JPH1145715A - Manufacture of nonaqueous electrolytic secondary battery and of its negative electrode - Google Patents

Manufacture of nonaqueous electrolytic secondary battery and of its negative electrode

Info

Publication number
JPH1145715A
JPH1145715A JP10145667A JP14566798A JPH1145715A JP H1145715 A JPH1145715 A JP H1145715A JP 10145667 A JP10145667 A JP 10145667A JP 14566798 A JP14566798 A JP 14566798A JP H1145715 A JPH1145715 A JP H1145715A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
powder
ray diffraction
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10145667A
Other languages
Japanese (ja)
Other versions
JP4184479B2 (en
Inventor
Masaki Kitagawa
雅規 北川
Yoshihiro Kashihara
良弘 樫原
Hide Koshina
秀 越名
Toyoji Sugimoto
豊次 杉本
Kunio Tsuruta
邦夫 鶴田
Shuji Ito
修二 伊藤
Hajime Nishino
肇 西野
Kojiro Ishikawa
幸治郎 石川
Hisanori Sugimoto
久典 杉本
Kaoru Tsukamoto
薫 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14566798A priority Critical patent/JP4184479B2/en
Publication of JPH1145715A publication Critical patent/JPH1145715A/en
Application granted granted Critical
Publication of JP4184479B2 publication Critical patent/JP4184479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize higher reliability of a lithium secondary battery and heighten its energy density. SOLUTION: Following powder is used as a negative electrode material for this battery. Flake graphite particles, in which a spacing (d002) of latice planes (002) is 3.350 to 3.360 Å and crystallite size (Lc) in the C axis direction is at least 1000 Å or more, are chamfered into disk-shaped or tablet-shaped particles in a process for being pulverized further. By screening these, powder is obtained wherein the mean particle size is 10 to 30 μm, the mean thickness value of the thinnest part is 3 to 9 μm, and an X-ray diffraction peak intensity ratio of (110)/(004) according to the wide-angle X-ray diffraction method is regulated within a range not less than 0.015. By this, high energy density, a high-rate discharge performance, and improvement of reliability can be achieved when stored for a longtime under a high-temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に係り、特にリチウムイオン二次電池の負極用炭素材
に関する。
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a carbon material for a negative electrode of a lithium ion secondary battery.

【0002】[0002]

【従来の技術】従来、非水電解質二次電池としては、高
電圧、高容量による高エネルギー密度化を志向して、負
極活物質として金属リチウム、正極活物質として遷移金
属の酸化物や硫化物やセレン化物等のカルコゲン化合
物、例えば二酸化マンガンや二硫化モリブデンやセレン
化チタンなど、非水電解質としてリチウム塩の有機溶媒
溶液からなる有機電解液を用いた、いわゆるリチウム二
次電池が検討されている。
2. Description of the Related Art Conventionally, as a nonaqueous electrolyte secondary battery, with a view to increasing the energy density by a high voltage and a high capacity, lithium metal is used as a negative electrode active material, and an oxide or sulfide of a transition metal is used as a positive electrode active material. Secondary batteries using an organic electrolytic solution composed of an organic solvent solution of a lithium salt as a non-aqueous electrolyte, such as a chalcogen compound such as manganese dioxide, molybdenum disulfide, or titanium selenide, such as manganese dioxide or selenide, are being studied. .

【0003】しかしながら、このリチウム二次電池は、
正極活物質として比較的充放電特性が優れた層間化合物
を選択することができるが、負極の金属リチウムの充放
電特性は必ずしも優れていない。そのために、充放電を
繰り返すサイクル寿命を長くすることが難しく、その
上、内部短絡による発熱が起こる恐れがあり、安全性に
問題があった。すなわち、負極活物質の金属リチウムは
放電により有機電解液中にリチウムイオンとして溶出す
る。溶出したリチウムイオンは充電により、金属リチウ
ムとして負極表面に析出するが、元のようにすべて平滑
に析出せずに、樹枝状または苔状の活性な金属結晶とし
て析出するものがある。活性な金属結晶は電解液中の有
機溶媒を分解するとともに、金属結晶自体の表面は不動
態被膜で覆われて不活性化し、放電に寄与し難くなる。
その結果、充放電サイクルが進むにつれて負極容量が低
下するので、セル作製時に、負極容量を正極のそれより
著しく大きくする必要があった。また、活性な樹枝状金
属リチウム結晶は、セパレータを貫通して正極と接触し
て、内部短絡する場合がある。内部短絡により、セルは
発熱する恐れがある。
[0003] However, this lithium secondary battery is
As the positive electrode active material, an interlayer compound having relatively excellent charge / discharge characteristics can be selected, but the charge / discharge characteristics of metallic lithium of the negative electrode are not necessarily excellent. Therefore, it is difficult to prolong the cycle life of repeated charge and discharge, and furthermore, there is a possibility that heat may be generated due to an internal short circuit, and there is a problem in safety. That is, metallic lithium as the negative electrode active material is eluted as lithium ions into the organic electrolyte by discharge. The eluted lithium ions deposit on the negative electrode surface as metallic lithium upon charging, but some do not deposit as smooth as the original, but deposit as active dendritic or mossy metal crystals. The active metal crystal decomposes the organic solvent in the electrolytic solution, and at the same time, the surface of the metal crystal itself is covered with a passivation film to be inactivated and hardly contribute to discharge.
As a result, the negative electrode capacity decreases as the charge / discharge cycle progresses. Therefore, it was necessary to make the negative electrode capacity significantly larger than that of the positive electrode during cell fabrication. The active dendritic lithium metal crystal may penetrate the separator and come into contact with the positive electrode to cause an internal short circuit. The cell may generate heat due to an internal short circuit.

【0004】そこで、負極材料として充電および放電に
より、インターカレーションおよびディインターカレー
ションを可逆的に繰り返すことができる炭素材を用い
る、いわゆるリチウムイオン二次電池が提案され、活発
に研究開発されて、すでに実用化段階を迎えている。こ
のリチウムイオン二次電池は過充電しない限り、充放電
時に、負極表面に活性な樹枝状の金属リチウム結晶が析
出しないので、安全性の向上が大いに期待できる。さら
に、この電池は金属リチウムを負極活物質に用いるリチ
ウム二次電池よりも高率充放電特性とサイクル寿命が著
しく優れているので、近年この電池の需要は急速に伸張
している。
Therefore, a so-called lithium ion secondary battery using a carbon material capable of reversibly repeating intercalation and deintercalation by charging and discharging as a negative electrode material has been proposed and actively researched and developed. Has already reached the stage of practical application. As long as the lithium ion secondary battery is not overcharged, no active dendritic lithium metal crystals are deposited on the surface of the negative electrode during charge / discharge, so that improvement in safety can be greatly expected. Further, since this battery has remarkably superior high-rate charge / discharge characteristics and cycle life as compared with a lithium secondary battery using metallic lithium as a negative electrode active material, the demand for this battery has been rapidly growing in recent years.

【0005】4V級のリチウムイオン二次電池の正極活
物質としては、放電状態に相当するLiCoO2 、Li
NiO2 、LiMnO2 、LiMn2 4 などのリチウ
ムと遷移金属の複合酸化物が採用または検討されてい
る。電解質としては、リチウム二次電池と同様に有機電
解液やポリマー固体電解質等の非水電解質が用いられ
る。
As a positive electrode active material of a 4 V class lithium ion secondary battery, LiCoO 2 , Li
Composite oxides of lithium and a transition metal such as NiO 2 , LiMnO 2 , and LiMn 2 O 4 have been adopted or studied. As the electrolyte, a nonaqueous electrolyte such as an organic electrolyte or a polymer solid electrolyte is used as in the case of the lithium secondary battery.

【0006】負極材料に黒鉛を用いた場合にリチウムイ
オンがインターカレーションされて生成する層間化合物
のC6 Liを基準にした炭素1g当たりの容量の理論値
は372mAhである。従って、種々の炭素材におい
て、この比容量の理論値に近付き、かつ実用電池の負極
としては、単位体積当たりの容量値、すなわち、容量密
度(mAh/cc)が可及的に高くなるものを選ぶべき
である。
When graphite is used as the negative electrode material, the theoretical value of the capacity per 1 g of carbon based on C 6 Li, which is an intercalation compound generated by intercalation of lithium ions, is 372 mAh. Therefore, in various carbon materials, the one which approaches the theoretical value of the specific capacity and has a capacity value per unit volume, that is, a capacity density (mAh / cc) as high as possible as a negative electrode of a practical battery should be used. You should choose.

【0007】各種炭素材のうち、俗にハードカーボンと
称される難黒鉛化炭素において、前記した比容量理論値
(372mAh/g)を越える材料が見出されて検討が
進められている。しかし、難黒鉛化性の非晶質炭素の真
比重は小さく、嵩張るので、単位体積当たりの負極の容
量密度を大きくするのは実質的に困難である。その上、
充電後の負極電位が金属リチウム電位に近似する程卑と
はいえず、放電電位は平坦性も劣る等の課題が多い。
Among various carbon materials, among hard-graphitizable carbons commonly called hard carbons, materials exceeding the above-mentioned theoretical specific capacity (372 mAh / g) have been found and studied. However, the true specific gravity of the non-graphitizable amorphous carbon is small and bulky, so that it is substantially difficult to increase the capacity density of the negative electrode per unit volume. Moreover,
There are many problems that the negative electrode potential after charging is not so low as to approximate the metallic lithium potential, and the discharge potential is poor in flatness.

【0008】これに対して、結晶性が高い天然黒鉛およ
び人造黒鉛粉末を負極に用いた場合、充電後の電位は金
属リチウム電位に近似し、かつ放電電位の平坦性も優れ
ており、実用電池として、充放電特性が向上するので、
最近では黒鉛系粉末が負極材料の主流となりつつある。
On the other hand, when natural graphite and artificial graphite powder having high crystallinity are used for the negative electrode, the potential after charging is close to the lithium metal potential, and the flatness of the discharging potential is excellent, so that a practical battery can be used. As the charge and discharge characteristics are improved,
Recently, graphite-based powders are becoming the mainstream of negative electrode materials.

【0009】そのなかにあって、リチウムイオン二次電
池の負極用黒鉛粉末の平均粒径が大きければ、高率での
充放電特性および低温における放電特性が劣る傾向があ
る。
Among them, if the average particle size of the graphite powder for a negative electrode of a lithium ion secondary battery is large, the charge / discharge characteristics at a high rate and the discharge characteristics at a low temperature tend to be inferior.

【0010】そこで、粉末の平均粒径を小さくすれば、
高率充放電特性および低温放電特性は向上するが、徒ら
に平均粒径を小さくし過ぎると、粉末の比表面積が大き
くなり過ぎることによって、初充電により粉末中に挿入
されたリチウムが第1サイクル以降の放電に寄与できな
い不可逆容量が大きくなる問題が生ずる。この現象は高
エネルギー密度化志向に対して致命的な欠点であるとと
もに、100℃を越えるような高温下で電池を放置した
場合、有機電解液中の溶媒を分解させて、自己放電する
だけでなく、セル内圧を高めて漏液事故を起こす恐れが
あり、電池の信頼性を低下させる原因となっていた。
Therefore, if the average particle size of the powder is reduced,
Although the high-rate charge / discharge characteristics and the low-temperature discharge characteristics are improved, if the average particle size is too small, the specific surface area of the powder becomes too large. There is a problem that the irreversible capacity that cannot contribute to the discharge after the cycle increases. This phenomenon is a fatal drawback to the trend toward higher energy density, and when a battery is left at a high temperature exceeding 100 ° C., the solvent in the organic electrolyte is decomposed and self-discharge occurs only. However, there is a danger that a liquid leakage accident may occur due to an increase in the internal pressure of the cell, which causes a reduction in the reliability of the battery.

【0011】以上のことから、負極用黒鉛粉末には適切
な比表面積および平均粒径が重要になることは容易に理
解される。そのような観点から提案された発明が例え
ば、特開平6−295725号公報において、BET法
による比表面積が1〜10m2/gであり、平均粒径が
10〜30μmであり、かつ、粒径10μm以下の粉末
の含有率および粒径30μm以上の粉末の含有率の少な
くとも一方が10%以下である黒鉛粉末を使用すること
が開示されている。さらに、特開平7−134988号
公報においては、石油ピッチを低温で熱処理して生成す
るメソカーボンマイクロビーズを黒鉛化し、広角X線回
折法による(002)面の面間隔(d002)が3.3
6〜3.40Åで、BET法による比表面積が0.7〜
5.0m2/gである球状黒鉛粉末を使用することが開
示されている。
From the above, it is easily understood that an appropriate specific surface area and an average particle size are important for graphite powder for a negative electrode. An invention proposed from such a viewpoint is disclosed in, for example, JP-A-6-295725, in which the BET method has a specific surface area of 1 to 10 m 2 / g, an average particle diameter of 10 to 30 μm, and a particle diameter of 10 to 30 μm. It is disclosed to use a graphite powder in which at least one of the content of a powder of 10 μm or less and the content of a powder of 30 μm or more in particle size is 10% or less. Further, in Japanese Patent Application Laid-Open No. 7-134988, mesocarbon microbeads produced by heat-treating petroleum pitch at a low temperature are graphitized, and the (002) plane spacing (d002) is 3.3 by wide-angle X-ray diffraction.
6 to 3.40 °, the specific surface area by the BET method is 0.7 to
It is disclosed to use a spheroidal graphite powder that is 5.0 m 2 / g.

【0012】[0012]

【発明が解決しようとする課題】前述した発明は、リチ
ウムイオン二次電池の高率充放電特性および低温時の放
電特性の向上に極めて効果的であるだけでなく、宿命的
ともいえる、サイクル初期に決定づけられる不可逆容量
の低減に効果的であった。しかし、高温下での放置によ
る保存性や信頼性に対して不十分であり、負極の比容量
(mAh/g)および容量密度(mAh/cc)の点で
も不満が残っていた。
The above-described invention is not only extremely effective in improving the high-rate charge / discharge characteristics and the discharge characteristics at low temperatures of a lithium ion secondary battery, but also can be said to be fatal. Was effective in reducing the irreversible capacity determined by However, storage stability and reliability due to standing at a high temperature were insufficient, and dissatisfaction remained in terms of specific capacity (mAh / g) and capacity density (mAh / cc) of the negative electrode.

【0013】本発明は、リチウム二次電池のさらなる信
頼性および高エネルギー密度化の改善をはかることをそ
の目的とする。
An object of the present invention is to further improve the reliability and energy density of a lithium secondary battery.

【0014】[0014]

【課題を解決するための手段】前述したリチウムイオン
二次電池における課題を解決するために、本発明は、高
純度(固定炭素分 98%以上)で、かつ高結晶性の平
均粒子径が20μm以上でかつ厚みの平均値が15μm
以上の鱗片状あるいは塊状黒鉛粒子を液体中または気体
中に分散させ、その液体または気体に圧力をかけてノズ
ルからラセン状に吐出させて微粉砕後篩分けし、タッピ
ング密度、広角X線回折法による(110)/(00
4)のX線回折ピーク強度比および粒子形状を管理する
ことにより、初期サイクルに認められる不可逆容量を可
及的に小さくすると共に、高温下での放置における電池
の保存性および信頼性を向上し、優れた高率放電特性お
よび低温における放電特性を確保し、かつ比容量が高い
非水電解質二次電池の実現を可能にしたものである。
In order to solve the above-mentioned problems in the lithium ion secondary battery, the present invention relates to a lithium ion secondary battery having a high purity (fixed carbon content of 98% or more) and a high crystalline average particle diameter of 20 μm. Above and the average thickness is 15 μm
The above flaky or massive graphite particles are dispersed in a liquid or gas, and the liquid or gas is discharged in a helical shape from a nozzle by applying pressure, crushed and sieved, tapping density, wide-angle X-ray diffraction method (110) / (00
By controlling the X-ray diffraction peak intensity ratio and the particle shape in 4), the irreversible capacity observed in the initial cycle is reduced as much as possible, and the storage stability and reliability of the battery when left at high temperatures are improved. The present invention has ensured excellent high-rate discharge characteristics and low-temperature discharge characteristics, and has realized a nonaqueous electrolyte secondary battery having a high specific capacity.

【0015】[0015]

【発明の実施の形態】本発明の請求項1に記載の発明
は、正極と負極とこれらの間に配されるセパレータを備
え、前記負極は、充電および放電によりリチウムイオン
がインターカレーションおよびディインターカレーショ
ンを可逆的に繰り返すことができる負極材料として、広
角X線回折法による(002)面の面間隔(d002)
が3.350〜3.360Åであり、C軸方向の結晶子
の大きさ(Lc)が少なくとも1000Å以上で鱗片状
あるいは塊状黒鉛粒子をさらに微粉砕する過程で、角取
りしてディスク状またはタブレット状粒子とし、篩分け
により平均粒径10〜30μmで、一番薄い部分の厚さ
の平均値が3〜9μmで、広角X線回折法による(11
0)/(004)のX線回折ピーク強度比が0.015
以上の範囲に規制した粉末を用いた非水電解質二次電池
にすることにより、リチウム二次電池の諸特性を改善す
るとともに、高エネルギー密度化を達成し得るものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The invention according to claim 1 of the present invention comprises a positive electrode, a negative electrode and a separator disposed between the positive electrode and the negative electrode. The negative electrode intercalates and deintercalates lithium ions by charging and discharging. As a negative electrode material capable of reversibly repeating intercalation, a (002) plane spacing (d002) by a wide-angle X-ray diffraction method
In the process of further pulverizing the flaky or massive graphite particles when the crystallite size (Lc) in the C-axis direction is at least 1000 ° or more, and in the process of further pulverizing the scale-like or massive graphite particles, The particles having a mean particle size of 10 to 30 μm by sieving and an average thickness of the thinnest portion of 3 to 9 μm were determined by wide-angle X-ray diffraction (11
0) / (004) X-ray diffraction peak intensity ratio is 0.015
By using a non-aqueous electrolyte secondary battery using the powder restricted to the above range, various characteristics of the lithium secondary battery can be improved and high energy density can be achieved.

【0016】請求項2乃至6に記載の発明は、請求項1
記載の負極用黒鉛粉末に関し、BET法による比表面積
を2.0〜8.0m2 /g、タッピング密度を0.6〜
1.2g/ccにすることにより、特に、粒径5μm未
満および粒径50μmを越える粉末の含有率を規制する
ことにより、上記した目的を確実に達成せしめたもので
ある。
The inventions described in claims 2 to 6 are the same as in claim 1.
Regarding the graphite powder for a negative electrode described above, the specific surface area by the BET method is 2.0 to 8.0 m 2 / g, and the tapping density is 0.6 to
By adjusting the content to 1.2 g / cc, in particular, by controlling the content of powder having a particle size of less than 5 μm and exceeding 50 μm, the above-mentioned object is surely achieved.

【0017】請求項7に記載の本発明は、請求項1に記
載の非水電解質二次電池において、正極活物質にリチウ
ム含有遷移金属酸化物(化学式LixMO2 、ただし、
MはCo、Ni、Mn、Feから選ばれる1種以上の遷
移金属、x=0以上1.2以下)を用いることにより、
安全性や高率充放電特性に優れるリチウムイオン二次電
池を提供するものである。正極活物質は特に、LixC
oO2 、LixNiO2 、LixMn2 4 および、そ
れらのCo、Ni、Mnの一部を他の遷移金属などの元
素で置換したものが好適である。
According to a seventh aspect of the present invention, in the nonaqueous electrolyte secondary battery according to the first aspect, a lithium-containing transition metal oxide (chemical formula LixMO 2 ,
M is at least one transition metal selected from Co, Ni, Mn and Fe, x = 0 or more and 1.2 or less)
An object of the present invention is to provide a lithium ion secondary battery excellent in safety and high-rate charge / discharge characteristics. The positive electrode active material is, in particular, LixC
Preferred are oO 2 , LixNiO 2 , LixMn 2 O 4, and those in which some of Co, Ni, and Mn are substituted with elements such as other transition metals.

【0018】請求項8に記載の発明は広角X線回折法に
よる(002)面の面間隔(d002)が3.350〜
3.360Åであり、C軸方向の結晶子の大きさ(L
c)が少なくとも1000Å以上で平均粒子径が20μ
m以上でかつ一番薄い部分の厚さの平均値が15μm以
上の鱗片状あるいは塊状黒鉛粒子を液体中あるいは気体
中に分散させ、その液体または気体に圧力をかけてノズ
ルからラセン状に吐出して微粉砕後篩分けし、ディスク
状またはタブレット状粒子を得て、これを用いて負極を
形成することを特徴とする非水電解質二次電池用負極の
製造法に係るものである。本発明方法を実施するに当っ
ては、湿式法、乾式法のいずれでもよく、黒鉛粒子を液
体中に分散させて微粉砕しディスク状またはタブレット
状の黒鉛粒子を得る湿式法に関しては、液体中の黒鉛濃
度を5〜30重量%にするのが好ましく、15〜25重
量%がより好ましい。ノズル径としては、0.3〜3m
mにするのが好ましく、0.6〜1.2mmがより好ま
しい。さらに吐出圧としては、100〜1000kg/
cm2 が好ましく、400〜700kg/cm2 がより
好ましい。
According to the eighth aspect of the present invention, the (002) plane spacing (d002) of 3.350 or more is determined by the wide-angle X-ray diffraction method.
3.360 °, the size of the crystallite in the C-axis direction (L
c) is at least 1000 ° and the average particle size is 20 μm.
m or more and the average value of the thickness of the thinnest part is 15 μm or more. Disperse flake-like or massive graphite particles in a liquid or gas, apply pressure to the liquid or gas, and discharge it spirally from a nozzle. The present invention relates to a method for producing a negative electrode for a non-aqueous electrolyte secondary battery, characterized in that fine particles are sieved and then sieved to obtain disk-shaped or tablet-shaped particles, which are used to form a negative electrode. In carrying out the method of the present invention, any of a wet method and a dry method may be used, and the wet method of dispersing graphite particles in a liquid and pulverizing the particles to obtain disk-shaped or tablet-shaped graphite particles is performed in a liquid. Is preferably 5 to 30% by weight, more preferably 15 to 25% by weight. The nozzle diameter is 0.3-3m
m, more preferably 0.6 to 1.2 mm. Further, the discharge pressure is 100 to 1000 kg /
cm 2 is preferable, and 400 to 700 kg / cm 2 is more preferable.

【0019】また、黒鉛粒子を気体中に分散させて微粉
砕しディスク状またはタブレット状の黒鉛粒子を得る乾
式法に関しては、気体中の黒鉛濃度を10〜60kg/
3するのが好ましい。ノズル径としては、3〜35m
mにするのが好ましく、15〜25mmがより好まし
い。さらに吐出圧としては、0.3〜10kg/cm2
が好ましく、0.5〜3kg/cm2 がより好ましい。
Regarding a dry method in which graphite particles are dispersed in a gas and finely pulverized to obtain disk-shaped or tablet-shaped graphite particles, the graphite concentration in the gas is 10 to 60 kg / kg.
m 3 is preferred. Nozzle diameter is 3 to 35m
m, more preferably 15 to 25 mm. Further, the discharge pressure is 0.3 to 10 kg / cm 2
Is preferable, and 0.5 to 3 kg / cm 2 is more preferable.

【0020】本発明の湿式法に用いる溶媒としては、
水、エタノール、メタノールなどが適当である。また乾
式法に用いるガスとしては、空気、窒素、アルゴンなど
が適当である。
The solvent used in the wet method of the present invention includes:
Water, ethanol, methanol and the like are suitable. As the gas used in the dry method, air, nitrogen, argon and the like are suitable.

【0021】上記条件下で、液体または気体に圧力をか
けてノズルからラセン状に吐出させ、粉砕容器内で渦巻
き流をおこし微粉砕することでディスク状またはタブレ
ット状の黒鉛粒子を効率よく得ることができる。
Under the above conditions, a liquid or a gas is ejected in a helical manner from a nozzle by applying pressure, and a vortex flow is generated in a crushing vessel to finely pulverize the disc or tablet-shaped graphite particles efficiently. Can be.

【0022】本発明方法の湿式、乾式法とも上記濃度限
定範囲以外の、高濃度域では十分に粉砕が進まずディス
ク状またはタブレット状の黒鉛粒子を得難く、また低濃
度領域では生産性に欠ける。
In both the wet method and the dry method of the present invention, pulverization does not proceed sufficiently in a high concentration range other than the above-mentioned concentration limit range, and it is difficult to obtain disk-shaped or tablet-like graphite particles, and lacks productivity in a low concentration range. .

【0023】また上記ノズル径範囲以外の、ノズル径の
大きい領域では粉砕効率が低下し生産性に欠け、またノ
ズル径の小さい領域では粉砕が進みすぎ、ディスク状ま
たはタブレット状の黒鉛粒子を得難い。
In areas other than the above-mentioned nozzle diameter range, the crushing efficiency is reduced in a region having a large nozzle diameter, resulting in poor productivity. In a region having a small nozzle diameter, crushing proceeds excessively, making it difficult to obtain disk-shaped or tablet-shaped graphite particles.

【0024】さらに上記吐出圧範囲以外の、吐出圧の小
さい領域では粉砕が進まないため生産性に欠け、また大
きい領域では逆に粉砕が進みすぎてディスク状またはタ
ブレット状の黒鉛粒子を得難い。
Further, in regions other than the above-mentioned discharge pressure range, pulverization does not proceed in a region where the discharge pressure is small, and thus the productivity is lacking. In a region where the discharge pressure is large, pulverization proceeds too much, making it difficult to obtain disk-shaped or tablet-shaped graphite particles.

【0025】本発明は特に電解質を限定するものではな
く、電解液、ポリマー電解質、あるいはそれらの併用な
どいずれでもよいが、請求項7に記載した4V級正極と
本発明の負極を用いた電池に用いられる電解液の溶媒と
しては耐酸化性及び低温特性に優れるエチレンカーボネ
ート、プロピレンカーボネート、ブチレンカーボネート
などの環状カーボネート1 種以上と、ジメチルカーボネ
ート、ジエチルカーボネート、エチルメチルカーボネー
トなどの鎖状カーボネート1 種以上との混合溶媒を主成
分とするのが好適である。また、必要に応じて、脂肪族
カルボン酸エステルやエーテル類などの他の溶媒を混合
できる。混合比率は、体積換算で環状カーボネートが溶
媒全体の5〜50%、特に15〜40%、鎖状カーボネ
ートが10〜90%、特に20〜80%の範囲が好まし
い。
The present invention does not particularly limit the electrolyte, and may be any of an electrolytic solution, a polymer electrolyte, and a combination thereof. However, the present invention relates to a battery using the 4V-class positive electrode according to claim 7 and the negative electrode of the present invention. As a solvent for the electrolytic solution used, one or more cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate having excellent oxidation resistance and low-temperature properties, and one or more cyclic carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are used. It is preferable to use a mixed solvent of the above as a main component. Further, if necessary, other solvents such as aliphatic carboxylic acid esters and ethers can be mixed. As for the mixing ratio, the cyclic carbonate is preferably in the range of 5 to 50%, particularly 15 to 40%, and the chain carbonate in the range of 10 to 90%, particularly preferably 20 to 80% of the whole solvent.

【0026】また、正極に3V級などの比較的低電位の
材料を使用する場合は、上記溶媒以外の溶媒も使用でき
る。
When a material having a relatively low potential such as a 3 V class is used for the positive electrode, a solvent other than the above solvents can be used.

【0027】これらの溶媒の溶質にはリチウム塩が使用
される。一般的に知られているリチウム塩にはLiCl
4 、LiBF4 、LiPF6 、LiAlCl4 、Li
SbF6 、LiSCN、LiCl、LiCF3 SO3
LiCF3 CO2 、Li(CF3 SO2 2 、LiAs
6 、LiN(CF3 SO2 2 などがある。
As the solute of these solvents, lithium salts are used. Commonly known lithium salts include LiCl
O 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , Li
SbF 6 , LiSCN, LiCl, LiCF 3 SO 3 ,
LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAs
F 6 and LiN (CF 3 SO 2 ) 2 .

【0028】上記以外の電池構成上必要な部材の選択に
ついては何ら制約を設けるものではない。
There are no restrictions on the selection of other components necessary for the battery configuration other than those described above.

【0029】[0029]

【実施例】以下、本発明の実施形態について、図表を用
いて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0030】(基礎実験例)図1はリチウムイオン二次
電池の負極用炭素材料の可逆容量および不可逆容量を測
定するためのコイン形セルの断面図である。図1におい
て、ステンレス鋼製セルケース1の内底面にステンレス
鋼製のエキスパンドメタルからなるグリッド3を予めス
ポット溶接しておき、このグリッド3とリチウムイオン
二次電池の負極用炭素粉末を主成分とする合剤を缶内成
型法により炭素電極5として一体に固定する。炭素電極
5の合剤は、供試用炭素粉末とアクリル系結着剤とを重
量比で100:5の比率で混合したものである。ステン
レス鋼製のふた2の周縁には、ポリプロピレン製ガスケ
ット7が嵌着されており、かつ、ふた2の内面には金属
リチウム4が圧着されている。炭素電極5に非水電解質
を注加含浸させた後、微孔性ポリエチレン膜からなるセ
パレータ6を介してガスケット7付のふた2をセルケー
ス1にカップリングし、セルケース1の上縁開口部を内
方向にカールさせて封口する。なお、非水電解質として
は、エチレンカーボネートとジエチルカーボネートとの
体積比1:1の混合溶媒に六フッ化リン酸リチウムを1
mol/lの濃度に溶解させた有機電解液を用いた。炭
素電極5に29種類の供試炭素粉末を用いてセルを作製
し、炭素電極5を正極、金属リチウム電極4を負極とし
て、20℃のもとで電流密度0.3mA/cm2 の定電
流で充電および放電する。セル電圧が0Vになるまで炭
素にリチウムをインターカレートした後、セル電圧が
1.0Vになるまで炭素からリチウムをディインターカ
レートして求めた容量を可逆容量とする。インターカレ
ートに要した電気量から可逆容量を除した値を不可逆容
量とした。なお、これらテストセルの充放電終止電圧値
は、負極炭素/正極LiCoO2 系の実用電池の充電終
止電圧4.20Vおよび放電終止電圧2.75Vにほぼ
相当する。
(Basic Experimental Example) FIG. 1 is a sectional view of a coin-shaped cell for measuring a reversible capacity and an irreversible capacity of a carbon material for a negative electrode of a lithium ion secondary battery. In FIG. 1, a grid 3 made of stainless steel expanded metal is spot-welded to the inner bottom surface of a stainless steel cell case 1 in advance, and the grid 3 and carbon powder for a negative electrode of a lithium ion secondary battery are mainly used. The resulting mixture is integrally fixed as a carbon electrode 5 by an in-can molding method. The mixture of the carbon electrode 5 is a mixture of the test carbon powder and the acrylic binder in a weight ratio of 100: 5. A gasket 7 made of polypropylene is fitted around the periphery of the lid 2 made of stainless steel, and metallic lithium 4 is pressed on the inner surface of the lid 2. After pouring and impregnating the carbon electrode 5 with a non-aqueous electrolyte, the lid 2 with the gasket 7 is coupled to the cell case 1 via the separator 6 made of a microporous polyethylene membrane, and the upper edge opening of the cell case 1 is opened. Is curled inward and sealed. As the non-aqueous electrolyte, lithium hexafluorophosphate was added to a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.
An organic electrolyte dissolved at a concentration of mol / l was used. A cell was prepared using 29 kinds of test carbon powders for the carbon electrode 5, and the carbon electrode 5 was used as a positive electrode and the metal lithium electrode 4 was used as a negative electrode at a constant current of 0.3 mA / cm 2 at 20 ° C. To charge and discharge. After intercalating lithium into carbon until the cell voltage becomes 0 V, the capacity obtained by deintercalating lithium from carbon until the cell voltage becomes 1.0 V is defined as the reversible capacity. The value obtained by dividing the reversible capacity from the amount of electricity required for intercalation was defined as the irreversible capacity. The charge / discharge end voltage values of these test cells substantially correspond to the charge end voltage 4.20 V and the discharge end voltage 2.75 V of the negative electrode carbon / cathode LiCoO 2 -based practical battery.

【0031】常法により粉砕して得られる鱗片状天然黒
鉛(平均粒子径約50μm、一番薄い部分の厚さの平均
約25μm)あるいは塊状天然黒鉛(平均粒子径約50
μm、一番薄い部分の厚さの平均約30μm)および鱗
片状人造黒鉛粒子(平均粒子径約50μm、一番薄い部
分の厚さの平均約30μm)を表2あるいは表3に示す
本発明の条件で微粉砕した後篩分けすることにより、平
均粒子径を規制した黒鉛粉末(試料No.12〜29)
を負極用供試炭素粉末とし、それら粉末の物性値と前述
した可逆容量と不可逆容量とを表2ならびに表3にまと
めて示す。また比較試料として、常法により粉砕して得
られる鱗片状あるいは塊状天然黒鉛および人造黒鉛粒子
をボールミル、ジェットミル、ハンマーミル、ピンミル
などに代表される常法の衝撃粉砕機で微粉砕された(試
料No.1〜9)および特開平7−134988号公報
に開示されているメソカーボンマイクロビーズを黒鉛化
した球状のメソカーボンマイクロビーズ(MCMB、試
料No.10)および石油ピッチコークス粉末(試料N
o.11)を負極用供試炭素粉末とし、それら粉末の物
性値ならびに不可逆容量と可逆容量を表1にまとめて示
す。
Scaly natural graphite (average particle diameter of about 50 μm, average thickness of the thinnest part of about 25 μm) or lump natural graphite (average particle diameter of about 50 μm) obtained by pulverization by a conventional method.
μm, the average thickness of the thinnest part is about 30 μm) and the flaky artificial graphite particles (average particle diameter: about 50 μm, the average thickness of the thinnest part: about 30 μm) of the present invention shown in Table 2 or Table 3. Graphite powder whose average particle size is regulated by sieving after pulverizing under the conditions (Sample Nos. 12 to 29)
Is used as a test carbon powder for a negative electrode, and the physical properties of the powder and the above-mentioned reversible capacity and irreversible capacity are summarized in Tables 2 and 3. As a comparative sample, flaky or massive natural graphite and artificial graphite particles obtained by pulverizing by a conventional method were finely pulverized by a conventional impact pulverizer such as a ball mill, a jet mill, a hammer mill, and a pin mill ( Sample Nos. 1 to 9) and spherical mesocarbon microbeads (MCMB, Sample No. 10) obtained by graphitizing mesocarbon microbeads disclosed in JP-A-7-134988 and petroleum pitch coke powder (Sample N).
o. 11) is used as a test carbon powder for a negative electrode, and the physical properties and irreversible capacity and reversible capacity of the powder are shown in Table 1.

【0032】なお、供試炭素粉末のタッピング密度は細
川ミクロン社製パウダーテスター(装置名)により測定
した。平均粒径は堀場製作所製LA−910(装置名)
を用い、レーザー光を照射して光の回折現象(散乱)を
解析して求めた。比表面積は島津製作所製ASAP20
10(装置名)を用い、BET多点法により測定した。
炭素粉末の厚さの平均値は、各供試黒鉛粉末を金型を用
い加圧成形した後、成型体を加圧方向と平行に切断した
面のSEM像から求めた。すなわち、炭素粉末の一番薄
い部分の厚さ方向の値を100個以上測定し、その平均
値を求めた。
The tapping density of the test carbon powder was measured with a powder tester (apparatus name) manufactured by Hosokawa Micron Co., Ltd. The average particle size is LA-910 manufactured by HORIBA, Ltd. (device name)
Was used to irradiate a laser beam to analyze the diffraction phenomenon (scattering) of light. The specific surface area is ASAP20 manufactured by Shimadzu Corporation
The measurement was performed by BET multipoint method using No. 10 (apparatus name).
The average value of the thickness of the carbon powder was obtained from an SEM image of a surface obtained by pressing each test graphite powder using a metal mold and then cutting the molded body parallel to the pressing direction. That is, 100 or more values in the thickness direction of the thinnest portion of the carbon powder were measured, and the average value was obtained.

【0033】(110)/(004)のX線ピーク強度
比は、金型を用いて炭素粉末を加圧し、密度約1.7g
/ccのペレットを成形し、広角X線回折測定により得
られる(110)と(004)面のピーク強度を5点測
定し(110)/(004)のピーク強度比を算出し、
その平均値を求めた。
The X-ray peak intensity ratio of (110) / (004) is determined by pressing a carbon powder using a metal mold to obtain a density of about 1.7 g.
/ Cc pellet, the peak intensity of the (110) and (004) planes obtained by wide-angle X-ray diffraction measurement is measured at five points, and the peak intensity ratio of (110) / (004) is calculated.
The average was determined.

【0034】(004)面と(110)面の回折線は黒
鉛結晶の炭素六員環網状平面ならびにその垂直面での回
折線である。鱗片形状が多い場合、ディスク状またはタ
ブレット状の黒鉛粒子が多い場合に比べて、ペレット作
製時に加圧面と平行方向に黒鉛粒子が選択的に配向す
る。従って、ディスク状またはタブレット状の黒鉛粒子
に比べて鱗片状粒子の割合が多くなると(110)/
(004)のX線ピーク強度比は小さくなる。
The diffraction lines of the (004) plane and the (110) plane are the diffraction lines on the plane of the six-membered carbon network of the graphite crystal and on the plane perpendicular thereto. In the case where the scale-like shape is large, the graphite particles are selectively oriented in the direction parallel to the pressing surface at the time of pellet production, as compared with the case where the disk-shaped or tablet-shaped graphite particles are large. Therefore, when the ratio of the scale-like particles is larger than that of the disk-like or tablet-like graphite particles, (110) /
The X-ray peak intensity ratio of (004) becomes small.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】表1、2、3の結果からLcが1000Å
未満である比較試料の球状黒鉛粉末(試料No.10)
およびコークス粉末(試料No.11)は、不可逆容量
は比較的小さいが、エネルギー密度に大きく影響する可
逆容量はどちらも300mAh/g未満と小さかった。
これらに対して、原材料が天然黒鉛および人造黒鉛粉末
の試料No.1〜9ならびに12〜29の可逆容量はす
べて少なくとも350mAh/gで、比容量の理論値
(372mAh/g)に近似した値となった。これらの
なかで、試料No.12〜29の黒鉛粉末の不可逆容量
は17〜30mAh/gで、他の黒鉛粉末(試料No.
1〜9)のそれより同レベルかさらに小さいレベルにあ
ることが注目される。
From the results of Tables 1, 2, and 3, Lc was 1000 °
Spheroidal graphite powder of the comparative sample less than (sample No. 10)
And the coke powder (Sample No. 11) had a relatively small irreversible capacity, but both had a small reversible capacity, which greatly affected the energy density, of less than 300 mAh / g.
On the other hand, the raw materials were sample Nos. Of natural graphite and artificial graphite powder. The reversible capacities of 1 to 9 and 12 to 29 were all at least 350 mAh / g, which was close to the theoretical value of the specific capacity (372 mAh / g). Among these, sample No. The irreversible capacity of the graphite powders of Nos. 12 to 29 was 17 to 30 mAh / g, and the other graphite powders (Sample Nos.
It is noted that it is at the same level or lower than that of 1-9).

【0039】本発明の前提条件として広角X線回折によ
る(002)面の面間隔(d002)が3.350〜
3.360Åであり、C軸方向の結晶子の大きさ(L
c)が少なくとも1000Åである結晶化度および純度
が高い天然黒鉛または人造黒鉛をリチウムイオン二次電
池の負極材に用いることより高水準の可逆容量が得られ
ることが理解される。
As a prerequisite for the present invention, the plane spacing (d002) of the (002) plane by wide-angle X-ray diffraction is 3.350-.
3.360 °, the size of the crystallite in the C-axis direction (L
It is understood that a high level of reversible capacity can be obtained by using natural graphite or artificial graphite having a high crystallinity and purity in which c) is at least 1000 ° as the negative electrode material of the lithium ion secondary battery.

【0040】(実施例及び比較例)基礎実験例1で、可
逆容量および不可逆容量を求めた負極用炭素粉末(試料
No.1〜29)を用いて、円筒形セルを作製し、低温
における高率放電特性および充電状態で高温放置した場
合の漏液性を測定した。
(Examples and Comparative Examples) A cylindrical cell was prepared using the carbon powder for a negative electrode (Sample Nos. 1 to 29) for which the reversible capacity and the irreversible capacity were determined in Basic Experimental Example 1, and a high-temperature cell at a low temperature was prepared. The rate-discharge characteristics and the liquid leakage when left in a charged state at a high temperature were measured.

【0041】図2は渦巻状電極群構成の円筒形セルの断
面図である。図2において、各1枚の帯状正極10と負
極11とを微孔性ポリエチレン膜からなるセパレータ1
2を介して渦巻状に捲回して電極群が構成される。正極
10は活物質材料のリチウムとコバルトとの複合酸化物
であるLiCoO2 と導電材のカーボンブラックと結着
剤のポリ四フッ化エチレン(PTFE)とを重量比で1
00:3:10の割合で混合したペーストを集電体であ
るアルミニウム箔の両面に塗着、乾燥後ロールプレス
し、所定寸法に裁断したものである。なお、結着剤のP
TFEはディスパージョン溶液のものを用いた。正極1
0のアルミニウム箔には、正極リード片13がスポット
溶接されている。負極11は供試炭素粉末にアクリル系
結着剤溶液を加えて混合したペーストを集電体である銅
箔の両面に塗着、乾燥後ロールプレスし、所定の寸法に
裁断したものである。負極11の銅箔には負極リード片
14がスポット溶接されている。捲回した電極群の下面
に底部絶縁板15を装着して、ニッケル鍍鋼板製のセル
ケース16内に収容した後、負極リード片14をセルケ
ース16の内底面にスポット溶接する。その後電極群上
に上部絶縁板17を載置してからセルケース16の開口
部の所定位置に溝入れし、所定量の有機電解液を注入含
浸させる。有機電解液としては基礎実験例と同じ有機電
解液を用いた。
FIG. 2 is a sectional view of a cylindrical cell having a spiral electrode group configuration. In FIG. 2, one strip-shaped positive electrode 10 and one strip-shaped negative electrode 11 are separated by a separator 1 made of a microporous polyethylene film.
The electrode group is formed by spirally winding through the electrodes 2. The positive electrode 10 is composed of LiCoO 2 , a composite oxide of lithium and cobalt as active material, carbon black as conductive material, and polytetrafluoroethylene (PTFE) as binder at a weight ratio of 1%.
A paste mixed at a ratio of 00: 3: 10 is applied to both sides of an aluminum foil as a current collector, dried, roll-pressed, and cut into a predetermined size. In addition, P of the binder
The TFE used was a dispersion solution. Positive electrode 1
The positive electrode lead piece 13 is spot-welded to the aluminum foil of No. 0. The negative electrode 11 is obtained by applying a paste obtained by adding an acrylic binder solution to a test carbon powder on both sides of a copper foil serving as a current collector, drying the roll, and cutting it into a predetermined size. A negative electrode lead piece 14 is spot-welded to the copper foil of the negative electrode 11. After attaching the bottom insulating plate 15 to the lower surface of the wound electrode group and housing it in the cell case 16 made of nickel-plated steel plate, the negative electrode lead piece 14 is spot-welded to the inner bottom surface of the cell case 16. Thereafter, the upper insulating plate 17 is placed on the electrode group, and is then grooved at a predetermined position of the opening of the cell case 16, and a predetermined amount of an organic electrolyte is injected and impregnated. As the organic electrolyte, the same organic electrolyte as used in the basic experimental example was used.

【0042】その後、周縁にガスケット18が嵌着され
た封口板19の内底面に正極リード片13をスポット溶
接する。封口板19をセルケース16の開口部にガスケ
ット18を介して嵌め込んで、セルケース16の上縁を
内方向にカールして封口すればセルは完成する。
Thereafter, the positive electrode lead piece 13 is spot-welded to the inner bottom surface of the sealing plate 19 with the gasket 18 fitted on the periphery. The cell is completed when the sealing plate 19 is fitted into the opening of the cell case 16 via the gasket 18 and the upper edge of the cell case 16 is curled inward and sealed.

【0043】各セルの放電容量は負極容量で規制される
ようにし、種類にかかわらず各セルの負極用炭素粉末重
量を同じにした。他の部品材料の使用量、作製方法は全
く同じにして負極用炭素粉末の比較ができるようにし
た。
The discharge capacity of each cell was regulated by the capacity of the negative electrode, and the weight of the carbon powder for the negative electrode of each cell was the same regardless of the type. The amounts of other component materials used and the production method were exactly the same so that the carbon powder for the negative electrode could be compared.

【0044】29種類の負極用炭素粉末を用いたセルa
〜kおよびA〜R各5セルについて、20℃ですべての
セルを100mA(1/5C)定電流で各セルの端子電
圧が4.2Vになるまで充電した後、100mA(1/
5C)定電流で2.75Vまで放電して、1/5C放電
容量を求めた。その後、同様に充電した後500mA
(1C)定電流で2.75Vまで放電して、1C放電容
量を求めた。次いで、20℃で充電した後、−20℃で
24時間放置し、同じ−20℃で1C放電容量を求め
た。各セルを20℃に静置し、セルの温度が20℃に復
してから同じ方法で充電した後、100℃で1日放置
し、セルの温度が20℃になってから漏液の有無を全セ
ルについて観察した。
Cell a using 29 kinds of carbon powder for negative electrode
After charging all the cells at a constant current of 100 mA (100 C) at 20 ° C. until the terminal voltage of each cell becomes 4.2 V for each of the 5 cells A to R and A to R, 100 mA (1 /
5C) The battery was discharged at a constant current up to 2.75 V to obtain a 1 / 5C discharge capacity. After that, after charging in the same manner, 500 mA
(1C) The battery was discharged at a constant current to 2.75 V to determine a 1C discharge capacity. Next, after charging at 20 ° C., the battery was allowed to stand at −20 ° C. for 24 hours, and the 1C discharge capacity was determined at the same −20 ° C. Each cell was allowed to stand still at 20 ° C, and after the cell temperature was returned to 20 ° C, the battery was charged in the same manner, and then left at 100 ° C for 1 day. Was observed for all cells.

【0045】供試炭素粉末の物性値に対比して、前述し
た電池性能(5セルの平均値)をまとめて表4に示す。
The above-mentioned battery performance (average value of 5 cells) is summarized in Table 4 in comparison with the physical property values of the test carbon powder.

【0046】[0046]

【表4】 [Table 4]

【0047】表4から、表1で示した可逆容量が小さか
った試料No.10および11の20℃での1/5Cお
よび1C放電容量は低いが、試料No.1〜9の黒鉛粉
末のそれらは相対的に大きい。しかしながら、低温にお
ける高率放電容量(−20℃、1C)が415mAh以
上を示したのは、試料No.1、2、6、7、8、10
および12〜29の黒鉛粉末によるセルa、b、f、
g、h、jおよびA〜Rだけであった。さらに、高温放
置後に漏液が全く認められなかったのは、試料No.4
および10〜29の炭素粉末によるセルd、j、kおよ
びA〜Rであった。これらの結果からすべての電池性能
にわたって優れていたのは本発明の試料No.12〜2
9の黒鉛粉末によるセルA〜Rであった。
From Table 4, it can be seen that Sample No. having a small reversible capacity shown in Table 1 was obtained. Although the 1/5 C and 1 C discharge capacities at 20 ° C. of Samples 10 and 11 were low, Sample Nos. Those of the graphite powders 1 to 9 are relatively large. However, the reason why the high-rate discharge capacity (−20 ° C., 1 C) at a low temperature showed 415 mAh or more was that in Sample No. 1, 2, 6, 7, 8, 10
And cells a, b, f,
g, h, j and AR only. Further, no leakage was observed after standing at a high temperature. 4
And cells d, j, k and AR with carbon powders of 10-29. From these results, it was found that Sample No. of the present invention was excellent over all battery performances. 12-2
9 were cells A to R using graphite powder.

【0048】試料No.12〜29の黒鉛粉末の物性値
で、他の黒鉛粉末(試料No.1〜9)と大きく相違す
る点はタッピング密度が0.21〜0.46g/ccに
対して、0.60〜1.15g/ccと高いこと、また
広角X線回折法による(110)/(004)のX線回
折ピーク強度比が0.015以上である点である。これ
らはNo.12〜29の黒鉛粉末の平均粒径が10.3
〜29.5μmであり、かつ、BET法による比表面積
が2.1〜7.4m2/gで、平均粒径の割に、比表面
積が徒らに大き過ぎないことに関連し、さらに、試料N
o.12〜29の黒鉛粉末の平均の厚さが3.1〜8.
9μmで、他の黒鉛粉末(試料No.1〜9)の1.1
〜2.5μmよりも大きい点、すなわち、本発明による
黒鉛粉末は、結晶化度および純度が高い鱗片状あるいは
塊状黒鉛粒子を液体中または気体中に分散させ、その液
体または気体に圧力をかけてノズルからラセン状に吐出
させて渦巻き流をおこすことにより微粉砕する過程で角
とりしてディスク状またはタブレット状粒子とし、その
後所望の粒径に篩分けすることで、タッピング密度が高
く、また広角X線回折法による(110)/(004)
のX線回折ピーク強度比が大きいものとなっているわけ
である。従って、適切に微粉砕し、かつ篩分けすること
で黒鉛粉末を所望の平均粒径分布とすることにより、高
率充放電性能および低温での高率放電性能を向上してい
る。その上、微粉砕化されても、粉末の厚さが大きく、
鱗片状粒子のなかでも球形に近いものを集めているの
で、徒らに比表面積を増大させず、高温下でも電解液中
の有機溶媒を分解させ難く、セル内圧の上昇をさせ難く
なったことが漏液事故を皆無にし得たものと考えられ
る。
Sample No. The physical property values of the graphite powders of Nos. 12 to 29 were significantly different from those of the other graphite powders (Sample Nos. 1 to 9), except that the tapping density was 0.21 to 0.46 g / cc and 0.60 to 1 g / cc. .15 g / cc, and the ratio of the (110) / (004) X-ray diffraction peak intensity by the wide-angle X-ray diffraction method is 0.015 or more. These are no. The average particle size of graphite powder of 12 to 29 is 10.3
2929.5 μm, and the specific surface area according to the BET method is 2.1 to 7.4 m 2 / g, which means that the specific surface area is not too large for the average particle size. Sample N
o. The average thickness of the graphite powder of 12 to 29 is 3.1 to 8.
9 μm, 1.1 of other graphite powders (Sample Nos. 1 to 9)
A point larger than 2.52.5 μm, that is, the graphite powder according to the present invention is obtained by dispersing flaky or massive graphite particles having high crystallinity and purity in a liquid or gas, and applying pressure to the liquid or gas. Spiral discharge from the nozzle to create a spiral shape and create a spiral shape in the process of pulverization to obtain disc-shaped or tablet-shaped particles, which are then sieved to the desired particle size, resulting in a high tapping density and a wide angle. (110) / (004) by X-ray diffraction method
Have a large X-ray diffraction peak intensity ratio. Therefore, the graphite powder has a desired average particle size distribution by appropriately pulverizing and sieving, thereby improving high-rate charge / discharge performance and high-rate discharge performance at low temperature. Moreover, even when finely pulverized, the powder thickness is large,
Among the flaky particles, those that are nearly spherical are collected, so that the specific surface area does not increase without difficulty, it is difficult to decompose the organic solvent in the electrolyte even at high temperatures, and it is difficult to raise the internal pressure of the cell It is considered that the liquid leakage accident could be completely eliminated.

【0049】従来、リチウムイオン二次電池の負極用炭
素、特に黒鉛粉末を平均粒径および比表面積だけで管理
していたが、タッピング密度で規制することの重要性が
理解されよう。なお、上記以外の数多くの実験の結果、
本発明による黒鉛粉末の平均粒径が10〜30μmで、
一番薄い部分の厚さの平均値が3〜9μmで、広角X線
回折法による(110)/(004)のX線回折ピーク
強度比が0.015以上の範囲が適切であることが判明
している。また、その場合のBET法による比表面積が
2.0〜8.0m2/g、またタッピング密度の規制の
範囲は0.6〜1.2g/ccになることも確認されて
いる。さらに、粒径5μm未満の高温放置において信頼
性を低下させる微細に過ぎる粉末含有量は15%以下に
すること、および、高率放電性能を阻害する50μmを
越える粉末の含有率は30%以下にすべきことも確認さ
れている。
Conventionally, carbon for the negative electrode of a lithium ion secondary battery, particularly graphite powder, has been controlled only by the average particle size and the specific surface area, but it will be understood that the importance of regulating by tapping density is important. In addition, as a result of many experiments other than the above,
The average particle size of the graphite powder according to the present invention is 10 to 30 μm,
It is found that the average value of the thickness of the thinnest portion is 3 to 9 μm, and the range of the (110) / (004) X-ray diffraction peak intensity ratio of 0.015 or more by the wide-angle X-ray diffraction method is appropriate. doing. It has also been confirmed that the specific surface area by the BET method in that case is 2.0 to 8.0 m 2 / g, and the range of regulation of the tapping density is 0.6 to 1.2 g / cc. Further, the content of powder that is too fine to reduce reliability when left at high temperature with a particle size of less than 5 μm should be 15% or less, and the content of powder that exceeds 50 μm that inhibits high-rate discharge performance should be 30% or less. It has also been confirmed what to do.

【0050】[0050]

【発明の効果】以上のように本発明による負極用黒鉛粉
末を使用することにより、比容量の理論値(372mA
h/g)の少なくとも94%の351〜360mAh/
g(94.4〜96.8%)であり、不可逆容量は17
〜30mAh/gと極めて小さく、エネルギー密度の向
上に資するものである。さらに、高率充放電および低温
高率放電性能が優れるだけでなく、高温放置によっても
漏液事故が発生せず信頼性の高いリチウム二次電池を提
供できるという効果を奏し得るものである。
As described above, by using the graphite powder for a negative electrode according to the present invention, the theoretical value of the specific capacity (372 mA) is obtained.
h / g) of 351 to 360 mAh /
g (94.4-96.8%), and the irreversible capacity is 17
It is extremely small at 30 mAh / g, which contributes to the improvement of energy density. Furthermore, not only high rate charge / discharge and low temperature high rate discharge performance are excellent, but also there is an effect that a highly reliable lithium secondary battery can be provided without liquid leakage accident even when left at high temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の効果を検討すべく可逆容量および不可
逆容量を測定するためのコイン形セルの断面図。
FIG. 1 is a cross-sectional view of a coin-shaped cell for measuring a reversible capacity and an irreversible capacity to examine the effect of the present invention.

【図2】本発明の実施形態による渦巻状電極群構成の円
筒形セルの断面図。
FIG. 2 is a cross-sectional view of a cylindrical cell having a spiral electrode group configuration according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:セルケース 2:ふた 3:グリッド 4:金属リチウム電極 5:炭素電極 6:セパレータ 7:ガスケット 10:正極 11:負極 12:セパレータ 13:正極リード片 14:負極リード片 15:底部絶縁板 16:セルケース 17:上部絶縁板 18:ガスケット 19:封口板 1: Cell case 2: Lid 3: Grid 4: Metal lithium electrode 5: Carbon electrode 6: Separator 7: Gasket 10: Positive electrode 11: Negative electrode 12: Separator 13: Positive electrode lead piece 14: Negative electrode lead piece 15: Bottom insulating plate 16 : Cell case 17: Upper insulating plate 18: Gasket 19: Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 豊次 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 鶴田 邦夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 伊藤 修二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西野 肇 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 石川 幸治郎 滋賀県大津市栗林町5−1 日本黒鉛工業 株式会社瀬田工場内 (72)発明者 杉本 久典 滋賀県大津市栗林町5−1 日本黒鉛工業 株式会社瀬田工場内 (72)発明者 塚本 薫 滋賀県大津市栗林町5−1 日本黒鉛工業 株式会社瀬田工場内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Toyoji Sugimoto 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Kunio Tsuruta 1006 Odaka Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Shuji Ito 1006 Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Hajime Nishino 1006 Odaka, Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Kojiro Ishikawa Shiga, Inventor 5-1 Kuribayashi-cho, Otsu-shi, Nippon Graphite Industry Seta Plant Co., Ltd. (72) Inventor Hisanori Sugimoto 5-1 Kuribayashi-cho, Otsu-shi, Shiga Prefecture Nippon Graphite Industry Co., Ltd. Seta Plant Co., Ltd. (72) Inventor Kaoru Tsukamoto Otsu, Shiga Prefecture 5-1 Kuribayashi-cho, Nippon Graphite Industry Seta Factory Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極とこれらの間に配されるセパ
レータを備え、前記負極は、充電および放電によりリチ
ウムイオンがインターカレーションおよびディインター
カレーションを可逆的に繰り返すことができる負極材料
として、広角X線回折法による(002)面の面間隔
(d002)が3.350〜3.360Åであり、C軸
方向の結晶子の大きさ(Lc)が少なくとも1000Å
以上である鱗片状または塊状黒鉛粒子をさらに微粉砕す
る過程で、角取りしてディスク状またはタブレット状粒
子とし、篩分けにより平均粒径が10〜30μmでかつ
一番薄い部分の厚さの平均値が3〜9μmでかつ広角X
線回折法による(110)/(004)のX線回折ピー
ク強度比が0. 015以上に規制した粉末を用いた非水
電解質二次電池。
1. A negative electrode material comprising a positive electrode, a negative electrode, and a separator disposed therebetween, wherein the negative electrode is a negative electrode material capable of reversibly repeating intercalation and deintercalation of lithium ions by charging and discharging. The (002) plane spacing (d002) is 3.350 to 3.360 ° by wide-angle X-ray diffraction, and the crystallite size (Lc) in the C-axis direction is at least 1000 °.
In the process of further pulverizing the flaky or massive graphite particles as described above, they are cut into disk-like or tablet-like particles, and the average particle diameter is 10 to 30 μm by sieving and the average of the thickness of the thinnest part Value is 3-9 μm and wide angle X
A non-aqueous electrolyte secondary battery using a powder whose X-ray diffraction peak intensity ratio of (110) / (004) determined by the X-ray diffraction method is 0.015 or more.
【請求項2】 負極用黒鉛粉末のBET法による比表面
積が2.0〜8.0m2 /gである請求項1記載の非水
電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the graphite powder for the negative electrode has a specific surface area of 2.0 to 8.0 m 2 / g by a BET method.
【請求項3】 負極用黒鉛粉末において、粒径5μm未
満の粉末の含有率を15%以下とした請求項1又は2記
載の非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of the powder having a particle size of less than 5 μm in the graphite powder for the negative electrode is 15% or less.
【請求項4】 負極用黒鉛粉末において、粒径50μm
を越える粉末の含有率を30%以下とした請求項1又は
2記載の非水電解質二次電池。
4. The graphite powder for a negative electrode has a particle size of 50 μm.
The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the content of the powder exceeding 30% is not more than 30%.
【請求項5】 負極用黒鉛粉末において、粒径5μm未
満および粒径50μmを越える粉末の含有率がそれぞれ
15%および30%以下である請求項1又は2記載の非
水電解質二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of the powder having a particle size of less than 5 μm and a particle size having a particle size of more than 50 μm is 15% or less and 30% or less, respectively.
【請求項6】 負極用黒鉛粉末のタッピング密度が0.
6〜1. 2g/ccである請求項1〜5のいずれかに記
載の非水電解質二次電池。
6. The negative electrode graphite powder has a tapping density of 0.5.
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the amount is 6 to 1.2 g / cc.
【請求項7】 正極と負極とこれらの間に配されるセパ
レータを備え、前記正極はリチウム含有遷移金属酸化物
(化学式LixMO2 、ただし、MはCo、Ni、M
n、Feから選ばれる1種以上の遷移金属、x=0以上
1.2以下)を活物質とし、前記負極は、充電および放
電によりリチウムイオンがインターカレーションおよび
ディインターカレーションを可逆的に繰り返すことがで
きる負極材料として、広角X線回折法による(002)
面の面間隔(d002)が3.350〜3.360Åで
あり、C軸方向の結晶子の大きさ(Lc)が少なくとも
1000Å以上である鱗片状または塊状黒鉛粒子をさら
に微粉砕する過程で、角取りしてディスク状またはタブ
レット状粒子とし、篩分けにより平均粒径が10〜30
μmでかつ一番薄い部分の厚さの平均値が3〜9μmで
かつ広角X線回折法による(110)/(004)のX
線回折ピーク強度比が0. 015以上に規制した粉末を
用いた非水電解質二次電池。
7. A positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, wherein the positive electrode is a lithium-containing transition metal oxide (chemical formula: LixMO 2 , where M is Co, Ni, M
n, at least one transition metal selected from Fe, x = 0 or more and 1.2 or less) as an active material, and the negative electrode reversibly intercalates and deintercalates lithium ions by charging and discharging. As a negative electrode material that can be repeated, by wide-angle X-ray diffraction method (002)
In the process of further pulverizing the flaky or massive graphite particles having a plane spacing (d002) of 3.350 to 3.360 ° and a crystallite size (Lc) of at least 1000 ° in the C-axis direction, Squaring into disk-shaped or tablet-shaped particles, and sieving has an average particle size of 10 to 30.
μm and the average value of the thickness of the thinnest part is 3 to 9 μm, and X of (110) / (004) is determined by the wide-angle X-ray diffraction method.
A non-aqueous electrolyte secondary battery using a powder whose line diffraction peak intensity ratio is regulated to 0.015 or more.
【請求項8】 広角X線回折法による(002)面の面
間隔(d002)が3.350〜3.360Åであり、
C軸方向の結晶子の大きさ(Lc)が少なくとも100
0Å以上で平均粒子径が20μm以上でかつ一番薄い部
分の厚さの平均値が15μm以上の鱗片状あるいは塊状
黒鉛粒子を液体中あるいは気体中に分散させ、その液体
または気体に圧力をかけてノズルからラセン状に吐出し
て微粉砕後篩分けし、ディスク状またはタブレット状粒
子を得て、これを用いて負極を形成することを特徴とす
る非水電解質二次電池用負極の製造法。
8. A plane distance (d002) of a (002) plane measured by a wide-angle X-ray diffraction method is 3.350 to 3.360 °,
The crystallite size (Lc) in the C-axis direction is at least 100
Disperse scaly or massive graphite particles having an average particle diameter of 20 μm or more at 0 ° or more and an average thickness of the thinnest part of 15 μm or more in a liquid or gas, and apply pressure to the liquid or gas. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, comprising discharging spirally from a nozzle, finely pulverizing and sieving to obtain disk-shaped or tablet-shaped particles, and forming the negative electrode using the particles.
JP14566798A 1997-05-30 1998-05-27 Nonaqueous electrolyte secondary battery and method for producing the negative electrode Expired - Fee Related JP4184479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14566798A JP4184479B2 (en) 1997-05-30 1998-05-27 Nonaqueous electrolyte secondary battery and method for producing the negative electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-141957 1997-05-30
JP14195797 1997-05-30
JP14566798A JP4184479B2 (en) 1997-05-30 1998-05-27 Nonaqueous electrolyte secondary battery and method for producing the negative electrode

Publications (2)

Publication Number Publication Date
JPH1145715A true JPH1145715A (en) 1999-02-16
JP4184479B2 JP4184479B2 (en) 2008-11-19

Family

ID=26474113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14566798A Expired - Fee Related JP4184479B2 (en) 1997-05-30 1998-05-27 Nonaqueous electrolyte secondary battery and method for producing the negative electrode

Country Status (1)

Country Link
JP (1) JP4184479B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170252A2 (en) * 2000-07-04 2002-01-09 Sumitomo Electric Industries, Ltd. Modified graphite particles and battery using the same
KR100454028B1 (en) * 2001-12-21 2004-10-20 삼성에스디아이 주식회사 Composition comprising graphite, negative electrode for lithium secondary battery, and lithium secondary battery
KR100490464B1 (en) * 1998-11-27 2005-05-17 미쓰비시 가가꾸 가부시키가이샤 Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP2005294011A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007149706A (en) * 1998-11-27 2007-06-14 Mitsubishi Chemicals Corp Carbon material for electrode
WO2010110441A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
WO2010110443A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
JP2011171282A (en) * 2009-11-20 2011-09-01 Ube Industries Ltd Nonaqueous electrolyte and electrochemical element using the same
WO2011125577A1 (en) * 2010-03-31 2011-10-13 住友金属工業株式会社 Modified natural graphite particle and method for producing same
WO2011145301A1 (en) * 2010-05-18 2011-11-24 パナソニック株式会社 Lithium secondary battery
JP2014179346A (en) * 2014-07-02 2014-09-25 Sony Corp Electrode, battery, and method for manufacturing electrode
KR20150039826A (en) 2012-09-27 2015-04-13 쇼와 덴코 가부시키가이샤 Carbon material for negative electrode for lithium ion secondary battery, manufacturing process therefor and use thereof
JP2017126425A (en) * 2016-01-12 2017-07-20 三菱ケミカル株式会社 Carbon material for nonaqueous secondary battery, and lithium ion secondary battery
JPWO2017212596A1 (en) * 2016-06-08 2019-04-04 日産自動車株式会社 Nonaqueous electrolyte secondary battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490464B1 (en) * 1998-11-27 2005-05-17 미쓰비시 가가꾸 가부시키가이샤 Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP2007149706A (en) * 1998-11-27 2007-06-14 Mitsubishi Chemicals Corp Carbon material for electrode
EP1170252A2 (en) * 2000-07-04 2002-01-09 Sumitomo Electric Industries, Ltd. Modified graphite particles and battery using the same
JP2002029720A (en) * 2000-07-04 2002-01-29 Sumitomo Electric Ind Ltd Reformed graphite particles and battery using the same
EP1170252A3 (en) * 2000-07-04 2002-06-19 Sumitomo Electric Industries, Ltd. Modified graphite particles and battery using the same
US6573007B2 (en) 2000-07-04 2003-06-03 Sumitomo Electric Industries, Ltd. Modified graphite particles and battery using the same
KR100454028B1 (en) * 2001-12-21 2004-10-20 삼성에스디아이 주식회사 Composition comprising graphite, negative electrode for lithium secondary battery, and lithium secondary battery
JP2005294011A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014241302A (en) * 2009-03-27 2014-12-25 三菱化学株式会社 Negative electrode material for nonaqueous electrolytic secondary batteries, and nonaqueous electrolytic secondary battery arranged by use thereof
US8974969B2 (en) 2009-03-27 2015-03-10 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2010251314A (en) * 2009-03-27 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010251315A (en) * 2009-03-27 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery using the same
WO2010110443A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
WO2010110441A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
US8920977B2 (en) 2009-03-27 2014-12-30 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2011171282A (en) * 2009-11-20 2011-09-01 Ube Industries Ltd Nonaqueous electrolyte and electrochemical element using the same
WO2011125577A1 (en) * 2010-03-31 2011-10-13 住友金属工業株式会社 Modified natural graphite particle and method for producing same
JP5492980B2 (en) * 2010-03-31 2014-05-14 新日鐵住金株式会社 Modified natural graphite particles and method for producing the same
WO2011145301A1 (en) * 2010-05-18 2011-11-24 パナソニック株式会社 Lithium secondary battery
US8568925B2 (en) 2010-05-18 2013-10-29 Panasonic Corporation Lithium secondary battery
KR20150039826A (en) 2012-09-27 2015-04-13 쇼와 덴코 가부시키가이샤 Carbon material for negative electrode for lithium ion secondary battery, manufacturing process therefor and use thereof
JP2014179346A (en) * 2014-07-02 2014-09-25 Sony Corp Electrode, battery, and method for manufacturing electrode
JP2017126425A (en) * 2016-01-12 2017-07-20 三菱ケミカル株式会社 Carbon material for nonaqueous secondary battery, and lithium ion secondary battery
JPWO2017212596A1 (en) * 2016-06-08 2019-04-04 日産自動車株式会社 Nonaqueous electrolyte secondary battery
US10770716B2 (en) 2016-06-08 2020-09-08 Envision Aesc Japan Ltd. Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4184479B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
KR100483126B1 (en) Nonaqueous electrolyte secondary battery
JP5030414B2 (en) Nonaqueous electrolyte secondary battery
JP3193342B2 (en) Non-aqueous electrolyte secondary battery
JP5153156B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
EP0688057B1 (en) Lithium ion secondary battery
JP4644895B2 (en) Lithium secondary battery
KR100790271B1 (en) Non-aqueous electrolyte secondary battery and production method thereof
KR100530910B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing negative electrode of the same
JPH08124559A (en) Manufacture of lithium secondary battery and of negative electrode active material
JP3499584B2 (en) Lithium secondary battery
JPH09237631A (en) Positive electrode active substance for lithium secondary battery, manufacture thereof and lithium secondary battery
JP4177574B2 (en) Lithium secondary battery
JP4184479B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP5002872B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
JPH0927314A (en) Nonaqueous electrolyte secondary battery
US20120082896A1 (en) Nonaqueous electrolyte secondary battery
JP2007103246A (en) Non-aqueous electrolyte secondary battery
JPH06295725A (en) Nonaqueous secondary battery
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP5017010B2 (en) Lithium secondary battery
JP7214662B2 (en) Non-aqueous electrolyte secondary battery
JP2002164051A (en) Lithium secondary battery and negative electrode material
JP2012069453A (en) Nonaqueous electrolyte secondary battery
JP3406843B2 (en) Lithium secondary battery
JP2001052691A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees