is difficult for the battery user to notice the decrease in the capacity of the battery being used, and it is inevitable that the device using the battery-using device may be suddenly interrupted or part of the device may be damaged due to battery exhaustion.

【0008】例えばパーソナルコンピュータ等を電池駆
動で作動させている場合、フロッピーディスクにデータ
を格納したりデータを読み込んでいる最中に突然電池電
圧が急激に降下することがあれば、フロッピディスクの
データ、システムが破壊される可能性がある。
For example, when a personal computer or the like is operated by a battery, if the battery voltage suddenly drops while storing data in the floppy disk or reading the data, the data of the floppy disk , The system may be destroyed.

【0009】この現象の原因は、放電時に負極材料であ
るリチウム吸蔵状態の黒鉛が、放出可能なリチウム量の
全てを放出し終わる直前の急激な電極電位の変化であ
る。
The cause of this phenomenon is a rapid change in the electrode potential immediately before the lithium-occluding graphite, which is the negative electrode material, discharges all of the releasable amount of lithium during discharge.

【0010】この発明は以上の問題点を解決するもので
あって、その目的は、放電電位を高く平坦に保つことが
でき、電池作動中に残存容量が僅かになった場合に両極
間電圧を緩やかに減少させることにより、突然の電圧低
下およびこれに伴う不具合を防止した非水電解液二次電
池を提供するものである。
The present invention is intended to solve the above problems, and an object thereof is to maintain the discharge potential high and flat, and to reduce the voltage between both electrodes when the remaining capacity becomes small during battery operation. The purpose of the present invention is to provide a non-aqueous electrolyte secondary battery that prevents a sudden voltage drop and the problems associated with it by gently reducing the voltage.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するた
め、この発明の非水電解液二次電池は、負極に炭素質材
料を用いた非水電解液二次電池において、前記炭素質材
料は天然または人工黒鉛と、該黒鉛に対して5〜30容
量%のリチウム吸蔵放出可能な他の炭素質材料との混合
物であることを特徴とする。但しここで用いられる容量
%は次のように定義される。すなわち、対極をリチウム
金属としてある電流密度で前記天然または人工黒鉛から
なる炭素質材料へ端子間電圧0vになるまでリチウムを
ドープし、その後1.0vになるまでこのリチウムを放
出した場合に得られる脱ドープ容量(mAh /g )A
と、前記リチウム吸蔵放出可能な他の炭素質材料に対し
て同様な操作を行った結果得られた脱ドープ容量Bとの
百分比=B/A×100で現される。
In order to achieve the above object, a non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery using a carbonaceous material for a negative electrode, wherein the carbonaceous material is It is characterized by being a mixture of natural or artificial graphite and another carbonaceous material capable of occluding and releasing lithium from 5 to 30% by volume based on the graphite. However, the capacity% used here is defined as follows. That is, it is obtained by doping lithium into the carbonaceous material composed of natural or artificial graphite at a certain current density with lithium metal as the counter electrode until the inter-terminal voltage becomes 0 v, and then releasing this lithium to 1.0 v. De-doping capacity (mAh / g) A
And the dedoping capacity B obtained as a result of performing the same operation on the other carbonaceous material capable of absorbing and desorbing lithium = B / A × 100.

【0012】前記天然または人工黒鉛は、002面の面
間隔に相当するX線回折ピークの半幅値が1°以下で、
002面の面間隔d002が3.35〜3.42オング
ストローム、結晶子の大きさ(Lc)が100〜500
オングストロームの黒鉛構造を有する微粉状炭素質材料
である。
The natural or artificial graphite has an X-ray diffraction peak having a half-width value of 1 ° or less, which corresponds to the spacing between 002 planes,
The interplanar spacing d002 of the 002 plane is 3.35 to 3.42 angstrom, and the crystallite size (Lc) is 100 to 500.
It is a finely powdered carbonaceous material having an angstrom graphite structure.

【0013】この黒鉛材料の例としては、気相成長法に
よって得たカーボンファイバー(V.G.C.F)、P
AN系、PICH系カーボンファイバーを不活性雰囲気
下で1800〜3000℃に加熱処理して黒鉛化した人
造黒鉛、(株)日本黒鉛、ロンザ社製の人工黒鉛、中国
産、マダガスカル産等の天然黒鉛を高純度化処理したも
のが掲げられる。
Examples of this graphite material include carbon fiber (VGCF) obtained by a vapor phase growth method, P
Artificial graphite obtained by heat-treating AN-based and PICH-based carbon fibers at 1800 to 3000 ° C in an inert atmosphere, Nippon Graphite Co., Ltd., artificial graphite manufactured by Lonza, natural graphite manufactured in China, Madagascar, etc. The high-purified product is listed.

【0014】以上の黒鉛に混合されるリチウム吸蔵放出
可能な他の炭素質材料は、X線広角回折により求めた0
02面の面間隔が3.43〜3.9オングストローム、
C軸方向の結晶子の大きさLcが9〜99オングストロ
ームである構造を有し、レーザ回折式粒度測定装置によ
り測定した平均粒度が0.01〜50μm 、BET法に
より求めた窒素吸着比表面積が10〜300m2 /g 、
H/C原子比が0.15以下である微粉状炭素質材料で
ある。
Other carbonaceous materials capable of absorbing and desorbing lithium, which are mixed with the above graphite, are 0 obtained by X-ray wide angle diffraction.
The spacing of 02 planes is 3.43 to 3.9 angstroms,
It has a structure in which the crystallite size Lc in the C-axis direction is 9 to 99 angstroms, the average particle size measured by a laser diffraction particle size analyzer is 0.01 to 50 μm, and the nitrogen adsorption specific surface area determined by the BET method is 10 to 300 m 2 / g,
It is a fine powder carbonaceous material having an H / C atomic ratio of 0.15 or less.

【0015】なお、粒度が上記値より小さく、比表面積
が上記値より大きいと、その炭素質材料は第1サイクル
においてリチウムの吸蔵量は大きくなるものの、その後
の(可逆的な)放出量が極端に小さくなるため、実用的
でない。この現象についての詳細は不明であるが、粒度
が小さく比表面積の大きな炭素質材料は、その表面で電
解液の分解などの副反応または競争反応が起こり易く、
その生成物が堆積する結果、リチウムの炭素質材料への
インターカレーション,デインターカレーションが起り
にくくなるためだと考えられる。
When the particle size is smaller than the above value and the specific surface area is larger than the above value, the carbonaceous material has a large lithium occlusion amount in the first cycle, but the subsequent (reversible) emission amount is extremely large. It is not practical because it becomes too small. Although the details of this phenomenon are unknown, a carbonaceous material having a small particle size and a large specific surface area is likely to cause a side reaction such as decomposition of an electrolytic solution or a competitive reaction on the surface thereof.
It is thought that this is because as a result of the deposition of the product, intercalation and deintercalation of lithium into the carbonaceous material are less likely to occur.

【0016】以上の炭素質材料は、一般に有機系高分子
化合物を不活性ガスまたは窒素ガス雰囲気下で最高90
0〜1600℃に加熱処理して炭化すると得られる。こ
の出発原料である有機系高分子化合物としては各種材料
が可能であるが、例えばポリアクリロニトリル樹脂、酢
酸ビニル樹脂、ポリビニルアルコール樹脂、ポリ塩化ビ
ニリデン樹脂、フルフリルアルコール樹脂、フラン樹
脂、フェノール樹脂、ポリアミド樹脂、石油系ピッチ、
石炭系ピッチ、メソフェーズピッチ、縮合性多環多核芳
香族(COPNA樹脂)等が掲げられる。また、得られ
た炭化物としてカーボンブラックも良好な特性を示す。
The above-mentioned carbonaceous materials are generally organic polymer compounds at a maximum of 90 in an inert gas or nitrogen gas atmosphere.
It is obtained by heating at 0 to 1600 ° C. and carbonizing. Various materials can be used as the organic polymer compound as the starting material, and examples thereof include polyacrylonitrile resin, vinyl acetate resin, polyvinyl alcohol resin, polyvinylidene chloride resin, furfuryl alcohol resin, furan resin, phenol resin, and polyamide. Resin, petroleum pitch,
Examples include coal-based pitch, mesophase pitch, condensed polycyclic polynuclear aromatic (COPNA resin), and the like. Further, carbon black as the obtained carbide also shows good characteristics.

【0017】次に両者の配合比を5〜30容量%の範囲
に限定した理由について説明する。容量%は前述のよう
に対極をリチウム金属としてある電流密度で前記天然ま
たは人工黒鉛からなる炭素質材料へ端子間電圧0vにな
るまでリチウムをドープし、その後1.0vになるまで
このリチウムを放出した場合に得られる脱ドープ容量
(mAh /g )Aと、前記リチウム吸蔵放出可能な他の
炭素質材料に対して同様な操作を行った結果得られた脱
ドープ容量Bとの百分比=B/A×100で現されるも
のであり、配合比率を定めるには、黒鉛構造を有してい
ない炭素質材料の電気化学的特性、つまりリチウムの吸
蔵放出が可能な量とそのときの電極電位の仕方によって
適宣設定すれば良いのであるが、この炭素質材料の配合
割合が5容量%を下回ると放電末期における負極電位の
急激な変化が余り緩和されないし、30容量%を超えて
多すぎると放電中の電池電圧を高電圧に保つ特性を生か
せないので、前記の範囲に限定される。
Next, the reason why the compounding ratio of both is limited to the range of 5 to 30% by volume will be described. As described above, the capacity% is obtained by doping lithium into the carbonaceous material composed of natural or artificial graphite at a certain current density using lithium metal as the counter electrode as described above until the terminal voltage becomes 0 v, and then releases this lithium until 1.0 v is reached. The ratio of the dedoping capacity (mAh / g) A obtained in the case of the above and the dedoping capacity B obtained as a result of performing the same operation on the other carbonaceous material capable of absorbing and desorbing lithium = B / It is expressed by A × 100, and to determine the blending ratio, the electrochemical characteristics of the carbonaceous material having no graphite structure, that is, the amount of lithium that can be absorbed and released and the electrode potential at that time are determined. It may be properly set depending on the method, but when the blending ratio of the carbonaceous material is less than 5% by volume, the abrupt change of the negative electrode potential at the end of discharge is not alleviated so much and exceeds 30% by volume. Does not Ikase properties to keep the battery voltage during discharge and Gill to a high voltage, it is limited to the range of the.

【0018】なおA,Bの値を定める際の電流密度は、
電池を完成させた後の用途に沿って決定すべきであっ
て、完成電池に必要とされる電流値から電極面積を割っ
た値にすることが望ましい。例えば高負荷放電を必要と
する機器をその用途とする場合、A,Bの電流密度は高
くなければならないし、低負荷放電の場合は低くてもよ
いのである。これらはいずれも炭素質材料がリチウムの
吸蔵・放出を行う場合の利用率が、電流密度によって変
化することに起因しており、一般に電流密度の高い方
が、その利用率は低くなることが知られている。
The current density for determining the values of A and B is
It should be decided according to the application after the battery is completed, and it is desirable that the electrode area is divided by the current value required for the completed battery. For example, when the equipment requiring high load discharge is used, the current densities of A and B must be high, and in the case of low load discharge, it may be low. All of these are due to the fact that the utilization factor when the carbonaceous material occludes and releases lithium changes depending on the current density. Generally, the higher the current density, the lower the utilization factor. Has been.

【0019】以上の混合物に結着剤をまぜ合わせ混練造
粒して負極を構成する一方、正極としてリチウムの吸
蔵,放出が可能な酸化物,硫化物を用い、セパレータ,
非水電解液などとともに組合わせれば、リチウム二次電
池が得られる。電池形態は偏平形,スパイラル形いずれ
の形態も可能である。
A binder is mixed with the above mixture and kneaded and granulated to form a negative electrode. On the other hand, an oxide or sulfide capable of inserting and extracting lithium is used as a positive electrode, and a separator,
A lithium secondary battery can be obtained by combining it with a non-aqueous electrolyte or the like. The battery can be either flat or spiral.

【0020】正極材料としては、この種の電池に使用さ
れるものであれば如何なるものであってもよいが、特に
十分な量のリチウムを含んだ材料を用いることが好まし
い。例えばLi Mn2 4 や、一般式Li MO2 (但
し、MはCo,Niの少なくとも1種または混合物を表
し、LiCoO2 やLiCo0.8 Ni0.2 O2 等があ
る)で表される複合金属酸化物屋やリチウムを含んだ層
間化合物が好適である。
As the positive electrode material, any material can be used as long as it is used in this type of battery, but it is particularly preferable to use a material containing a sufficient amount of lithium. For example, a composite metal oxide represented by Li Mn 2 O 4 or a general formula Li MO 2 (where M represents at least one kind or a mixture of Co and Ni, such as LiCoO 2 and LiCo 0.8 Ni 0.2 O 2). An intercalation compound containing a metal or lithium is suitable.

【0021】非水電解液としては誘起溶媒と電解質を適
宣組合わせて調整されるが、これら有機溶媒と電解質も
この種の電池に用いられるものであればいずれも使用可
能であり、有機溶媒としては、例えばプロピレンカーボ
ネート、エチレンカーボネート、1.2−ジメトキシエ
タン、1,2−ジエトキシエタン、γ−ブチロラクト
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、1,3−ジオキソラン、4−メチル−1,3−ジオ
キソラン、ジエチルエーテル、スルホランがある。また
電解質としては、LiClO4 、LiAs F6 、LiB
6 、LiPF6、LiCF3 SO3 、LiCl等が掲
げられる。
The non-aqueous electrolytic solution is prepared by appropriately combining an inducing solvent and an electrolyte, and any organic solvent and electrolyte can be used as long as they are used in this type of battery. Examples of propylene carbonate, ethylene carbonate, 1.2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- There are dioxolane, diethyl ether and sulfolane. As the electrolyte, LiClO 4 , LiAs F 6 , LiB
F 6 , LiPF 6 , LiCF 3 SO 3 , LiCl and the like are listed.

【0022】[0022]

【作用】以上の構成の負極からリチウムを電気化学的に
放出する場合には、まず黒鉛に吸蔵されていたリチウム
から放出される。これはリチウムが吸蔵された黒鉛の方
が混合された同様な状態の他の炭素質材料よりもリチウ
ムが吸蔵.放出される電極電位が卑であるからである。
When lithium is electrochemically released from the negative electrode having the above structure, lithium is first occluded in graphite. This is because the lithium-occluded graphite absorbs lithium more than other carbonaceous materials in a similar state in which graphite is mixed. This is because the electrode potential emitted is base.

【0023】この電気化学反応が進行し、黒鉛からある
程度のリチウムが放出されると、負極合剤全体の電極電
位が貴な方向に移行する結果、リチウム吸蔵状態のもう
一方の炭素質材料がリチウムの吸蔵放出を行う電極電位
まで到達し、ここからも同時にリチウムが放出されるよ
うになる。
When this electrochemical reaction proceeds and a certain amount of lithium is released from graphite, the electrode potential of the entire negative electrode mixture shifts to a noble direction. As a result, the other carbonaceous material in the lithium occlusion state is lithium. The electrode potential for occluding and releasing is reached, and lithium is also released from here.

【0024】放電が進行し、負極合剤の電極電位がさら
に貴な方向に移行すると他の炭素質材料から放出される
リチウム量が増加し、黒鉛から放出されるリチウム量は
減少する。これは黒鉛から放出される電位は卑で、平坦
性があるのに対し、他の炭素質材料からリチウムが放出
される電位はそれよりも貴で平坦性がなく、放電中電気
化学反応の進行とともに、より早く貴な方向へ移行する
各々の特性のためである。
When the discharge progresses and the electrode potential of the negative electrode mixture shifts to a more noble direction, the amount of lithium released from other carbonaceous materials increases and the amount of lithium released from graphite decreases. This is because the potential released from graphite is base and has flatness, whereas the potential from lithium released from other carbonaceous materials is noble and not flat, and the progress of electrochemical reaction during discharge. Along with that, it is due to the characteristics of each of them, which will move to the noble direction sooner.

【0025】[0025]

【発明の効果】本発明では、次の効果がある。すなわ
ち、以上の混合物からなる負極合剤により電池を構成す
ることによって、通常放電状態では黒鉛を負極材料とし
た利点である平坦性、つまりより卑な状態を安定に保つ
結果電池電圧を高く安定に保持できる一方、電池容量が
なくなる直前では電圧降下が緩やかになるため、電池容
量が僅かであることを容易に認知でき、電池使用機器を
用いた作業の突然の中断や電池切れに伴う機器の一部破
損を未然に防止できる。
The present invention has the following effects. That is, by constructing a battery with a negative electrode mixture composed of the above mixture, flatness, which is an advantage of using graphite as a negative electrode material in a normal discharge state, that is, a more base state is stably maintained, resulting in a high and stable battery voltage. While the battery capacity can be maintained, the voltage drop becomes gentle immediately before the battery capacity is exhausted, so it is easy to recognize that the battery capacity is low, and it is possible to use the equipment that accompanies sudden battery power interruptions or battery exhaustion. Part damage can be prevented in advance.

【0026】[0026]

【実施例】次に、この発明の実施例を説明する。但し本
発明は以下の実施例のみに限定されるものではない。
Embodiments of the present invention will be described below. However, the present invention is not limited to the following examples.

【0027】図12は本発明による単3形リチウム二次
電池の構造を示すものである。このリチウム二次電池は
基本的には従来と同様に、正極1,負極2の間にポリプ
ロピレン製多孔質フィルムからなるセパレータ3を挟ん
でスパイラル状に巻回して巻回要素を形成し、その上部
に前記正極1側に接続する正極リード板4を、下部に前
記負極2側に接続する負極リード板5を突出させた状態
でPP絶縁板6aを介して有底筒形のケース6内に収装
し、負極リード板5を有底筒形ケース6の内底面中心に
スポット溶接により接続し、また安全弁付き正極端子板
7の底部に正極リード板4をスポット溶接し、その後非
水電解液をケース6内に注液し、正極端子板7を封口ガ
スケット8を介してケース6の開口に嵌め付け、カシメ
付けることによって完成されたものである。
FIG. 12 shows the structure of an AA lithium secondary battery according to the present invention. This lithium secondary battery is basically wound in the same manner as in the past with a separator 3 made of a polypropylene porous film sandwiched between a positive electrode 1 and a negative electrode 2 to be spirally wound to form a winding element. The positive electrode lead plate 4 connected to the positive electrode 1 side, and the negative electrode lead plate 5 connected to the negative electrode 2 side projected to the lower part in the bottomed cylindrical case 6 via the PP insulating plate 6a. Then, the negative electrode lead plate 5 is connected to the center of the inner bottom surface of the bottomed cylindrical case 6 by spot welding, and the positive electrode lead plate 4 is spot welded to the bottom of the positive electrode terminal plate 7 with a safety valve. It is completed by pouring liquid into the case 6, fitting the positive electrode terminal plate 7 into the opening of the case 6 through the sealing gasket 8, and caulking.

【0028】前記正極1は、正極活物質であるLiCo
2 と、導電材であるカーボン粉末とPTFEの水性デ
ィスパージョンを重量比で100:10:10の割合で
混合し、水でペースト状に混練したものを集電体を構成
する厚さ30μm のステンレス箔の両面に塗着した後乾
燥,圧延して所定の大きさに切断した帯状のもので、前
記帯状の長手方向に直交して合剤の一部をかきとり、こ
こに正極リード板4をスポット溶接した。
The positive electrode 1 is made of LiCo which is a positive electrode active material.
O 2 and carbon powder as a conductive material and an aqueous dispersion of PTFE were mixed at a weight ratio of 100: 10: 10, and the mixture was kneaded into a paste with water to form a current collector having a thickness of 30 μm. A strip-shaped product obtained by coating on both sides of stainless steel foil, drying, rolling, and cutting to a predetermined size, and scraping a part of the mixture material in a direction orthogonal to the longitudinal direction of the strip-shaped product. Spot welded.

【0029】なお、正極活物質のLiCo O2 は酸化コ
バルト(Co O)と炭酸リチウム(Li2 CO3 )をモ
ル比で2:1に混合し空気中で900℃,48時間加熱
したものを用いた。また以上の材料の混合比率のうちP
TFEの水性ディスパージョンの割合はそのうちの固形
分の割合である。さらにこの時の正極1の理論充填電気
量は500mAである。
LiCoO 2 as the positive electrode active material was obtained by mixing cobalt oxide (CoO) and lithium carbonate (Li 2 CO 3 ) at a molar ratio of 2: 1 and heating the mixture in air at 900 ° C. for 48 hours. Using. Of the mixing ratios of the above materials, P
The proportion of the aqueous dispersion of TFE is the proportion of solids therein. Further, the theoretical charging electricity amount of the positive electrode 1 at this time is 500 mA.

【0030】前記負極2は、炭素質粉末とPTFEの水
性ディスパージョンを重量比で100:5の割合とし水
で混練したものをニッケル製エキスパンドメタルに圧入
し、乾燥,切断して帯状に形成し、さらにこの長手方向
と直交して一部をかきとりここにニッケル製負極リード
板5をスポット溶接したものである。なお、PTFEの
水性ディスパージョンの比率は前記と同様固形分の割合
であり、負極中の炭素粉末の重量は1.5gであり、後
述する材料の組合わせにより作製した。
The negative electrode 2 is formed into a strip shape by press-fitting an aqueous dispersion of carbonaceous powder and PTFE in a weight ratio of 100: 5 and kneading with water into a nickel expanded metal, drying and cutting. Further, a portion of the negative electrode lead plate 5 made of nickel is spot-welded and spot-welded at a portion orthogonal to the longitudinal direction. The ratio of the aqueous dispersion of PTFE was the same as that of the solid content as described above, and the weight of the carbon powder in the negative electrode was 1.5 g, which was prepared by combining the materials described below.

【0031】前記非水電解液は過塩素酸リチウム(Li
Cl O4 )をエチレンカーボネート、1,2−ジメトキ
シエタンの混合溶媒中に1モル/1の割合で溶解した電
解質であり、2.5mlを内部に注液後封口した。完成電
池のサイズは単3形であり、直径14.5mm×50mmで
ある。
The non-aqueous electrolyte is lithium perchlorate (Li
Cl O 4) ethylene carbonate, 1,2-dimethoxyethane and an electrolyte dissolved in a proportion of 1 mol / 1 in a mixed solvent of ethane, was injected after sealing the 2.5ml therein. The size of the completed battery is AA, with a diameter of 14.5 mm x 50 mm.

【0032】前述の負極の炭素質粉末は黒鉛または他の
リチウム吸蔵放出可能な炭素質材料との組合わせであ
り、それらの種類と物性値は以下の表1に示す通りであ
る。
The above-mentioned carbonaceous powder of the negative electrode is a combination of graphite or another carbonaceous material capable of occluding and releasing lithium, and their types and physical properties are as shown in Table 1 below.

【0033】[0033]

【表1】 なお、前記1〜6の各材料単体からなる負極シートに対
して対極をリチウム金属とし、Li/Li+ 電位基準で
0Vになるまで電流密度0.5mA/cm2 の定電流でリ
チウムを吸蔵した後、対極をリチウム金属として電流密
度0.5mA/cm2 の定電流でリチウムを放出させた場
合の電圧曲線を図1及び図3〜7に示す。なお、図1,
図3に示す黒鉛系NG,CFの場合には平坦でなだらか
な曲線を描き、図4〜図7に示す黒鉛以外の炭素質材料
CK,CB,PR,MPの場合には平坦性はないものと
なっている。
[Table 1] In addition, with respect to the negative electrode sheet made of each of the above materials 1 to 6, the counter electrode was made of lithium metal, and lithium was occluded at a constant current of 0.5 mA / cm 2 at a current density of 0 V on the basis of Li / Li + potential. 1 and 3 to 7 show the voltage curves when lithium is released at a constant current with a current density of 0.5 mA / cm 2 using lithium metal as the counter electrode. Note that FIG.
In the case of the graphite-based NG and CF shown in FIG. 3, a flat and gentle curve is drawn, and in the case of the carbonaceous materials CK, CB, PR and MP other than the graphite shown in FIGS. 4 to 7, there is no flatness. Has become.

【0034】以上の材料における、負極の炭素質材料の
組合わせは、NG/CK,NG/CB,CF/MP,C
F/PRであり、それぞれ表2に示す混合割合となって
いる。なお、混合割合の容量%は、この場合対極をリチ
ウム金属として電流密度0.5mA/cm2 の定電流で前
記天然または人工黒鉛からなる炭素質材料へ端子間電圧
0vになるまでリチウムをドープし、その後1.0vに
なるまでこのリチウムを電流密度0.5mA/cm2 の定
電流で放出した場合に得られる脱ドープ容量(mAh /
g )Aと、前記リチウム吸蔵放出可能な他の炭素質材料
に対して同様な操作を行った結果得られた脱ドープ容量
Bとの百分比=B/A×100で現され、前記図1,図
3〜図7に示す個々の材料の特性を参照してその混合割
合が決定される。
Among the above materials, the combination of the carbonaceous materials for the negative electrode is NG / CK, NG / CB, CF / MP, C.
F / PR, and the mixing ratios are shown in Table 2, respectively. In this case, the volume ratio of the mixing ratio is such that lithium is doped into the carbonaceous material made of the natural or artificial graphite with a constant current of 0.5 mA / cm 2 using lithium metal as the counter electrode until the terminal voltage becomes 0 v. Then, the de-doping capacity (mAh / mAh) obtained when the lithium was discharged at a constant current with a current density of 0.5 mA / cm 2 until it reached 1.0 V
g) A and the de-doping capacity B obtained as a result of performing the same operation on the other carbonaceous material capable of absorbing and desorbing lithium, expressed as a percentage = B / A × 100, and The mixing ratio is determined with reference to the characteristics of the individual materials shown in FIGS.

【0035】[0035]

【表2】 次に各組成の電池を上限電圧4.1V、下限電圧2.0
Vとして定電流で第1サイクルの充放電を行ったとこ
ろ、図8〜11の放電曲線を得られた。なお、図中Aは
放電末期における電圧が急激に変化する変極点を示して
いる。
[Table 2] Next, the battery of each composition was tested with an upper limit voltage of 4.1 V and a lower limit voltage of 2.0.
When the charge and discharge of the first cycle was performed at a constant current as V, the discharge curves of FIGS. In the figure, A indicates an inflection point at which the voltage changes rapidly at the end of discharge.

【0036】この図8〜11に示すように、a,bの配
合における黒鉛以外のリチウム吸蔵放出可能な炭素質材
料が100,50(容量%)の場合には放電曲線の平坦
性がなく、高電圧を維持できないことが明らかである。
これに対し、f,gの配合における黒鉛が97〜100
(容量%)の場合には従来と同様放電末期における変極
点Aから急激な電位の低下が認められる。
As shown in FIGS. 8 to 11, when the carbonaceous material capable of occluding and releasing lithium other than graphite in the composition of a and b is 100, 50 (volume%), there is no flatness of the discharge curve, It is clear that the high voltage cannot be maintained.
On the other hand, graphite in the composition of f and g is 97-100
In the case of (capacity%), as in the conventional case, a sharp decrease in potential is recognized from the inflection point A at the end of discharge.

【0037】これに対し、各図からも明らかなように高
電圧及び平坦性を維持し、放電末期の電圧低下度合いを
検知可能な状態まで緩和するためにはc〜eの配合であ
る5〜30(容量%)の範囲に配合することが適当であ
り、それぞれの変極点Aから完全に容量切れとなるまで
に電圧降下が緩やかでかなりの時間があり、電池使用機
器側の警告表示や動作の緩慢状態を使用者側が気付くこ
とによって、機器停止や充電,電池交換などの対策に対
する十分な余裕時間を得ることになる。
On the other hand, as is clear from each figure, in order to maintain the high voltage and the flatness and to alleviate the degree of the voltage drop at the end of discharge to a detectable state, the combination of c to e is 5-. It is appropriate to mix in the range of 30 (capacity%), and there is a gradual voltage drop from each inflection point A until the capacity is completely exhausted, and there is a considerable time. When the user notices the slow state, the user can obtain sufficient time for measures such as equipment stoppage, charging, and battery replacement.

【図面の簡単な説明】[Brief description of drawings]

【図1】天然黒鉛からリチウムを放出した場合における
電圧曲線を示すグラフである。
FIG. 1 is a graph showing a voltage curve when lithium is released from natural graphite.

【図2】負極が天然黒鉛からなっている電池電圧曲線を
示すグラフである。
FIG. 2 is a graph showing a battery voltage curve in which the negative electrode is made of natural graphite.

【図3】石炭系カーボンファイバからリチウムを放出し
た場合における電圧曲線を示すグラフである。
FIG. 3 is a graph showing a voltage curve when lithium is emitted from a coal-based carbon fiber.

【図4】石炭コークスからリチウムを放出した場合にお
ける電圧曲線を示すグラフである。
FIG. 4 is a graph showing a voltage curve when lithium is released from coal coke.

【図5】カーボンブラックからリチウムを放出した場合
における電圧曲線を示すグラフである。
FIG. 5 is a graph showing a voltage curve when lithium is released from carbon black.

【図6】フェノール樹脂炭化物からリチウムを放出した
場合における電圧曲線を示すグラフである。
FIG. 6 is a graph showing a voltage curve when lithium is released from a phenol resin carbide.

【図7】メソフューズピッチカーボンからリチウムを放
出した場合における電圧曲線を示すグラフである。
FIG. 7 is a graph showing a voltage curve when lithium is released from meso-fuse pitch carbon.

【図8】NG/CKの組合わせによる負極を用いた電池
電圧曲線を示すグラフである。
FIG. 8 is a graph showing a battery voltage curve using a negative electrode with a combination of NG / CK.

【図9】NG/CBの組合わせによる負極を用いた電池
電圧曲線を示すグラフである。
FIG. 9 is a graph showing a battery voltage curve using a negative electrode with a combination of NG / CB.

【図10】CF/MPの組合わせによる負極を用いた電
池電圧曲線を示すグラフである。
FIG. 10 is a graph showing a battery voltage curve using a negative electrode according to a combination of CF / MP.

【図11】CF/PRの組合わせによる負極を用いた電
池電圧曲線を示すグラフである。
FIG. 11 is a graph showing a battery voltage curve using a negative electrode according to a combination of CF / PR.

【図12】本発明を適用したスパイラル形リチウム二次
電池の構造例を示す断面図である。
FIG. 12 is a cross-sectional view showing a structural example of a spiral type lithium secondary battery to which the present invention is applied.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 吉郎 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 名倉 秀哲 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiro Harada 5-311, Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. (72) Hidenori Nagura 5-36-11 Shinbashi, Minato-ku, Tokyo Fuji Electrochemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負極に炭素質材料を用いた非水電解液二
次電池において、前記炭素質材料は天然または人工黒鉛
と、該黒鉛に対して5〜30容量%のリチウム吸蔵放出
可能な他の炭素質材料との混合物である(但しここで言
う容量%は、対極をリチウム金属としてある電流密度で
前記天然または人工黒鉛からなる炭素質材料へ端子間電
圧0vになるまでリチウムをドープし、その後1.0v
になるまでこのリチウムを放出した場合に得られる脱ド
ープ容量Aと、前記リチウム吸蔵放出可能な他の炭素質
材料に対して同様な操作を行った結果得られた脱ドープ
容量Bとの百分比=B/A×100で現される数値とし
て定義される)ことを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode, wherein the carbonaceous material is natural or artificial graphite, and 5 to 30% by volume of lithium can be absorbed and released with respect to the graphite. Is a mixture with a carbonaceous material (provided that the% by volume is obtained by doping lithium into the carbonaceous material composed of the natural or artificial graphite at a certain current density with the counter electrode being lithium metal until the terminal voltage becomes 0 v, Then 1.0v
To the dedoping capacity A obtained when this lithium is discharged until the following condition and the dedoping capacity B obtained as a result of performing the same operation on the other carbonaceous material capable of absorbing and desorbing lithium = B / A × 100) is defined as a numerical value expressed by B / A × 100).
【請求項2】前記天然または人工黒鉛の黒鉛構造は、0
02面の面間隔に相当するX線回折ピークの半幅値が1
°以下で、X線広角回折により求めた002面の面間隔
d002が3.35〜3.42オングストローム、結晶
子の大きさLcが100〜500オングストロームであ
り、 前記他の炭素質材料の結晶構造及び特性は、X線広角回
折により求めた002面の面間隔が3.43〜3.9オ
ングストローム、C軸方向の結晶子の大きさLcが9〜
99オングストロームであり、レーザ回折式粒度測定装
置により測定した平均粒度が0.01〜50μm 、BE
T法により求めた窒素吸着比表面積が10〜300m2
/g 、H/C原子比が0.15以下であることを特徴と
する請求項1記載の非水電解液二次電池。
2. The graphite structure of the natural or artificial graphite is 0.
The half-width value of the X-ray diffraction peak corresponding to the surface spacing of the 02 plane is 1
The crystal spacing of the 002 plane obtained by X-ray wide-angle diffraction is 3.35 to 3.42 angstroms, the crystallite size Lc is 100 to 500 angstroms, and the crystal structure of the other carbonaceous material And the characteristics are that the 002 plane spacing determined by wide-angle X-ray diffraction is 3.43 to 3.9 angstroms, and the crystallite size Lc in the C-axis direction is 9 to.
99 angstrom, the average particle size measured by a laser diffraction type particle size measuring device is 0.01 to 50 μm, BE
Nitrogen adsorption specific surface area determined by T method is 10 to 300 m 2
/ G, H / C atomic ratio is 0.15 or less, non-aqueous electrolyte secondary battery according to claim 1, characterized in that.
JP4193966A 1992-07-21 1992-07-21 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3068712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4193966A JP3068712B2 (en) 1992-07-21 1992-07-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4193966A JP3068712B2 (en) 1992-07-21 1992-07-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0636760A true JPH0636760A (en) 1994-02-10
JP3068712B2 JP3068712B2 (en) 2000-07-24

Family

ID=16316733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4193966A Expired - Fee Related JP3068712B2 (en) 1992-07-21 1992-07-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3068712B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310144A (en) * 1993-04-23 1994-11-04 Yuasa Corp Secondary battery
JPH07249551A (en) * 1994-03-11 1995-09-26 Isuzu Motors Ltd Method of manufacturing electrode for electric double layer capacitor
WO1997042671A1 (en) * 1996-05-07 1997-11-13 Toyo Tanso Co., Ltd. Cathode material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery using the same
JPH11265718A (en) * 1998-03-16 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery
WO2000013245A1 (en) * 1998-08-27 2000-03-09 Nec Corporation Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
JP2001351627A (en) * 2000-06-06 2001-12-21 Fdk Corp Lithium ion secondary battery
US7074521B2 (en) 1999-02-24 2006-07-11 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
CN100338802C (en) * 2005-04-20 2007-09-19 深圳市贝特瑞电子材料有限公司 Cathode material of lithium ion cell and preparation method thereof
CN100350654C (en) * 2005-04-20 2007-11-21 深圳市贝特瑞电子材料有限公司 Cathode material of Li-ion battery and preparation method, battery cathode, battery thereof
JP2013089522A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device
JP2013089523A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device including the same
US8604755B2 (en) 2010-02-09 2013-12-10 Hitachi Vehicle Energy, Ltd. Lithium-ion secondary battery system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310144A (en) * 1993-04-23 1994-11-04 Yuasa Corp Secondary battery
JPH07249551A (en) * 1994-03-11 1995-09-26 Isuzu Motors Ltd Method of manufacturing electrode for electric double layer capacitor
WO1997042671A1 (en) * 1996-05-07 1997-11-13 Toyo Tanso Co., Ltd. Cathode material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery using the same
JPH11265718A (en) * 1998-03-16 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery
WO2000013245A1 (en) * 1998-08-27 2000-03-09 Nec Corporation Nonaqueous electrolyte secondary cell, method for manufacturing the same, and carbonaceous material composition
US7074521B2 (en) 1999-02-24 2006-07-11 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
JP2001351627A (en) * 2000-06-06 2001-12-21 Fdk Corp Lithium ion secondary battery
JP4739486B2 (en) * 2000-06-06 2011-08-03 Fdk株式会社 Lithium ion secondary battery
CN100338802C (en) * 2005-04-20 2007-09-19 深圳市贝特瑞电子材料有限公司 Cathode material of lithium ion cell and preparation method thereof
CN100350654C (en) * 2005-04-20 2007-11-21 深圳市贝特瑞电子材料有限公司 Cathode material of Li-ion battery and preparation method, battery cathode, battery thereof
US8604755B2 (en) 2010-02-09 2013-12-10 Hitachi Vehicle Energy, Ltd. Lithium-ion secondary battery system
JP2013089522A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device
JP2013089523A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device including the same

Also Published As

Publication number Publication date
JP3068712B2 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
US5612155A (en) Lithium ion secondary battery
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
US20070111102A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrolyte secondary batteries
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JP3499584B2 (en) Lithium secondary battery
JP4595145B2 (en) Non-aqueous electrolyte battery
JP2002063940A (en) Nonaqueous electrolyte secondary battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP3068712B2 (en) Non-aqueous electrolyte secondary battery
WO1997001191A2 (en) Nonaqueous battery with cathode active material mixture
JP3216661B2 (en) Non-aqueous electrolyte secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JPH1097870A (en) Lithium secondary battery
JP3840087B2 (en) Lithium secondary battery and negative electrode material
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JP3236400B2 (en) Non-aqueous secondary battery
JPH10308236A (en) Nonaqueous electrolyte secondary battery
JPH06333564A (en) Nonaqueous electrolytic secondary battery
JP3406843B2 (en) Lithium secondary battery
JP3863514B2 (en) Lithium secondary battery
JPH06231766A (en) Negative electrode for non-aqueous secondary battery
JP4080110B2 (en) Non-aqueous electrolyte battery
JP3115256B2 (en) Non-aqueous electrolyte secondary battery
JPH07183047A (en) Nonaqueous electrolyte secondary battery
JP4547587B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080519

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees