JP5030414B2 - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP5030414B2 JP5030414B2 JP2005323945A JP2005323945A JP5030414B2 JP 5030414 B2 JP5030414 B2 JP 5030414B2 JP 2005323945 A JP2005323945 A JP 2005323945A JP 2005323945 A JP2005323945 A JP 2005323945A JP 5030414 B2 JP5030414 B2 JP 5030414B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy material
- phase
- negative electrode
- secondary battery
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、非水電解質二次電池の負極の改良に関し、高い電気容量を有し、充放電サイクル特性に優れた非水電解質二次電池を提供するものである。 The present invention relates to an improvement in the negative electrode of a nonaqueous electrolyte secondary battery, and provides a nonaqueous electrolyte secondary battery having a high electric capacity and excellent charge / discharge cycle characteristics.
非水電解質二次電池は、高電圧で高エネルギー密度を実現できることから、多くの研究が行われている。非水電解質二次電池の正極には、遷移金属酸化物や遷移金属カルコゲン化合物、例えばLiMn2O4、LiCoO2、LiNiO2、V2O5、Cr2O5、MnO2、TiS2、MoS2等が用いられている。これらはリチウムイオンが出入り可能な層状もしくはトンネル状の結晶構造を有している。一方、負極には、容量は比較的小さいが、リチウムを可逆的に吸蔵および放出可能であり、サイクル寿命と安全性に優れた電池を与えることから、炭素材料が用いられており、黒鉛系の炭素材料を負極に用いたリチウムイオン電池が実用化されている。 Non-aqueous electrolyte secondary batteries are capable of realizing a high energy density at a high voltage, and thus many studies have been conducted. The positive electrode of the non-aqueous electrolyte secondary battery includes a transition metal oxide or a transition metal chalcogen compound such as LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , MoS. 2 etc. are used. These have a layered or tunnel-like crystal structure through which lithium ions can enter and exit. On the other hand, the negative electrode has a relatively small capacity, but is capable of reversibly inserting and extracting lithium, and provides a battery with excellent cycle life and safety, so a carbon material is used. A lithium ion battery using a carbon material as a negative electrode has been put into practical use.
しかし、黒鉛材料の理論容量は372mAh/gであり、理論密度が2.2g/cm3と比較的小さいことから、黒鉛材料以上の高容量を実現可能な金属材料を負極として利用することが期待されている。金属材料の中でも、特にSiは4199mAh/g(理論密度2.33g/cm3)と高容量であり、多くの研究開発が行われている。 However, since the theoretical capacity of the graphite material is 372 mAh / g and the theoretical density is relatively small at 2.2 g / cm 3 , it is expected to use a metal material capable of realizing a higher capacity than the graphite material as the negative electrode. Has been. Among metal materials, especially Si has a high capacity of 4199 mAh / g (theoretical density 2.33 g / cm 3 ), and many researches and developments have been conducted.
Siは、高容量な負極を実現できるが、電池の充放電サイクル特性に重要な課題を有する。これは、充電反応および放電反応の際に、リチウムの挿入および脱離に伴ってSiの膨脹および収縮が繰り返され、負極内部の粒子間の接触抵抗が増大し、集電ネットワークが劣化するために生じる問題である。集電ネットワークの劣化は、充放電サイクル寿命を短くする主要因となる。 Si can realize a high-capacity negative electrode, but has an important problem in the charge / discharge cycle characteristics of the battery. This is because during the charge and discharge reactions, the expansion and contraction of Si are repeated with the insertion and removal of lithium, the contact resistance between the particles inside the negative electrode increases, and the current collection network deteriorates. It is a problem that arises. The deterioration of the current collection network is a main factor for shortening the charge / discharge cycle life.
上記課題に対し、負極材料として、リチウムの可逆的な吸蔵および放出が可能であり、組成が互いに異なる固相Aと固相Bとを含み、固相Aの少なくとも一部が固相Bによって被覆されており、固相Aが、ケイ素、スズ、亜鉛等を含み、固相Bが、2A族元素、遷移元素、2B族元素、3B族元素、4B族元素等を含む合金材料が提案されている。また、固相Aは、非晶質もしくは低結晶状態であることが好ましいと提案されている(特許文献1、2)。 In response to the above problems, the negative electrode material includes a solid phase A and a solid phase B that are capable of reversibly occluding and releasing lithium and having different compositions, and at least a part of the solid phase A is covered with the solid phase B An alloy material has been proposed in which the solid phase A includes silicon, tin, zinc, and the like, and the solid phase B includes a group 2A element, a transition element, a group 2B element, a group 3B element, a group 4B element, and the like. Yes. Further, it has been proposed that the solid phase A is preferably in an amorphous or low crystalline state (Patent Documents 1 and 2).
また、サイクル寿命が向上させる観点から、Siを主体とするA相と、遷移金属とSiとの化合物を含むB相を含み、A相およびB相の少なくとも一方が、非晶質または低結晶の状態である負極活物質も提案されている(特許文献3)。 Further, from the viewpoint of improving the cycle life, it includes an A phase mainly composed of Si and a B phase containing a compound of a transition metal and Si, and at least one of the A phase and the B phase is amorphous or low crystalline. A negative electrode active material in a state has also been proposed (Patent Document 3).
上記関連技術によれば、合金材料の膨張および収縮時の割れを大幅に抑制可能であり、サイクル特性劣化の主要因である集電ネットワークの劣化を抑制できる点では一定の効果を有する。しかし、詳細な検討の結果、大電流で急速な充放電を行う場合には、上記関連技術では、サイクル特性の劣化を抑制する十分な効果が得られない場合があることが明らかになった。 According to the above related art, cracks at the time of expansion and contraction of the alloy material can be greatly suppressed, and there is a certain effect in that the deterioration of the current collecting network, which is the main factor of cycle characteristic deterioration, can be suppressed. However, as a result of detailed studies, it has been clarified that in the case where rapid charge / discharge is performed with a large current, the related technique may not provide a sufficient effect for suppressing deterioration of cycle characteristics.
負極活物質の粒径を小さくすることも検討されている。例えば、平均粒径が1〜100nm(特許文献4)、0.1〜2.5μm(特許文献5)、1nm〜200nm(特許文献6)および0.01〜50μm(特許文献7)のSi粉末がそれぞれ提案されている。微粒子の負極活物質を用いることで、充電時に、リチウムとSiとの合金化が均一に進行し、反応の局在化が抑制される。よって、充電時の合金化による体積膨張と、放電時の体積収縮とを、小さくすることができ、負極は歪みを受けにくくなる。その結果、安定した充放電サイクルを繰り返すことができると考えられる。 Reducing the particle size of the negative electrode active material has also been studied. For example, Si powder having an average particle diameter of 1 to 100 nm (Patent Document 4), 0.1 to 2.5 μm (Patent Document 5), 1 nm to 200 nm (Patent Document 6), and 0.01 to 50 μm (Patent Document 7) Each has been proposed. By using the fine-particle negative electrode active material, the alloying of lithium and Si proceeds uniformly during charging, and the localization of the reaction is suppressed. Therefore, volume expansion due to alloying during charging and volume contraction during discharging can be reduced, and the negative electrode is less susceptible to distortion. As a result, it is considered that a stable charge / discharge cycle can be repeated.
しかし、一般的な負極は、負極合剤を用いて作製される。例えばコイン型電池の負極は、負極合剤を円盤状のペレットに加圧成形したものである。負極合剤は、電気化学的反応を担う負極活物質、負極内の電子伝導性を補う導電材およびこれらを繋ぎ合わせる結着剤を含む。活物質の平均粒径が小さいと、負極合剤を成形して得られる負極の密度は小さくなる。よって、単位体積あたりのエネルギー密度が小さくなり、電池容量も小さくなる。 However, a general negative electrode is produced using a negative electrode mixture. For example, the negative electrode of a coin-type battery is obtained by pressure-molding a negative electrode mixture into a disk-shaped pellet. The negative electrode mixture includes a negative electrode active material that is responsible for an electrochemical reaction, a conductive material that supplements the electron conductivity in the negative electrode, and a binder that joins them together. When the average particle size of the active material is small, the density of the negative electrode obtained by molding the negative electrode mixture is small. Therefore, the energy density per unit volume is reduced and the battery capacity is also reduced.
また、活物質の平均粒径が小さいと、電池の不可逆容量が増大するため、電池容量は更に小さくなる。そして、活物質の粒径が小さいと、活物質と電解質中に含まれる水分などとの反応性も高くなり、ガスが発生しやすくなる。よって、サイクル特性や保存特性に不利となる。 Moreover, since the irreversible capacity | capacitance of a battery will increase when the average particle diameter of an active material is small, battery capacity will become still smaller. When the particle size of the active material is small, the reactivity between the active material and moisture contained in the electrolyte is increased, and gas is easily generated. Therefore, it is disadvantageous for cycle characteristics and storage characteristics.
一方、高密度の負極を得るため、もしくはガス発生を抑制するために、活物質の平均粒径を大きくすると、負極内での活物質の分布が不均一となる。よって、充放電時のリチウムの挿入および脱離が電極内で不均一となり、電池のサイクル寿命に不利となる。
特許文献1、特許文献2および特許文献3の提案では、大電流で急速な充放電を行う場合に問題がある。また、特許文献4、特許文献5、特許文献6および特許文献7の提案では、容量とサイクル特性とのバランスに問題がある。特に負極合剤をペレットに成形して負極を作製する場合には、高容量でサイクル特性に優れた非水電解質二次電池を得ることは困難である。
The proposals in Patent Document 1, Patent Document 2, and Patent Document 3 have a problem when performing rapid charge / discharge with a large current. Further, the proposals in
本発明者らは、大電流で急速な充放電を行う場合にもサイクル特性の劣化を十分に抑制する観点から、A相とB相の状態を最適化するための鋭意検討を行った。その結果、Siを主体とするA相と、遷移金属元素とSiとの金属間化合物からなるB相を含む合金材料において、特に結晶子(結晶粒)のサイズとともにA相とB相との存在割合およびこれらの組成を適正化することが有効であるという知見を得るに至り、本発明を完成するに至った。 The present inventors have conducted intensive studies for optimizing the states of the A phase and the B phase from the viewpoint of sufficiently suppressing deterioration of cycle characteristics even when rapid charge / discharge is performed with a large current. As a result, in an alloy material including an A phase mainly composed of Si and a B phase composed of an intermetallic compound of a transition metal element and Si, the presence of the A phase and the B phase together with the size of crystallites (crystal grains). The inventors have obtained the knowledge that it is effective to optimize the proportions and the composition thereof, and have completed the present invention.
すなわち、本発明は、リチウムを可逆的に吸蔵および放出可能な正極、負極および非水電解質を含む非水電解質二次電池であって、負極は、Liを電気化学的に吸蔵および放出可能な合金材料(合金形成材料)を含み、合金材料は、Siを主体とするA相と、遷移金属元素とSiとの金属間化合物からなるB相とを含み、遷移金属元素は、Ti、Zr、Ni、CuおよびFeよりなる群から選ばれる少なくとも1種であり、A相が結晶子サイズが5nm〜50nmの微結晶の領域からなり、A相と前記B相との合計重量に占めるA相の割合が、40重量%より多く、95重量%以下である非水電解質二次電池に関する。 That is, the present invention is a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte capable of reversibly occluding and releasing lithium, and the negative electrode is an alloy capable of electrochemically occluding and releasing Li. Material (alloy forming material), and the alloy material includes an A phase mainly composed of Si and a B phase composed of an intermetallic compound of a transition metal element and Si, and the transition metal elements include Ti, Zr, Ni The ratio of the A phase to the total weight of the A phase and the B phase, which is at least one selected from the group consisting of Cu and Fe, and the A phase is a microcrystalline region having a crystallite size of 5 nm to 50 nm However, it is related with the nonaqueous electrolyte secondary battery which is more than 40 weight% and 95 weight% or less.
また、線源としてCuKα線を用いて、合金材料のX線回折測定を行う場合、得られる回折スペクトルの回折角2θ=10°〜80°の範囲または回折角2θ=20°〜35°に観測される最も強度の強い回折ピークの半価幅は、0.1°以上であることが望ましい。 In addition, when X-ray diffraction measurement of an alloy material is performed using CuKα ray as a radiation source, observation is performed in a diffraction angle 2θ = 10 ° to 80 ° or a diffraction angle 2θ = 20 ° to 35 ° of the obtained diffraction spectrum. The full width at half maximum of the strongest diffraction peak is preferably 0.1 ° or more.
遷移金属元素がTiである場合、合金材料に含まれるSiの含有量は、72.4〜97.7重量%であることが望ましい。
遷移金属元素がZrである場合、合金材料に含まれるSiの含有量は、62.8〜96.9重量%であることが望ましい。
遷移金属元素がNiである場合、合金材料に含まれるSiの含有量は、69.4〜97.45重量%であることが望ましい。
遷移金属元素がCuである場合、合金材料に含まれるSiの含有量は、68.2〜97.35重量%であることが望ましい。
遷移金属元素がFeである場合、合金材料に含まれるSiの含有量は、70〜97.5重量%であることが望ましい。
合金材料中のSiの含有量が上記範囲であれば、合金材料中のA相の含有量は40〜95重量%の範囲内となる。
遷移金属元素がTiである場合、B相はTiSi2を含むことが望ましい。
When the transition metal element is Ti, the content of Si contained in the alloy material is desirably 72.4 to 97.7% by weight.
When the transition metal element is Zr, the content of Si contained in the alloy material is desirably 62.8 to 96.9% by weight.
When the transition metal element is Ni, the content of Si contained in the alloy material is desirably 69.4 to 97.45% by weight.
When the transition metal element is Cu, the content of Si contained in the alloy material is desirably 68.2 to 97.35% by weight.
When the transition metal element is Fe, the content of Si contained in the alloy material is desirably 70 to 97.5% by weight.
If the Si content in the alloy material is within the above range, the A phase content in the alloy material is in the range of 40 to 95% by weight.
When the transition metal element is Ti, B phase desirably includes TiSi 2.
合金材料の平均粒径(体積累積粒度分布のメディアン径:D50)は、0.5〜20μmであることが好ましい。また、合金材料の体積累積粒度分布の10%径(D10)および90%径(D90)は、それぞれ0.1〜5μmおよび5〜80μmであることが好ましい。 The average particle size of the alloy material (median diameter of volume cumulative particle size distribution: D50) is preferably 0.5 to 20 μm. The 10% diameter (D10) and 90% diameter (D90) of the volume cumulative particle size distribution of the alloy material are preferably 0.1 to 5 μm and 5 to 80 μm, respectively.
本発明は、特に、正極缶および負極缶を含むコイン型の電池ケースを有し、正極および負極が、それぞれ円盤状で、正極缶および負極缶に収容されており、正極と負極との間にセパレータが介在しており、正極缶の開口端と負極缶の開口端とが、絶縁ガスケットを介して嵌合しているコイン型の非水電解質二次電池に関する。 In particular, the present invention has a coin-type battery case including a positive electrode can and a negative electrode can, and the positive electrode and the negative electrode are each in a disk shape and are accommodated in the positive electrode can and the negative electrode can, and between the positive electrode and the negative electrode The present invention relates to a coin-type non-aqueous electrolyte secondary battery in which a separator is interposed and an open end of a positive electrode can and an open end of a negative electrode can are fitted via an insulating gasket.
負極の密度は、1.6〜2.4g/cm3であることが好ましい。ここで、負極の密度とは、成形された負極合剤の密度と同義である。負極合剤は、活物質である合金材料を必須成分として含み、導電材や結着剤を任意成分として含む。また、負極の空隙率は、16〜43%であることが好ましい。負極の空隙率とは、成形された負極合剤の空隙率と同義である。 The density of the negative electrode is preferably 1.6 to 2.4 g / cm 3 . Here, the density of the negative electrode is synonymous with the density of the molded negative electrode mixture. The negative electrode mixture includes an alloy material that is an active material as an essential component, and includes a conductive material and a binder as optional components. Moreover, it is preferable that the porosity of a negative electrode is 16 to 43%. The porosity of the negative electrode is synonymous with the porosity of the molded negative electrode mixture.
本発明は、また、Liを電気化学的に吸蔵および放出可能な正極活物質を含む円盤状の正極を作製する工程、Liを電気化学的に吸蔵および放出可能な負極活物質を含む円盤状の負極を作製する工程、ならびに、正極および負極を、非水電解質とともにコイン型の電池ケースに収容する工程、を有する非水電解質二次電池の製造法であって、負極を作製する工程が、(a)メカニカルアロイング法により、Ti、Zr、Ni、CuおよびFeよりなる群から選ばれる少なくとも1種の遷移金属とSiとを含む原料に剪断力を付与して、Siを主体とするA相と、遷移金属元素とSiとの金属間化合物からなるB相とを含み、A相およびB相の少なくとも一方が、微結晶または非晶質の領域からなり、A相とB相との合計重量に占めるA相の割合が、40重量%より多く、95重量%以下である合金材料を得る工程、(b)合金材料を、ボール状の媒体とともに撹拌して、平均粒径(体積累積粒度分布のメディアン径:D50)が、0.5〜20μmであり、体積累積粒度分布の10%径(D10)および90%径(D90)が、それぞれ0.1〜5μmおよび5〜80μmの粉末を得る工程、ならびに(c)得られた粉末を円盤状に加圧成形する工程を有する非水電解質二次電池の製造方法に関する。 The present invention also includes a step of producing a disc-shaped positive electrode including a positive electrode active material capable of electrochemically inserting and extracting Li, a disc-shaped positive electrode including a negative electrode active material capable of electrochemically storing and releasing Li A process for producing a negative electrode, and a process for producing a negative electrode, comprising the steps of: housing a positive electrode and a negative electrode together with a non-aqueous electrolyte in a coin-type battery case; a) A phase mainly composed of Si by applying shearing force to a raw material containing Si and at least one transition metal selected from the group consisting of Ti, Zr, Ni, Cu and Fe by a mechanical alloying method And a B phase composed of an intermetallic compound of a transition metal element and Si, wherein at least one of the A phase and the B phase is composed of a microcrystalline or amorphous region, and the total weight of the A phase and the B phase Of phase A (B) stirring the alloy material together with the ball-shaped medium to obtain an average particle size (median diameter of volume cumulative particle size distribution: D50). A powder having a volume cumulative particle size distribution of 10% diameter (D10) and 90% diameter (D90) of 0.1 to 5 μm and 5 to 80 μm, respectively, and (c) The present invention relates to a method for producing a non-aqueous electrolyte secondary battery including a step of pressure-molding the obtained powder into a disk shape.
本発明によれば、高容量で、充放電サイクル特性に優れ、特に急速な充放電を行う場合にも優れたサイクル特性を有する非水電解質二次電池を提供することが可能である。上記構成を有する合金材料においては、充電時の膨張に対する合金材料の耐性が向上した状態が達成されていると考えられる。 ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the nonaqueous electrolyte secondary battery which is high capacity | capacitance, is excellent in charging / discharging cycling characteristics, and has the cycling characteristics outstanding also when performing especially rapid charging / discharging. In the alloy material having the above-described configuration, it is considered that a state in which the resistance of the alloy material with respect to expansion during charging is improved is achieved.
合金材料中のA相の含有量が40〜95重量%である場合、極めて高い容量が達成されるが、充電時の膨張率は、かなり大きくなると考えられる。上記構成によれば、そのような大きな膨張が生じたとしても、集電ネットワークの劣化は抑制される。特に、B相がTi、Zr、Ni、CuおよびFeよりなる群から選ばれる少なくとも1種を含む場合には、充電時の割れが生じにくく、急速な充放電を行う場合にも、極めて優れたサイクル特性が達成される。 When the content of the A phase in the alloy material is 40 to 95% by weight, an extremely high capacity is achieved, but the expansion rate during charging is considered to be considerably large. According to the said structure, even if such a big expansion | swelling arises, degradation of a current collection network is suppressed. In particular, when the B phase contains at least one selected from the group consisting of Ti, Zr, Ni, Cu and Fe, cracking during charging is unlikely to occur, and it is extremely excellent even when performing rapid charge / discharge. Cycle characteristics are achieved.
合金材料は、適正な粒度分布に整粒することが望ましい。適正な粒度分布を有する合金材料を用いることにより、負極内での活物質の分布が均一となる。よって、充放電時の負極の膨張と収縮も均一となり、非水電解質二次電池のサイクル寿命に有利となる。また、適正な粒度分布を有する合金材料を用いることにより、十分な密度(合剤密度)を有する負極を得ることができる。よって、非水電解質二次電池の高容量化に有利となる。 It is desirable that the alloy material is sized to an appropriate particle size distribution. By using an alloy material having an appropriate particle size distribution, the active material distribution in the negative electrode becomes uniform. Therefore, the expansion and contraction of the negative electrode during charging / discharging become uniform, which is advantageous for the cycle life of the nonaqueous electrolyte secondary battery. Moreover, the negative electrode which has sufficient density (mixture density) can be obtained by using the alloy material which has appropriate particle size distribution. Therefore, it is advantageous for increasing the capacity of the nonaqueous electrolyte secondary battery.
本発明に係るLiを電気化学的に吸蔵および放出可能な合金材料は、従来の合金材料とは異なる特徴を有する。本発明に係る合金材料は、Siを主体とするA相と、遷移金属元素とSiとの金属間化合物からなるB相とを含む。この合金材料は、膨張による影響が緩和されているだけでなく、その膨張および収縮に伴う負極の電子伝導性の低下を抑制する。よって、この合金材料を含む本発明の非水電解質二次電池用負極は、高容量でサイクル特性に優れた電池を与える。 The alloy material capable of electrochemically inserting and extracting Li according to the present invention has characteristics different from those of conventional alloy materials. The alloy material according to the present invention includes an A phase mainly composed of Si and a B phase composed of an intermetallic compound of a transition metal element and Si. This alloy material not only mitigates the influence of expansion, but also suppresses the decrease in electronic conductivity of the negative electrode that accompanies the expansion and contraction. Therefore, the negative electrode for a non-aqueous electrolyte secondary battery of the present invention containing this alloy material provides a battery with high capacity and excellent cycle characteristics.
A相は、Liの吸蔵および放出を担う相であり、電気化学的にLiと反応可能な相である。A相は、Siを主体とする相であればよいが、好ましくはSi単体からなる相である(is preferably Si single phase)。A相がSi単体からなる場合、単位重量もしくは単位体積あたりの合金材料が吸蔵および放出するLi量を非常に多量にすることができる。ただし、Si単体は半導体であるため、電子伝導性に乏しい。よって、微量の添加元素、例えばリン(P)、ホウ素(B)、水素(H)等、あるいは遷移金属元素等を5重量%程度までA相に含ませることが有効である。 The A phase is a phase responsible for insertion and extraction of Li, and is a phase that can electrochemically react with Li. The phase A may be a phase mainly composed of Si, but is preferably a phase composed of Si alone (is preferably Si single phase). When the A phase is composed of Si alone, the amount of Li absorbed and released by the alloy material per unit weight or unit volume can be made extremely large. However, since Si simple substance is a semiconductor, it has poor electronic conductivity. Therefore, it is effective to add a trace amount of additive elements such as phosphorus (P), boron (B), hydrogen (H), etc., or transition metal elements to the A phase up to about 5% by weight.
B相は、遷移金属元素とSiとの金属間化合物からなる。Siを含む金属間化合物は、A相との親和性が高く、特に充電時の合金体積の膨張時においてもA相とB相との界面での割れ等が生じにくい。また、B相は、Siを主体とするA相に比較して電子伝導性が高く、かつ硬度も高い。よって、B相は、A相の低い電子伝導性を補うとともに、膨張応力に対抗して、合金粒子の形状を維持させるように働く。B相は、複数種存在していても構わない。すなわち、組成の異なる2種以上の金属間化合物がB相として存在してもよい。例えば、遷移金属元素をMで表すとき、MSi2とMSiとが合金粒子内に存在してもよい。また、それぞれ異なる遷移金属元素を含む金属間化合物、例えばM1Si2とM2Si2(M1とM2は異なる)とが合金粒子内に存在してもよい。 The B phase is composed of an intermetallic compound of a transition metal element and Si. The intermetallic compound containing Si has a high affinity with the A phase, and cracking at the interface between the A phase and the B phase is unlikely to occur even when the alloy volume expands during charging. The B phase has higher electron conductivity and higher hardness than the A phase mainly composed of Si. Therefore, the B phase works to supplement the low electronic conductivity of the A phase and to maintain the shape of the alloy particles against the expansion stress. There may be a plurality of B phases. That is, two or more types of intermetallic compounds having different compositions may exist as the B phase. For example, when the transition metal element is represented by M, MSi 2 and MSi may be present in the alloy particles. Further, intermetallic compounds containing different transition metal elements, for example, M 1 Si 2 and M 2 Si 2 (M 1 and M 2 are different) may be present in the alloy particles.
A相は、微結晶の領域からなる。結晶質な合金材料を用いた場合、Liの吸蔵に伴い合金粒子が割れを引き起こしやすく、急速に負極の集電性が低下し、電池特性が低下する。一方、微結晶の合金材料を用いる場合、Liの吸蔵に伴う膨張による合金粒子の割れが発生しにくい。 A phase consists of fine crystal region. When a crystalline alloy material is used, the alloy particles are liable to crack with the occlusion of Li, and the current collecting property of the negative electrode is rapidly reduced, resulting in a deterioration in battery characteristics. On the other hand, in the case of using an alloy material of fine crystals, breakage of the alloy particles due to expansion caused by the occlusion of Li is less likely to occur.
A相を構成する微結晶の領域は、結晶子(結晶粒)のサイズが5nm以上50nm以下である。結晶子サイズが100nmより大きい、とくに50nmより大きい場合、結晶子間の粒界が減少するため、粒子割れを抑制する効果が小さくなる。また、結晶子サイズが5nm未満の場合、結晶子間の粒界が多くなることで、合金材料中の電子伝導性が低下することがある。合金材料の電子伝導性が低下すると、負極の分極が上昇し、電池容量の低下を招くことがある。 Region of fine crystals constituting the A-phase, the size of crystallites (crystal grains) is 5nm or more 50nm or less. Crystallite size is greater than 100 nm, especially for 50nm larger field case, the grain boundary between crystallites is reduced, the effect of suppressing particle cracking is reduced. Moreover, when the crystallite size is less than 5 nm, the grain boundary between the crystallites increases, and the electron conductivity in the alloy material may decrease. When the electronic conductivity of the alloy material is reduced, the polarization of the negative electrode is increased, and the battery capacity may be reduced.
合金材料を構成するA相およびB相の状態は、以下のようなX線回折測定により知ることができる。
まず、測定対象となる合金材料の試料を、全ての方向に配向性を持たせないように、試料ホルダーに充填する。例えば、合金材料を試料ホルダーの中に圧力を加えずに充填する。具体的には、試料ホルダーに合金材料を入れた後、平板で合金材料の上面を覆い、合金材料が試料ホルダーから外部にこぼれ落ちないようにすればよい。その後、試料ホルダーに細かい振動を与え、上記平板を除去しても合金材料が試料ホルダーからこぼれ落ちないようにする。
The states of the A phase and the B phase constituting the alloy material can be known by the following X-ray diffraction measurement.
First, a sample holder is filled with a sample of an alloy material to be measured so as not to have orientation in all directions. For example, the alloy material is filled into the sample holder without applying pressure. Specifically, after the alloy material is put into the sample holder, the upper surface of the alloy material is covered with a flat plate so that the alloy material does not spill out from the sample holder. Thereafter, fine vibration is applied to the sample holder so that the alloy material does not spill from the sample holder even if the flat plate is removed.
測定対象には、負極を作製する前の合金粉末を用いてもよいし、負極を作製後に負極から合剤を回収し、乳鉢で合剤中の粒子間を十分に分離させたものを用いてもよい。また、X線回折測定の際は、X線を入射させる試料面を平面とし、その面をゴニオメーターの回転軸に一致させれば、回折角および強度の測定誤差を極力小さくすることができる。 For the measurement object, the alloy powder before producing the negative electrode may be used, or the mixture is collected from the negative electrode after producing the negative electrode, and the particles in the mixture are sufficiently separated with a mortar. Also good. Further, in the case of X-ray diffraction measurement, if the sample surface on which X-rays are incident is a flat surface and the surface is made to coincide with the rotational axis of the goniometer, the measurement error of the diffraction angle and intensity can be minimized.
上記のように準備した試料について、X線源としてCuKαを用い、回折角
2θが10°〜80°の範囲でX線回折測定を行う。その際に得られる回折スペクトル中に、A相および/またはB相の結晶面に帰属されるピークが存在するかどうかを判定する。
For the sample prepared as described above, X-ray diffraction measurement is performed using CuKα as an X-ray source and a diffraction angle 2θ in the range of 10 ° to 80 °. It is determined whether or not there is a peak attributed to the crystal plane of the A phase and / or the B phase in the diffraction spectrum obtained at that time.
例えばSiからなる相の場合、Siの結晶面を反映して、回折角2θ=28.4°に結晶面(111)に対応するピークが観測され、47.3°に結晶面(220)に対応するピークが観測され、56.1°に結晶面(311)に対応するピークが観測され、69.1°に結晶面(400)に対応するピークが観測され、76.4°に結晶面(331)に対応するピークが観測される。また、回折角2θ=28.4°に観測される結晶面(111)に対応するピークは、強度が最も強くなる場合が多い。ただし、相が微結晶の領域からなる場合には、鋭いピークは観測されず、比較的ブロードなピークが観測される。一方、合金材料が非晶質な領域からなる場合、X線回折測定で得られる合金粒子の回折スペクトルには、半価幅を認識できない程度のブロードなハローパターンが観測される。 For example, in the case of a phase composed of Si, a peak corresponding to the crystal plane (111) is observed at a diffraction angle 2θ = 28.4 °, reflecting the crystal plane of Si, and the crystal plane (220) is observed at 47.3 °. A corresponding peak is observed, a peak corresponding to the crystal plane (311) is observed at 56.1 °, a peak corresponding to the crystal plane (400) is observed at 69.1 °, and a crystal plane is observed at 76.4 °. A peak corresponding to (331) is observed. In addition, the peak corresponding to the crystal plane (111) observed at the diffraction angle 2θ = 28.4 ° often has the strongest intensity. However, when the phase is composed of a microcrystalline region, a sharp peak is not observed and a relatively broad peak is observed. On the other hand, when the alloy material is made of an amorphous region, a broad halo pattern in which the half width cannot be recognized is observed in the diffraction spectrum of the alloy particles obtained by the X-ray diffraction measurement.
結晶子サイズは、X線回折測定により求めることができる。具体的には、X線回折測定で得られる合金粒子の回折スペクトルのうち、各相に帰属されるピークの半価幅を求め、その半価幅と下記Scherrerの式から算出することができる。各相に帰属されるピークが複数存在する場合には、最も強度の大きなピークの半価幅を求め、これにScherrerの式を適用する。 The crystallite size can be determined by X-ray diffraction measurement. Specifically, the half-value width of a peak attributed to each phase in the diffraction spectrum of alloy particles obtained by X-ray diffraction measurement can be obtained, and calculated from the half-value width and the following Scherrer equation. When there are a plurality of peaks attributed to each phase, the half width of the peak with the highest intensity is obtained, and the Scherrer formula is applied thereto.
Scherrerの式によれば、結晶子サイズDの大きさは下記式(1):
D(nm)=0.9×λ/(β×cosθ) (1)
で与えられる。
ただし、式(1)中、λ、βおよびθは、それぞれ以下を示す。
λ=X線波長(nm)(CuKαの場合、1.5405nm)
β=上記ピークの半値幅(rad)
θ=上記ピーク角度2θの半分の値(rad)
According to Scherrer's equation, the crystallite size D is given by the following equation (1):
D (nm) = 0.9 × λ / (β × cos θ) (1)
Given in.
However, in formula (1), λ, β, and θ represent the following.
λ = X-ray wavelength (nm) (in the case of CuKα, 1.5405 nm)
β = half-width of the peak (rad)
θ = half of the peak angle 2θ (rad)
通常は、回折角2θが10°〜80°の範囲における最も強度の大きなピークに注目すればよいが、回折角2θが20°〜35°の範囲における最も強度の大きなピークに注目することがより好ましい。 Usually, the peak with the highest intensity in the range of the diffraction angle 2θ of 10 ° to 80 ° may be noticed, but the peak of the highest intensity in the range of the diffraction angle 2θ of 20 ° to 35 ° is more focused. preferable.
線源としてCuKα線を用いて、合金材料のX線回折測定を行う場合、得られる回折スペクトルの回折角2θ=10°〜80°もしくは回折角2θ=20°〜35°の範囲に観測される最も強度の強い回折ピークの半価幅は、0.09°以上であることが望ましい。この場合、結晶子サイズは100nm以下であると判定できる。 When X-ray diffraction measurement of an alloy material is performed using CuKα ray as a radiation source, the diffraction angle of the obtained diffraction spectrum is observed in the range of 2θ = 10 ° to 80 ° or diffraction angle 2θ = 20 ° to 35 °. The half width of the strongest diffraction peak is preferably 0.09 ° or more. In this case, it can be determined that the crystallite size is 100 nm or less.
その他、AFM(原子間力顕微鏡)、TEM(透過型電子顕微鏡)等を用い、合金材料粒子の断面を観察し、直接結晶子のサイズを測定することもできる。また、合金材料中のA相とB相との存在割合(相組成)は、EDX(エネルギー分散型X線分光法(EDS))等を用いて測定することができる。 In addition, the cross-section of the alloy material particles can be observed using an AFM (Atomic Force Microscope), TEM (Transmission Electron Microscope), etc., and the crystallite size can be directly measured. The abundance ratio (phase composition) of the A phase and the B phase in the alloy material can be measured using EDX (energy dispersive X-ray spectroscopy (EDS)) or the like.
合金材料において、A相とB相との合計重量に占めるA相の割合は、40重量%より多く、95重量%以下である。A相の割合を40重量%より多くすることにより、効果的に高容量を達成することができる。また、A相の割合を95重量%以下とすることにより、A相の低い電子伝導性を補うとともに合金材料粒子の形状を維持させる効果を高く維持できる他、合金材料粒子を微結晶または非晶質にすることが容易となる。これらの効果を顕著にする観点からは、A相とB相との合計重量に占めるA相の割合は、65重量%以上85重量%以下が望ましく、
70重量%以上80重量%以下であることが特に好ましい。
In the alloy material, the proportion of the A phase in the total weight of the A phase and the B phase is more than 40% by weight and 95% by weight or less. By increasing the proportion of the A phase to more than 40% by weight, a high capacity can be effectively achieved. Further, by making the ratio of the A phase 95% by weight or less, the low electron conductivity of the A phase can be supplemented and the effect of maintaining the shape of the alloy material particles can be maintained high. It becomes easy to make quality. From the viewpoint of prominent these effects, the proportion of the A phase in the total weight of the A phase and the B phase is desirably 65% by weight or more and 85% by weight or less,
It is particularly preferable that the content is 70% by weight or more and 80% by weight or less.
遷移金属元素は、Ti、Zr、Ni、CuおよびFeよりなる群から選ばれる少なくとも1種であり、好ましくはTiおよびZrよりなる群から選ばれる少なくとも1種である。これらの元素のケイ化物は、他の元素のケイ化物よりも高い電子伝導性を有し、かつ高い硬度を有する。 The transition metal element is at least one selected from the group consisting of Ti, Zr, Ni, Cu and Fe, and preferably at least one selected from the group consisting of Ti and Zr. These element silicides have higher electronic conductivity and higher hardness than silicides of other elements.
本発明に係る合金材料に含まれるSiの含有量は、60重量%以上であることが好ましい。合金材料全体に占めるSiの割合が60重量%以上である場合、残部を占める遷移金属とSiとが金属間化合物(ケイ化物)を形成したときに、A相の割合が40重量%を上回り、効果的に高容量を実現することが可能となる。 The content of Si contained in the alloy material according to the present invention is preferably 60% by weight or more. When the proportion of Si in the entire alloy material is 60% by weight or more, when the transition metal and Si occupying the remainder form an intermetallic compound (silicide), the proportion of the A phase exceeds 40% by weight, High capacity can be effectively realized.
以下、遷移金属元素毎に好ましいSi含有量を例示する。
遷移金属元素がTiである場合、合金材料に含まれるSiの含有量は、72.4〜97.7重量%であることが望ましい。なお、遷移金属元素がTiである場合、B相はTiSi2を含むことが望ましい。
Hereinafter, preferable Si content is exemplified for each transition metal element.
When the transition metal element is Ti, the content of Si contained in the alloy material is desirably 72.4 to 97.7% by weight. In the case the transition metal element is Ti, B phase desirably includes TiSi 2.
遷移金属元素がZrである場合、合金材料に含まれるSiの含有量は、62.8〜96.9重量%であることが望ましい。
遷移金属元素がNiである場合、合金材料に含まれるSiの含有量は、69.4〜97.45重量%であることが望ましい。
遷移金属元素がCuである場合、合金材料に含まれるSiの含有量は、68.2〜97.35重量%であることが望ましい。
遷移金属元素がFeである場合、合金材料に含まれるSiの含有量は、70〜97.5重量%であることが望ましい。
When the transition metal element is Zr, the content of Si contained in the alloy material is desirably 62.8 to 96.9% by weight.
When the transition metal element is Ni, the content of Si contained in the alloy material is desirably 69.4 to 97.45% by weight.
When the transition metal element is Cu, the content of Si contained in the alloy material is desirably 68.2 to 97.35% by weight.
When the transition metal element is Fe, the content of Si contained in the alloy material is desirably 70 to 97.5% by weight.
容量とサイクル特性とのバランスの観点から、合金材料の平均粒径(体積累積粒度分布のメディアン径:D50)は、0.5〜20μmであることが好ましく、1〜10μmが特に好ましい。平均粒径が20μmを超えると、負極内での活物質の分布が不均一となり、充放電時の負極の膨張および収縮が不均一となりやすい。負極の膨張および収縮が不均一になると、集電性が劣化し、サイクル特性に不利となる場合がある。また、平均粒径が0.5μm未満では、負極密度を大きくすることが困難になるとともに、サイクル特性に不利となる場合がある。 From the viewpoint of balance between capacity and cycle characteristics, the average particle size of the alloy material (median diameter of volume cumulative particle size distribution: D50) is preferably 0.5 to 20 μm, and particularly preferably 1 to 10 μm. When the average particle size exceeds 20 μm, the distribution of the active material in the negative electrode becomes non-uniform, and the negative electrode expands and contracts easily during charge and discharge. If the negative electrode expands and contracts unevenly, the current collecting property deteriorates, which may be disadvantageous for cycle characteristics. On the other hand, when the average particle size is less than 0.5 μm, it is difficult to increase the negative electrode density, and it may be disadvantageous for cycle characteristics.
容量とサイクル特性とのバランスの観点から、合金材料の体積累積粒度分布の10%径(D10)および90%径(D90)は、それぞれ0.1〜5μmおよび5〜80μmであることが好ましく、0.2〜1μmおよび10〜50μmであることが更に好ましく、0.2〜0.9μmおよび11〜50μmであることが特に好ましい。 From the viewpoint of balance between capacity and cycle characteristics, the 10% diameter (D10) and 90% diameter (D90) of the volume cumulative particle size distribution of the alloy material are preferably 0.1 to 5 μm and 5 to 80 μm, respectively. More preferably, it is 0.2-1 micrometer and 10-50 micrometers, and it is especially preferable that they are 0.2-0.9 micrometer and 11-50 micrometers.
上記のような粒度分布を有する合金材料は、特に、コイン型の非水電解質二次電池に用いる円盤状の負極を作製する場合に好適である。円盤状の負極は、合金材料を含む負極合剤を加圧成形して作製される。負極合剤には、例えば結着剤や導電材を含ませることができる。 The alloy material having the particle size distribution as described above is particularly suitable for producing a disc-shaped negative electrode used for a coin-type non-aqueous electrolyte secondary battery. The disc-shaped negative electrode is produced by pressure forming a negative electrode mixture containing an alloy material. The negative electrode mixture can contain, for example, a binder or a conductive material.
上記のような合金材料においては、Liを吸蔵する際のA相の膨張に伴う転位移動が、結晶子間の粒界でせき止められるため、粒子割れの発生が顕著に抑制されると考えられる。このように負極に含まれる合金材料の粒子割れを抑制することで、充放電サイクルに伴う劣化の少ない非水電解質二次電池を得ることができる。 In the alloy materials as described above, the dislocation movement accompanying the expansion of the A phase during the insertion of Li is dammed at the grain boundaries between the crystallites, so that it is considered that the occurrence of particle cracking is remarkably suppressed. In this way, by suppressing particle cracking of the alloy material contained in the negative electrode, a nonaqueous electrolyte secondary battery with little deterioration associated with the charge / discharge cycle can be obtained.
本発明に係る合金材料の製造方法は、特に限定されないが、例えば金属材料活用事典(産業調査会、870(1999))等に開示されているメカニカルアロイ法の他、鋳造法、ガスアトマイズ法、液体急冷法、イオンビームスパッタリング法、真空蒸着法、メッキ法、気相化学反応法等を挙げることができる。これらのうちでは、各相の結晶子の状態の制御を容易に行うことができる点で、Siを含む原材料と、遷移金属元素を含む原材料とを混合し、メカニカルアロイング処理を行うメカニカルアロイ法が特に好適である。 Although the manufacturing method of the alloy material which concerns on this invention is not specifically limited, For example, the casting method, gas atomizing method, liquid other than the mechanical alloy method currently disclosed by the metal material utilization dictionary (Industry Research Council, 870 (1999)) etc. Examples thereof include a rapid cooling method, an ion beam sputtering method, a vacuum deposition method, a plating method, and a gas phase chemical reaction method. Among these, a mechanical alloy method in which a raw material containing Si and a raw material containing a transition metal element are mixed and mechanical alloying is performed in that the control of the crystallite state of each phase can be easily performed. Is particularly preferred.
また、メカニカルアロイング処理を行う前に、原材料の混合物を溶融し、溶融物を急冷して凝固させる工程を行っても良い。ただし、複合化の効果(異種の元素の混合による結晶子の微細化)を効率的にSiを含む原材料に与えるためには、最初から、Siを含む原材料と遷移金属元素を含む原材料とを混合し、メカニカルアロイング処理を行うメカニカルアロイ法が、特に好ましい。 Moreover, before performing a mechanical alloying process, you may perform the process which fuse | melts the mixture of a raw material and quenches and solidifies a molten material. However, in order to efficiently give the compounding effect (refining of crystallites by mixing different elements) to the raw material containing Si, the raw material containing Si and the raw material containing the transition metal element are mixed from the beginning. And the mechanical alloy method which performs a mechanical alloying process is especially preferable.
合金材料の原材料としては、特に限定されないが、例えば単体、合金、固溶体、金属間化合物等を用いることができる。
メカニカルアロイング法は、乾式雰囲気における合金材料の合成法である。メカニカルアロイング法で得られた合金材料には、粒度分布の幅が非常に大きいという特徴がある。よって、得られた合金材料には、粒度分布を制御するための整粒処理を施すことが好ましい。
Although it does not specifically limit as a raw material of an alloy material, For example, a simple substance, an alloy, a solid solution, an intermetallic compound etc. can be used.
The mechanical alloying method is a method for synthesizing alloy materials in a dry atmosphere. The alloy material obtained by the mechanical alloying method has a feature that the width of the particle size distribution is very large. Therefore, the obtained alloy material is preferably subjected to a sizing treatment for controlling the particle size distribution.
整粒処理の方法としては、例えば所定のメッシュサイズを有する篩い(ふるい)を通過させ、合金材料から大きな粒径の粒子を除去する分級法が挙げられる。また、流体媒体中における固体粒子の沈降速度が粒径により異なることを利用する沈降分級法も挙げられる。しかし、これらの分級法では、所定の粒径範囲を外れる粒子を有効利用できないという欠点があり、コストの点で不利である。 Examples of the sizing treatment method include a classification method in which particles having a large particle diameter are removed from the alloy material by passing through a sieve having a predetermined mesh size. Another example is a sedimentation classification method that utilizes the fact that the sedimentation rate of solid particles in a fluid medium varies depending on the particle size. However, these classification methods have the disadvantage that particles outside the predetermined particle size range cannot be effectively used, which is disadvantageous in terms of cost.
整粒処理の方法としては、合金材料を粉砕する処理を行うことが好ましい。粉砕技術は、古くから様々な産業分野で利用されている。ただし、粉砕する対象物に応じて効率のよい粉砕方法を選ぶことが重要である。粉砕条件を操作することにより、(1)凝集粒子の解砕および粒度調整、(2)数種類の粒子の混合および分散、もしくは(3)粒子の表面改質および活性化、を同時に行うことも可能である。 As a method of sizing treatment, it is preferable to perform a treatment of pulverizing the alloy material. The grinding technique has been used in various industrial fields for a long time. However, it is important to select an efficient grinding method according to the object to be ground. By manipulating the grinding conditions, it is possible to simultaneously perform (1) pulverization and particle size adjustment of aggregated particles, (2) mixing and dispersion of several types of particles, or (3) surface modification and activation of particles. It is.
メカニカルアロイング法や合金材料の粉砕に用いる装置としては、例えば、アトライタ、振動ミル、ボールミル、遊星ボールミル、ビーズミル、ジェットミルなどが挙げられる。 Examples of the apparatus used for mechanical alloying and grinding of alloy materials include an attritor, a vibration mill, a ball mill, a planetary ball mill, a bead mill, and a jet mill.
粉砕方法は、大きく分類すると乾式粉砕と湿式粉砕に分けられる。本発明では、どちらの方式を用いてもよい。
乾式粉砕の長所は、摩擦係数が大きく、湿式粉砕の数倍の粉砕効果が得られる点である。乾式粉砕の短所は、合金材料とともに粉砕容器に入れられるボール状の媒体や、粉砕容器の壁面に、合金材料が付着しやすい点である。合金材料の粒子自身の凝集も生じるため、粉砕が妨げられ、粒度分布の幅が比較的広くなることもある。
The pulverization methods can be roughly classified into dry pulverization and wet pulverization. In the present invention, either method may be used.
The advantages of dry pulverization are that the coefficient of friction is large and a pulverization effect several times that of wet pulverization can be obtained. The disadvantage of dry pulverization is that the alloy material easily adheres to the ball-shaped medium that is put in the pulverization container together with the alloy material or the wall surface of the pulverization container. Aggregation of the particles of the alloy material also occurs, so that pulverization is hindered and the width of the particle size distribution may be relatively wide.
一方、湿式粉砕は、合金材料に水などの液体を加え、スラリー状にして合金材料を粉砕する。そのためボール状の媒体や粉砕容器の壁面への合金材料の付着が起こりにくい。また、合金材料が液体中に分散するので、乾式粉砕に比べて、合金材料の粒度分布の幅を狭くすることが容易である。 On the other hand, in the wet pulverization, a liquid such as water is added to the alloy material to form a slurry to pulverize the alloy material. Therefore, adhesion of the alloy material to the ball-shaped medium and the wall surface of the pulverization container hardly occurs. Further, since the alloy material is dispersed in the liquid, it is easy to narrow the width of the particle size distribution of the alloy material as compared with dry pulverization.
湿式粉砕を行う場合、構造が簡単なボールミル型の粉砕装置を用いることができる。また、合金材料とともに粉砕容器に入れられるボール状の媒体として、多様な材質からなる媒体を容易に入手できる。ボール状の媒体同士の接触点で合金材料の粉砕が起こるため、非常に多くの場所で均一に粉砕が進行する。 When wet pulverization is performed, a ball mill type pulverizer having a simple structure can be used. In addition, media made of various materials can be easily obtained as ball-shaped media that can be placed in the pulverization container together with the alloy material. Since the alloy material is pulverized at the contact points between the ball-shaped media, the pulverization progresses uniformly in very many places.
以上より、合金材料の調製においては、乾式のメカニカルアロイング法で合金材料を得た後、例えばボールミルを用いた湿式粉砕により、合金材料の粒度分布を制御することが望ましい。例えば、振動ボールミルなどを用いる乾式のメカニカルアロイング法で合金材料を調製した後、得られた合金材料をボールミルで湿式粉砕することが望ましい。このようなボールミルを用いた湿式粉砕によれば、合金材料の平均粒径(D50)を0.5〜20μm、体積累積粒度分布の10%径(D10)を0.1〜5μm、体積累積粒度分布の90%径(D90)を5〜80μmに調整することができる。 As described above, in preparing the alloy material, it is desirable to control the particle size distribution of the alloy material by, for example, wet pulverization using a ball mill after obtaining the alloy material by a dry mechanical alloying method. For example, it is desirable to prepare an alloy material by a dry mechanical alloying method using a vibration ball mill or the like, and then wet pulverize the obtained alloy material with a ball mill. According to wet pulverization using such a ball mill, the average particle size (D50) of the alloy material is 0.5 to 20 μm, the 10% diameter (D10) of the volume cumulative particle size distribution is 0.1 to 5 μm, and the volume cumulative particle size. The 90% diameter (D90) of the distribution can be adjusted to 5 to 80 μm.
湿式粉砕によれば、合金材料の酸化を防止する薄い表面酸化物皮膜が形成されやすい。また、湿式粉砕によれば、合金材料に表面酸化皮膜が緩やかに形成される。よって、粉砕時の雰囲気の酸素濃度を厳密に管理する必要がない。ただし、湿式粉砕を行う場合、液体を除去するための固液分離工程や乾燥工程が必要となる。 According to wet grinding, a thin surface oxide film that prevents oxidation of the alloy material is easily formed. In addition, according to wet pulverization, a surface oxide film is gently formed on the alloy material. Therefore, it is not necessary to strictly control the oxygen concentration in the atmosphere during pulverization. However, when performing wet pulverization, a solid-liquid separation process and a drying process for removing the liquid are required.
なお、合金材料の平均粒径(体積累積粒度分布のメディアン径:D50)、体積累積粒度分布の10%径(D10)および体積累積粒度分布の90%径(D90)は、レーザー散乱法を利用した粒度分布計で測定することができる。不定形粒子の粒径は、例えば円相当径やFeret径で表される。粒度分布はマイクロトラック法や粒子像解析を利用して測定できる。ここで、円相当径とは、相当円の直径であり、相当円とは、粒子の正投影像の面積と同じ面積を有する円である。 The average particle size of the alloy material (median diameter of volume cumulative particle size distribution: D50), 10% diameter of volume cumulative particle size distribution (D10), and 90% diameter of volume cumulative particle size distribution (D90) use the laser scattering method. Can be measured with a particle size distribution meter. The particle size of the amorphous particles is represented by, for example, a circle equivalent diameter or a Feret diameter. The particle size distribution can be measured using a microtrack method or particle image analysis. Here, the equivalent circle diameter is the diameter of the equivalent circle, and the equivalent circle is a circle having the same area as the area of the orthographic image of the particle.
マイクロトラック法は、水等の媒体中に分散した合金材料にレーザー光を照射し、その回折状態を調べる方法である。マイクロトラック法によれば、平均粒径(体積累積粒度分布のメディアン径:D50)、体積累積粒度分布の10%径(D10)および体積累積粒度分布の90%径(D90)を全て測定することができる。レーザー散乱法の他に、走査型電池顕微鏡(SEM)による合金材料の観察像を画像処理することによっても粒度分布を求めることができる。 The microtrack method is a method of irradiating an alloy material dispersed in a medium such as water with a laser beam and examining its diffraction state. According to the microtrack method, the average particle size (median diameter of volume cumulative particle size distribution: D50), 10% diameter of volume cumulative particle size distribution (D10) and 90% diameter of volume cumulative particle size distribution (D90) are all measured. Can do. In addition to the laser scattering method, the particle size distribution can also be obtained by image processing of an observation image of the alloy material by a scanning battery microscope (SEM).
本発明に係る負極は、上記合金材料の他に、必要に応じて導電剤を含むことができる。導電剤としては、例えば天然黒鉛(鱗片状黒鉛等)、人造黒鉛、膨張黒鉛等の黒鉛類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維等の導電性繊維類、銅粉、ニッケル粉等の金属粉末類、ポリフェニレン誘導体等の有機導電性材料等が挙げられる。これらは単独で用いてもよく、複数を組み合わせて用いてもよい。これらのうちでは、密度、電解液に対する安定性、容量、価格等の観点から、黒鉛類を用いることが好ましい。 The negative electrode according to the present invention can contain a conductive agent as necessary in addition to the alloy material. Examples of the conductive agent include graphite such as natural graphite (flaky graphite etc.), artificial graphite, expanded graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, carbon Examples thereof include conductive fibers such as fibers and metal fibers, metal powders such as copper powder and nickel powder, and organic conductive materials such as polyphenylene derivatives. These may be used alone or in combination. Among these, it is preferable to use graphites from the viewpoints of density, stability to the electrolytic solution, capacity, price, and the like.
負極に導電剤を含ませる場合、導電剤の量は特に限定されないが、合金材料100重量部に対して、1〜50重量部が好ましく、1〜40重量部が特に好ましい。ただし、本発明に係る合金材料は、それ自身が電子伝導性を有するため、導電剤を用いなくても、十分に導電性を有する負極を得ることが可能である。 When the conductive agent is included in the negative electrode, the amount of the conductive agent is not particularly limited, but is preferably 1 to 50 parts by weight and particularly preferably 1 to 40 parts by weight with respect to 100 parts by weight of the alloy material. However, since the alloy material according to the present invention itself has electronic conductivity, it is possible to obtain a sufficiently conductive negative electrode without using a conductive agent.
負極は、例えば合金材料と、必要に応じて導電剤と、結着剤と、分散媒とを混合して、負極合剤を調製し、これを成形もしくは集電体に塗工し、乾燥すれば得ることができる。 The negative electrode is prepared by mixing, for example, an alloy material, a conductive agent, a binder, and a dispersion medium, if necessary, to prepare a negative electrode mixture, which is molded or applied to a current collector, and then dried. If you can get.
結着剤は、負極の使用電位範囲においてLiに対して電気化学的に不活性であり、他の物質にできるだけ影響を及ぼさない材料であることが好ましい。例えばスチレン−ブタジエン共重合ゴム、ポリアクリル酸、ポリエチレン、ポリウレタン、ポリメタクリル酸メチル、ポリフッ化ビニリデン、ポリ4フッ化エチレン、カルボキシメチルセルロース、メチルセルロース等が適している。本発明で用いる負極は充電時の体積変化が大きいため、体積変化に比較的柔軟に対応可能であるスチレン−ブタジエン共重合ゴムや、体積変化時にも強固な結着状態を維持しやすいポリアクリル酸等が好ましい。結着剤の添加量は、負極の構造維持の観点からは多いほど好ましいが、電池容量の向上および放電特性の向上の観点からは少ない方が好ましい。 The binder is preferably a material that is electrochemically inactive to Li in the working potential range of the negative electrode and does not affect other substances as much as possible. For example, styrene-butadiene copolymer rubber, polyacrylic acid, polyethylene, polyurethane, polymethyl methacrylate, polyvinylidene fluoride, polytetrafluoroethylene, carboxymethylcellulose, methylcellulose and the like are suitable. Since the negative electrode used in the present invention has a large volume change during charging, styrene-butadiene copolymer rubber that can handle the volume change relatively flexibly, and polyacrylic acid that can easily maintain a strong binding state even when the volume changes Etc. are preferred. The amount of the binder added is preferably as large as possible from the viewpoint of maintaining the structure of the negative electrode, but is preferably as small as possible from the viewpoint of improving battery capacity and improving discharge characteristics.
本発明の非水電解質二次電池は、上記の負極と、Liを電気化学的に吸蔵および放出可能な正極と、非水電解液とを具備する。非水電解液は、ゲル状電解質や固体電解質でもよいが、一般には非水溶媒とそれに溶解する溶質からなる電解液が用いられる。 The non-aqueous electrolyte secondary battery of the present invention includes the above-described negative electrode, a positive electrode capable of electrochemically inserting and extracting Li, and a non-aqueous electrolyte. The nonaqueous electrolytic solution may be a gel electrolyte or a solid electrolyte, but in general, an electrolytic solution composed of a nonaqueous solvent and a solute dissolved therein is used.
非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、ジメチルスルホキシド、N−メチルピロリドン、ブチルジグライム、メチルテトラグライム、γ―ブチルラクトン等の非プロトン性有機溶媒等を挙げることができる。これらは複数を組み合わせて用いることが好ましい。 Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), cyclic carbonates such as vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl. Chain carbonates such as methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate, and γ-lactones such as γ-butyrolactone 1, 2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethylsulfoxy 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphate triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl -2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, dimethyl sulfoxide, N-methylpyrrolidone, butyl diglyme, methyl tetraglyme And aprotic organic solvents such as γ-butyllactone. These are preferably used in combination.
非水溶媒に溶解させる溶質としては、例えばLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、Li(CF3SO2)2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウム、イミド類等を挙げることができる。これらは単独で用いてもよく、複数を組み合わせて用いてもよい。これらの溶質の非水溶媒に対する溶解量は、特に限定されないが、0.2〜2.0mol/Lが好ましく、0.5〜1.5mol/Lがより好ましい。 Examples of the solute dissolved in the non-aqueous solvent include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl, LiBr, LiI, lithium chloroborane, lithium tetraphenylborate, imides and the like can be mentioned. These may be used alone or in combination. The amount of these solutes dissolved in the non-aqueous solvent is not particularly limited, but is preferably 0.2 to 2.0 mol / L, and more preferably 0.5 to 1.5 mol / L.
正極は、非水電解質二次電池の正極として提案されているものであれば、特に限定なく用いることができる。正極は、一般に正極活物質と、導電剤と、結着剤とを含む。正極活物質としては、非水電解質二次電池の正極活物質として提案されているものであれば、特に限定なく用いることができるが、リチウム含有遷移金属化合物が好ましい。リチウム含有遷移金属化合物の代表的な例としては、
LixCoO2、LixNiO2、LixMnO2、LixMnO2、LixCoyNi1−yO2、LixCoyM1−yOz、LixNi1−yMyOz、LixMn2O4、LixMn2−yMyO4、LiCo1−xMgxO2、LiNi1−yCoyO2、LiNi1−y−zCoyMnzO2等が挙げられるが、これらに限定されない。なお、これらのリチウム含有遷移金属化合物において、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBよりなる群から選択される少なくとも1種であり、x=0〜1.2、y=0〜0.9、z=2.0〜2.3である。また、x値は、電池の充放電により増減する。また、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物、ニオブ酸化物およびそのリチウム化合物、有機導電性物質を用いた共役系ポリマー、シェブレル相化合物等を正極活物質として用いることも可能である。複数の活物質を組み合わせて用いることも可能である。
If a positive electrode is proposed as a positive electrode of a nonaqueous electrolyte secondary battery, it can be used without limitation. The positive electrode generally includes a positive electrode active material, a conductive agent, and a binder. Any positive electrode active material can be used without particular limitation as long as it is proposed as a positive electrode active material for a non-aqueous electrolyte secondary battery, but a lithium-containing transition metal compound is preferred. As a typical example of a lithium-containing transition metal compound,
Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1-y M y O z , Li x Mn 2 O 4 , Li x Mn 2 -y My O 4 , LiCo 1-x Mg x O 2 , LiNi 1-y Co y O 2 , LiNi 1-yz Co y Mn z O 2 and the like, but are not limited thereto. In these lithium-containing transition metal compounds, M is selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B. It is at least one, and x = 0 to 1.2, y = 0 to 0.9, and z = 2.0 to 2.3. Further, the x value increases / decreases due to charging / discharging of the battery. Further, transition metal chalcogenides, vanadium oxides and lithium compounds thereof, niobium oxides and lithium compounds thereof, conjugated polymers using organic conductive substances, chevrel phase compounds, and the like can also be used as the positive electrode active material. It is also possible to use a combination of a plurality of active materials.
正極と負極との間に介在させるセパレータとしては、大きなイオン透過度、所定の機械的強度、および電子絶縁性を有する微多孔性薄膜が用いられる。非水溶媒に対する耐性と疎水性に優れていることから、ポリプロピレン、ポリエチレン、ポリフェニレンスルフイド、ポリエチレンテレフタレート、ポリアミド、ポリイミド等の材質からなる微多孔性薄膜が好ましく用いられる。これらの材質は単独で用いてもよく、複数を組み合わせて用いてもよい。製造コストの観点からは、安価なポリプロピレン等を用いることが有利である。また、電池に耐リフロー性を付与する場合には、熱変形温度が230℃以上のポリエチレンテレフタレート、ポリアミド、ポリイミド等を用いることが好ましい。また、ガラス繊維等からなるシート、不織布、織布等も用いられる。セパレータの厚みは、一般的には10〜300μmであり、セパレータの空隙率は、電子伝導性、イオン透過性、素材等に応じて決定されるが、一般的には30〜80%であることが望ましい。 As the separator interposed between the positive electrode and the negative electrode, a microporous thin film having high ion permeability, predetermined mechanical strength, and electronic insulation is used. A microporous thin film made of a material such as polypropylene, polyethylene, polyphenylene sulfide, polyethylene terephthalate, polyamide, or polyimide is preferably used because of its excellent resistance to non-aqueous solvents and hydrophobicity. These materials may be used alone or in combination. From the viewpoint of manufacturing cost, it is advantageous to use inexpensive polypropylene or the like. In addition, when imparting reflow resistance to the battery, it is preferable to use polyethylene terephthalate, polyamide, polyimide or the like having a heat distortion temperature of 230 ° C. or higher. Further, a sheet made of glass fiber or the like, a nonwoven fabric, a woven fabric, or the like is also used. The thickness of the separator is generally 10 to 300 μm, and the porosity of the separator is determined according to electron conductivity, ion permeability, material, etc., but is generally 30 to 80%. Is desirable.
本発明は、円筒型、扁平型、コイン型、角形等の様々な形状の非水電解質二次電池に適用可能であり、電池の形状は特に限定されない。本発明は、金属製の電池缶やラミネートフィルム製のケースに、電極、電解液等の発電要素を収容した電池を含め、様々な封止形態の電池に適用可能であり、電池の封止形態は特に限定されない。ただし、本発明は、コイン型の非水電解質二次電池において特に好適である。コイン型の非水電解質二次電池は、正極缶および負極缶を含むコイン型の電池ケースを有し、正極および負極は、それぞれ円盤状で、正極缶および負極缶に収容されている。正極と負極との間にセパレータが介在している。正極缶の開口端と負極缶の開口端とは、絶縁ガスケットを介して嵌合しており、電池は密封されている。電池の密封は、リチウムイオン導電性の非水電解質を、正極、負極およびセパレータに含浸させた後に行われる。 The present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited. INDUSTRIAL APPLICABILITY The present invention can be applied to batteries of various sealing forms, including batteries that contain power generation elements such as electrodes and electrolytes in metal battery cans and laminated film cases. Is not particularly limited. However, the present invention is particularly suitable for a coin-type non-aqueous electrolyte secondary battery. A coin-type non-aqueous electrolyte secondary battery has a coin-type battery case including a positive electrode can and a negative electrode can, and the positive electrode and the negative electrode are each in a disc shape and are accommodated in the positive electrode can and the negative electrode can. A separator is interposed between the positive electrode and the negative electrode. The open end of the positive electrode can and the open end of the negative electrode can are fitted via an insulating gasket, and the battery is sealed. The battery is sealed after the positive electrode, the negative electrode, and the separator are impregnated with a lithium ion conductive nonaqueous electrolyte.
次に、本発明を実施例および比較例に基づいて具体的に説明するが、下記の実施例は本発明の好ましい形態を例示するものであり、本発明が下記の実施例に限られるわけではない。 Next, the present invention will be specifically described based on examples and comparative examples. However, the following examples illustrate preferred modes of the present invention, and the present invention is not limited to the following examples. Absent.
《実施例1》
実施例および比較例においては、以下の要領で負極およびコイン型電池を作製し、そのサイクル寿命と放電容量について評価した。
(1)合金材料の製造
遷移金属元素Mの原料としては、Ti、Zr、Ni、CuおよびFeを金属状態で用いた。これらはいずれも、純度99.9%であり、粒径100〜150μmの粉体であった。Siの原料としては、Si粉末(純度99.9%、平均粒径3μm)を用いた。
Example 1
In Examples and Comparative Examples, negative electrodes and coin-type batteries were produced in the following manner, and their cycle life and discharge capacity were evaluated.
(1) Manufacture of alloy material As a raw material of the transition metal element M, Ti, Zr, Ni, Cu, and Fe were used in a metal state. All of these were powders having a purity of 99.9% and a particle size of 100 to 150 μm. Si powder (purity 99.9%, average particle size 3 μm) was used as a raw material for Si.
MSi2がB相を構成すると仮定した場合に、生成する合金材料中のA相とB相の合計重量に占めるA相の割合が約80%となるように、下記の重量比で原料を混合した。
Ti:Si=9.2:90.8
Zr:Si=12.4:87.6
Ni:Si=10.2:89.8
Cu:Si=10.6:89.4
Fe:Si=10.2:89.8
When it is assumed that MSi 2 constitutes the B phase, the raw materials are mixed at the following weight ratio so that the ratio of the A phase to the total weight of the A phase and the B phase in the alloy material to be generated is about 80%. did.
Ti: Si = 9.2: 90.8
Zr: Si = 12.4: 87.6
Ni: Si = 10.2: 89.8
Cu: Si = 10.6: 89.4
Fe: Si = 10.2: 89.8
各混合粉を3.5kg秤量し、振動ミル装置(中央化工機(株)製、型番FV−20)に投入し、さらにステンレス鋼製ボール(直径2cm)をミル装置内容量の70体積%を占めるように投入した。容器内部を真空に引いた後、Ar(純度99.999%、日本酸素(株)製)を導入して、1気圧になるようにした。これらの条件でメカニカルアロイング操作を行った。ミル装置の作動条件は、振幅8mm、回転数1200rpmとした。これらの条件でメカニカルアロイング操作を80時間行った。 3.5 kg of each mixed powder is weighed and put into a vibration mill apparatus (manufactured by Chuo Kako Co., Ltd., model number FV-20). Further, a stainless steel ball (diameter 2 cm) is added to 70% by volume of the mill apparatus internal capacity. It was thrown to occupy. After evacuating the inside of the container, Ar (purity 99.999%, manufactured by Nippon Oxygen Co., Ltd.) was introduced so that the pressure became 1 atm. Mechanical alloying operation was performed under these conditions. The operating conditions of the mill device were an amplitude of 8 mm and a rotation speed of 1200 rpm. Under these conditions, mechanical alloying operation was performed for 80 hours.
上記操作によって得られたTi−Si合金材料、Zr−Si合金材料、Ni−Si合金材料、Cu−Si合金材料およびFe−Si合金材料を、それぞれ回収し、粒度分布を調べたところ0.5μm〜80μmの広い粒度分布を有することが判明した。これらの合金材料を篩い(10μmメッシュサイズ)で分級することによって、最大粒径8μm、平均粒径5μmのTi−Si合金材料(以下、合金材料aという)、Zr−Si合金材料(以下、合金材料bという)、Ni−Si合金材料(以下、合金材料cという)、Cu−Si合金材料(以下、合金材料dという)およびFe−Si合金材料(以下、合金材料eという)を得た。 The Ti—Si alloy material, Zr—Si alloy material, Ni—Si alloy material, Cu—Si alloy material and Fe—Si alloy material obtained by the above operation were recovered and the particle size distribution was examined. It was found to have a broad particle size distribution of ˜80 μm. By classifying these alloy materials with a sieve (10 μm mesh size), a Ti—Si alloy material (hereinafter referred to as alloy material a) having a maximum particle size of 8 μm and an average particle size of 5 μm, a Zr—Si alloy material (hereinafter referred to as an alloy). Material b), Ni—Si alloy material (hereinafter referred to as alloy material c), Cu—Si alloy material (hereinafter referred to as alloy material d) and Fe—Si alloy material (hereinafter referred to as alloy material e) were obtained.
線源としてCuKα線を用い、合金aをX線回折測定で分析したところ、微結晶を示すスペクトルが得られた。また、X線回折測定で得られた回折スペクトルにおいて、回折角2θ=10°〜80°の範囲に観測される最も強度の強い回折ピークの半価幅と、Scherrerの式に基づいて算出した合金材料aの結晶粒(結晶子)の粒径は10nmであった。 When the alloy a was analyzed by X-ray diffraction measurement using CuKα rays as a radiation source, a spectrum showing microcrystals was obtained. Further, in the diffraction spectrum obtained by X-ray diffraction measurement, the half-value width of the strongest diffraction peak observed in the diffraction angle range of 2θ = 10 ° to 80 ° and the alloy calculated based on the Scherrer equation The grain size of the crystal grains (crystallites) of the material a was 10 nm.
X線回折測定の結果から、合金材料aの中には、Si単体相(A相)とTiSi2相(B相)とが存在していると推定された。合金材料aの中にこれらの2相のみが存在すると仮定し、Si単体相とTiSi2相との存在割合を計算すると、Si:TiSi2=80:20(重量比)であることが判明した。
合金材料b、合金材料c、合金材料dおよび合金材料eについても、X線回折測定を行い、結晶子サイズとA相:B相(重量比)を求めたところ、合金材料aと同様の結果が得られた。
From the result of the X-ray diffraction measurement, it was presumed that the Si material phase (A phase) and the TiSi 2 phase (B phase) exist in the alloy material a. Assuming that only these two phases exist in the alloy material a and calculating the abundance ratio of the Si simple phase and the TiSi 2 phase, it was found that Si: TiSi 2 = 80: 20 (weight ratio). .
Regarding the alloy material b, the alloy material c, the alloy material d, and the alloy material e, X-ray diffraction measurement was performed to obtain the crystallite size and the A phase: B phase (weight ratio). was gotten.
合金材料aの断面を透過電子顕微鏡(TEM)で観察したところ、非晶質領域と、粒径10nm程度の結晶粒(結晶子)からなるSi単体相と、粒径15〜20nm程度の結晶粒(結晶子)を有するTiSi2相とが、それぞれ存在していることが判明した。合金材料b、合金材料c、合金材料dおよび合金材料eについても同様の測定を行ったところ、合金材料aと同様の結果が得られた。 When the cross section of the alloy material a was observed with a transmission electron microscope (TEM), an Si region consisting of an amorphous region, crystal grains (crystallites) having a particle size of about 10 nm, and crystal grains having a particle size of about 15 to 20 nm It was found that each TiSi 2 phase having (crystallites) was present. When the same measurement was performed on the alloy material b, the alloy material c, the alloy material d, and the alloy material e, the same result as that of the alloy material a was obtained.
本実施例において、合金材料の最大粒径および平均粒径の測定には、マイクロトラック社製の粒度分布測定装置であるHRA(MODEL No.9320−X100)を用いた。なお、粒径を測定する前に、合金材料を水と混合し、超音波分散を180秒間実施した。以下の実施例および比較例においても同様である。 In this example, HRA (MODEL No. 9320-X100), which is a particle size distribution measuring device manufactured by Microtrack, was used for measurement of the maximum particle size and the average particle size of the alloy material. Before measuring the particle size, the alloy material was mixed with water and ultrasonic dispersion was performed for 180 seconds. The same applies to the following examples and comparative examples.
(2)負極の作製
上記で得た合金材料a〜eと、黒鉛と、結着剤とを用いて、以下の要領で負極を作製した。
合金材料と、黒鉛(日本黒鉛工業(株)製、SP−5030)と、結着剤であるポリアクリル酸(和光純薬工業(株)製、平均分子量15万)とを、重量比
70.5:21.5:7の割合で混合し、負極合剤を得た。この負極合剤を、直径4mm、厚さ0.3mmのペレット状に成形し、その後、ペレット状の負極を200℃で12時間乾燥した。乾燥後の負極の厚さは300μm、空隙率は26.6%、合剤密度は1.721g/cm3であった。以下、合金材料a〜eを用いて作製したペレット状の負極を、それぞれ負極a〜eと称する。
(2) Production of negative electrode Using the alloy materials a to e obtained above, graphite, and a binder, a negative electrode was produced in the following manner.
An alloy material, graphite (manufactured by Nippon Graphite Industry Co., Ltd., SP-5030), and polyacrylic acid as a binder (manufactured by Wako Pure Chemical Industries, Ltd., average molecular weight 150,000) in a weight ratio of 70. The mixture was mixed at a ratio of 5: 21.5: 7 to obtain a negative electrode mixture. This negative electrode mixture was formed into a pellet shape having a diameter of 4 mm and a thickness of 0.3 mm, and then the pellet-shaped negative electrode was dried at 200 ° C. for 12 hours. The thickness of the negative electrode after drying was 300 μm, the porosity was 26.6%, and the mixture density was 1.721 g / cm 3 . Hereinafter, the pellet-shaped negative electrodes produced using the alloy materials a to e are referred to as negative electrodes a to e, respectively.
(3)正極の作製
二酸化マンガンと、水酸化リチウムとを、モル比で2:1の割合で混合し、混合物を空気中で400℃で12時間焼成し、マンガン酸リチウムを得た。
得られたマンガン酸リチウムと、導電剤であるカーボンブラックと、結着剤であるフッ素樹脂(ポリテトラフルオロエチレン)とを、重量比88:6:6の割合で混合し、正極合剤を得た。結着剤は水性ディスパージョンの状態で使用した。この正極合剤を、直径4mm、厚さ1.0mmのペレット状に成形し、その後、ペレット状の正極を250℃で12時間乾燥した。
(3) Production of positive electrode Manganese dioxide and lithium hydroxide were mixed at a molar ratio of 2: 1, and the mixture was fired at 400 ° C. for 12 hours in air to obtain lithium manganate.
The obtained lithium manganate, carbon black as a conductive agent, and fluororesin (polytetrafluoroethylene) as a binder are mixed at a weight ratio of 88: 6: 6 to obtain a positive electrode mixture. It was. The binder was used in the form of an aqueous dispersion. This positive electrode mixture was formed into a pellet shape having a diameter of 4 mm and a thickness of 1.0 mm, and then the pellet-shaped positive electrode was dried at 250 ° C. for 12 hours.
(4)コイン型電池の作製
図1に示すような外径6.8mm、厚み2.1mmの寸法を有するコイン型の非水電解質二次電池を作製した。
正極缶1は、正極端子を兼ねており、耐食性に優れたステンレス鋼からなる。負極缶2は、負極端子を兼ねており、正極缶1と同じステンレス鋼からなる。ガスケット3は、正極缶1と負極缶2を絶縁しており、ポリプロピレン製である。正極缶1および負極缶2とガスケット3との接する面には、ピッチが塗布されている。正極缶1および負極缶2の内面には、カーボンペースト8aおよび8bを塗布した。
(4) Production of Coin Type Battery A coin type non-aqueous electrolyte secondary battery having an outer diameter of 6.8 mm and a thickness of 2.1 mm as shown in FIG. 1 was produced.
The positive electrode can 1 also serves as a positive electrode terminal and is made of stainless steel having excellent corrosion resistance. The negative electrode can 2 also serves as a negative electrode terminal and is made of the same stainless steel as the positive electrode can 1. The gasket 3 insulates the positive electrode can 1 and the negative electrode can 2 and is made of polypropylene. Pitch is applied to the surfaces where the positive electrode can 1 and the negative electrode can 2 and the gasket 3 are in contact. Carbon pastes 8 a and 8 b were applied to the inner surfaces of the positive electrode can 1 and the negative electrode can 2.
ペレット状の負極5に含まれる合金材料(活物質)は、リチウムと合金化させる必要がある。そこで、電池組立時に、上記で得たペレット状の負極5の表面にリチウム箔4を圧着した。電池組立後、電解質の存在下で、リチウム箔4を電気化学的に負極に吸蔵させ、負極5の内部にリチウム合金を生成させた。
The alloy material (active material) contained in the pellet-shaped negative electrode 5 needs to be alloyed with lithium. Therefore, at the time of battery assembly, the
ポリエチレン製の不織布からなるセパレータ6を上記で得た正極7と負極5との間に配した。以下、ペレット状の負極a〜eを用いて作製した電池を、それぞれ電池a〜eと称する。この電池の設計容量は、6mAhである。
電解質には、プロピレンカーボネート(PC)と、エチレンカーボネート(EC)と、ジメトキシエタン(DME)とを、体積比PC:EC:DME=1:1:1で含む混合溶媒に、LiN(CF3SO2)2を1モル/Lの濃度で溶解させたものを用いた。
A
As an electrolyte, a mixed solvent containing propylene carbonate (PC), ethylene carbonate (EC), and dimethoxyethane (DME) at a volume ratio PC: EC: DME = 1: 1: 1, LiN (CF 3 SO 3 2) 2 was used as dissolved at a concentration of 1 mol / L.
(5)電池の評価
20℃に設定した恒温槽の中で、電池a〜eの定電流充放電を、充電電流2C(1Cは1時間率電流)、放電電流0.2Cで、電池電圧2.0〜3.3Vの範囲で200サイクル繰り返した。
(5) Battery evaluation In a thermostat set at 20 ° C., the batteries a to e were charged at a constant current of charge current 2C (1C is 1 hour rate current), discharge current 0.2C, and battery voltage 2 200 cycles were repeated in the range of 0.0 to 3.3V.
その際、2サイクル目の放電容量を初回放電容量として求めた。また、2サイクル目の放電容量に対する200サイクル目の放電容量の割合を百分率(%)で求め、容量維持率とした。容量維持率が100(%)に近いほどサイクル寿命が優れていることを示す。初回放電容量および容量維持率の結果を表1に示す。 At that time, the discharge capacity at the second cycle was determined as the initial discharge capacity. In addition, the ratio of the discharge capacity at the 200th cycle to the discharge capacity at the second cycle was obtained as a percentage (%), and was used as the capacity maintenance rate. The closer the capacity retention rate is to 100 (%), the better the cycle life. Table 1 shows the results of the initial discharge capacity and capacity retention rate.
《比較例1》
遷移金属元素Mの原料として、金属状態のCoおよびMnを用いた。これらはいずれも、純度99.9%であり、粒径100〜150μmの粉体であった。
<< Comparative Example 1 >>
As a raw material for the transition metal element M, Co and Mn in a metal state were used. All of these were powders having a purity of 99.9% and a particle size of 100 to 150 μm.
Siの原料としては、Si粉末(純度99.9%、平均粒径3μm)を用いた。
B相がMSi2を構成すると仮定した場合に、生成する合金材料中のA相とB相の合計重量に占めるA相の割合が約80%となるように、下記の重量比で原料を混合した。
Si powder (purity 99.9%, average particle size 3 μm) was used as a raw material for Si.
When it is assumed that the B phase constitutes MSi 2 , the raw materials are mixed at the following weight ratio so that the ratio of the A phase to the total weight of the A phase and the B phase in the alloy material to be generated is about 80%. did.
Co:Si=10.2:89.8
Mn:Si=9.9:90.1
各混合粉のメカニカルアロイング操作を実施例1と同様の条件で行い、同様の分級を行って、最大粒径8μm、平均粒径5μmのCo−Si合金材料(以下、合金材料fという)およびMn−Si合金材料(以下、合金材料gという)を得た。また、合金材料f、gを用い、実施例1と同様にして、ペレット状の負極f、gを作製し、これらを用いて電池f、gを作製し、評価した。結果を表2に示す。
Co: Si = 10.2: 89.8
Mn: Si = 9.9: 90.1
The mechanical alloying operation of each mixed powder was performed under the same conditions as in Example 1, the same classification was performed, and a Co—Si alloy material (hereinafter referred to as alloy material f) having a maximum particle size of 8 μm and an average particle size of 5 μm and A Mn—Si alloy material (hereinafter referred to as alloy material g) was obtained. Further, using the alloy materials f and g, pellet-shaped negative electrodes f and g were produced in the same manner as in Example 1, and batteries f and g were produced and evaluated using these. The results are shown in Table 2.
実施例1の電池a〜eは、いずれも比較例1の電池f、gに比べて、200サイクル目の容量維持率が高く、急速充放電によるサイクルを繰り返した場合の寿命特性に優れていた。 The batteries a to e of Example 1 had a higher capacity retention rate at the 200th cycle than the batteries f and g of Comparative Example 1, and were excellent in life characteristics when the cycle by rapid charge / discharge was repeated. .
詳細は不明であるが、サイクル特性劣化の主要因は、充放電に伴う集電ネットワークの劣化であると考えられる。すなわち、リチウムを吸蔵および放出する際に発生する合金材料の膨張および収縮により、電極内の粒子間の接続が破断され、粒子の遊離や位置ずれが生じ、集電性が劣化して、負極全体の抵抗が増大すると考えられる。このような劣化は、大電流による急速な充放電を繰り返す場合に顕著となる。 Although details are unknown, it is thought that the main factor of cycle characteristic deterioration is deterioration of the current collection network accompanying charging / discharging. That is, due to the expansion and contraction of the alloy material that occurs when lithium is inserted and extracted, the connection between the particles in the electrode is broken, the particles are separated and displaced, the current collection property is deteriorated, and the entire negative electrode It is thought that the resistance increases. Such deterioration becomes prominent when rapid charge / discharge due to a large current is repeated.
一方、実施例1においては、充電時の膨張に対する合金材料の耐性が向上しているため、上記のような劣化が抑制されているものと考えられる。また、表1、2を比較すると、膨張に対する合金材料の耐性は、遷移金属の種類によって、顕著な差を生じることがわかる。Ti、Zr、Ni、CuおよびFeを含む合金材料は、CoやMnを含む合金材料に比べ、高い電子伝導性を有し、かつ高い硬度を有することが、充電時の割れを抑制し、充電時の膨張に対する合金材料の耐性を向上させていると考えられる。 On the other hand, in Example 1, since the tolerance of the alloy material with respect to the expansion | swelling at the time of charge is improving, it is thought that the above deterioration is suppressed. Further, when Tables 1 and 2 are compared, it can be seen that the resistance of the alloy material against expansion varies significantly depending on the type of transition metal. The alloy material containing Ti, Zr, Ni, Cu and Fe has higher electronic conductivity and higher hardness than the alloy material containing Co and Mn. It is thought that the resistance of the alloy material to the expansion of time is improved.
ただし、比較例1の電池であっても、通常の充放電サイクル条件(例えば1時間率の電流による充放電)の場合には、充分に優れたサイクル特性を示した。よって、急速充放電が要求される場合でも、従来の合金材料を用いた電池に比べれば優れた性能が期待できる。 However, even the battery of Comparative Example 1 exhibited sufficiently excellent cycle characteristics under normal charge / discharge cycle conditions (for example, charge / discharge with a current of 1 hour rate). Therefore, even when rapid charge / discharge is required, superior performance can be expected as compared with a battery using a conventional alloy material.
《実施例2》
本実施例では、合金材料の結晶子サイズについて詳細に検討した。
メカニカルアロイング操作の条件(周波数と合成時間)を変化させることで、合金材料の結晶子サイズを表3に示すように変化させたこと以外、実施例1と同様にして、A相:B相(重量比)が80:20となるように、各種合金材料を製造し、分級を行って、最大粒径8μm、平均粒径5μmのTi−Si合金材料、Zr−Si合金材料、Ni−Si合金材料、Cu−Si合金材料およびFe−Si合金材料を得た。
Example 2
In this example, the crystallite size of the alloy material was examined in detail.
A phase: B phase in the same manner as in Example 1 except that the crystallite size of the alloy material was changed as shown in Table 3 by changing the mechanical alloying operation conditions (frequency and synthesis time). Various alloy materials are manufactured and classified so that (weight ratio) is 80:20, and Ti—Si alloy material, Zr—Si alloy material, Ni—Si having a maximum particle size of 8 μm and an average particle size of 5 μm are obtained. Alloy materials, Cu-Si alloy materials and Fe-Si alloy materials were obtained.
ここでも実施例1と同様に、合金材料のX線回折測定で得られる強度の最も大きなピークの半価幅とScherrerの式からA相の結晶子サイズを算出した。
なお、表3には、A相の結晶子サイズだけを示すが、B相の結晶子サイズもA相のそれと同等であった。
Here, as in Example 1, the crystallite size of the A phase was calculated from the half-width of the peak with the highest intensity obtained by X-ray diffraction measurement of the alloy material and the Scherrer equation.
In Table 3, only the crystallite size of the A phase is shown, but the crystallite size of the B phase is equivalent to that of the A phase.
メカニカルアロイング操作の条件は、例えば以下のように制御した。
結晶子サイズが0nmの合金材料を得る場合、作動条件は、振幅8mm、回転数1200rpm、合成時間を2000時間とした。ここでは、X線回折スペクトルが非晶質のスペクトルを示し、半価幅を認識できるピークが観測されなかった場合を、結晶子サイズ0nmとした。
The conditions of the mechanical alloying operation were controlled as follows, for example.
When obtaining an alloy material having a crystallite size of 0 nm, the operating conditions were an amplitude of 8 mm, a rotational speed of 1200 rpm, and a synthesis time of 2000 hours. Here, the case where the X-ray diffraction spectrum shows an amorphous spectrum and no peak capable of recognizing the half-value width was observed was defined as a crystallite size of 0 nm.
結晶子サイズが5nm程度の合金材料を得る場合、作動条件は、振幅8mm、回転数1200rpm、合成時間を300時間とした。
結晶子サイズが50nmの合金材料を得る場合、作動条件は、振幅8mm、回転数1200rpm、合成時間を4時間とした。
結晶子サイズが100nmの合金材料を得る場合、作動条件は、振幅8mm、回転数1200rpm、合成時間を1時間とした。
結晶子サイズが200nm程度の合金材料を得る場合、作動条件は、振幅8mm、回転数1200rpm、合成時間を0.3時間とした。
上記の合金材料を用いたこと以外、実施例1と同様にして、ペレット状の負極を作製し、これらを用いて電池を作製し、評価した。結果を表3に示す。
When obtaining an alloy material having a crystallite size of about 5 nm, the operating conditions were an amplitude of 8 mm, a rotational speed of 1200 rpm, and a synthesis time of 300 hours.
When obtaining an alloy material having a crystallite size of 50 nm, the operating conditions were an amplitude of 8 mm, a rotational speed of 1200 rpm, and a synthesis time of 4 hours.
When obtaining an alloy material having a crystallite size of 100 nm, the operating conditions were an amplitude of 8 mm, a rotational speed of 1200 rpm, and a synthesis time of 1 hour.
When obtaining an alloy material having a crystallite size of about 200 nm, the operating conditions were an amplitude of 8 mm, a rotational speed of 1200 rpm, and a synthesis time of 0.3 hours.
A pellet-shaped negative electrode was prepared in the same manner as in Example 1 except that the above alloy material was used, and a battery was prepared and evaluated using these. The results are shown in Table 3.
表3において明らかなように、A相の結晶子サイズが100nm以下の場合、高容量で200サイクル後の容量維持率が高くなることが示された。結晶子サイズが100nmより大きい場合には、充放電時の合金材料の膨張および収縮により、合金材料に割れが発生しやすく、集電ネットワークが劣化を引き起こしたものと思われる。また、結晶子サイズが5nmよりも小さい場合には、僅かではあるが、容量が低下する傾向があった。結晶子サイズが過度に小さい場合には、結晶子の粒界が多くなるため、電導性が低下し、充放電時の抵抗が上昇し、容量が若干低下したものと思われる。よって、結晶子サイズは5nm〜100nmとすることが望まれる。また、結晶子サイズが5nm〜50nmの場合に、200サイクル後の容量維持率がより高くなり、容量も大きくなることが示された。 As is apparent from Table 3, when the crystallite size of the A phase is 100 nm or less, the capacity retention rate after 200 cycles is increased at a high capacity. When the crystallite size is larger than 100 nm, the alloy material is likely to be cracked due to expansion and contraction of the alloy material during charge / discharge, and the current collecting network is considered to be deteriorated. Further, when the crystallite size was smaller than 5 nm, the capacity tended to decrease although it was slight. When the crystallite size is excessively small, the grain boundaries of the crystallite increase, so that the electrical conductivity is lowered, the resistance during charging / discharging is increased, and the capacity is slightly decreased. Therefore, it is desirable that the crystallite size is 5 nm to 100 nm. Further, it was shown that when the crystallite size is 5 nm to 50 nm, the capacity retention rate after 200 cycles is higher and the capacity is also increased.
《実施例3》
本実施例では、線源としてCuKα線を用いた場合の合金材料のX線回折測定で得られる回折スペクトルにおいて、回折角2θ=10°〜80°の範囲に観測される最も強度の強い回折ピークの半価幅について、詳細に検討した。
Example 3
In this example, in the diffraction spectrum obtained by the X-ray diffraction measurement of the alloy material when CuKα ray is used as the radiation source, the strongest diffraction peak observed in the range of diffraction angle 2θ = 10 ° to 80 °. The full width at half maximum was examined in detail.
ここでも、メカニカルアロイング操作の条件(周波数と合成時間)を変化させることで、最も強度の強い回折ピークの半価幅を表4のように変化させたこと以外、実施例1と同様にして、A相:B相(重量比)が80:20となるように、各種合金材料を製造し、分級を行って、最大粒径8μm、平均粒径5μmのTi−Si合金材料、Zr−Si合金材料、Ni−Si合金材料、Cu−Si合金材料およびFe−Si合金材料を得た。 Here, the half-value width of the strongest diffraction peak was changed as shown in Table 4 by changing the mechanical alloying operation conditions (frequency and synthesis time), as in Example 1. A variety of alloy materials are manufactured and classified so that the A phase: B phase (weight ratio) is 80:20, and a Ti—Si alloy material having a maximum particle size of 8 μm and an average particle size of 5 μm, Zr—Si Alloy materials, Ni-Si alloy materials, Cu-Si alloy materials and Fe-Si alloy materials were obtained.
なお、表4には、A相に帰属されるピークの半価幅だけを示すが、B相に帰属されるピークの半価幅もA相のそれと同等であった。 In Table 4, only the half width of the peak attributed to the A phase is shown, but the half width of the peak attributed to the B phase is also equivalent to that of the A phase.
メカニカルアロイング操作の条件は、例えば以下のように制御した。
半価幅が0.05°の合金材料を得る場合、作動条件は、振幅8mm、回転数1200rpm、合成時間を0.35時間とした。
半価幅が0.1°の合金材料を得る場合、作動条件は、振幅8mm、回転数1200rpm、合成時間を1.3時間とした。
半価幅が0.4°の合金材料を得る場合、作動条件は、振幅8mm、回転数1200rpm、合成時間を18時間とした。
半価幅が0.5°の合金材料を得る場合、作動条件は、振幅8mm、回転数1200rpm、合成時間を27時間とした。
半価幅が1°の合金材料を得る場合、作動条件は、振幅8mm、回転数1200rpm、合成時間を100時間とした。
半価幅が2°の合金材料を得る場合、作動条件は、振幅8mm、回転数1200rpm、合成時間を380時間とした。
The conditions of the mechanical alloying operation were controlled as follows, for example.
When obtaining an alloy material having a half width of 0.05 °, the operating conditions were an amplitude of 8 mm, a rotation speed of 1200 rpm, and a synthesis time of 0.35 hours.
When obtaining an alloy material having a half width of 0.1 °, the operating conditions were an amplitude of 8 mm, a rotation speed of 1200 rpm, and a synthesis time of 1.3 hours.
When obtaining an alloy material having a half width of 0.4 °, the operating conditions were an amplitude of 8 mm, a rotational speed of 1200 rpm, and a synthesis time of 18 hours.
When obtaining an alloy material having a half width of 0.5 °, the operating conditions were an amplitude of 8 mm, a rotation speed of 1200 rpm, and a synthesis time of 27 hours.
When obtaining an alloy material having a half width of 1 °, the operating conditions were an amplitude of 8 mm, a rotation speed of 1200 rpm, and a synthesis time of 100 hours.
When obtaining an alloy material having a half width of 2 °, the operating conditions were an amplitude of 8 mm, a rotation speed of 1200 rpm, and a synthesis time of 380 hours.
上記の合金材料を用いたこと以外、実施例1と同様にして、ペレット状の負極を作製し、これらを用いて電池を作製し、評価した。200サイクル後の容量維持率の結果を表4に示す。 A pellet-shaped negative electrode was prepared in the same manner as in Example 1 except that the above alloy material was used, and a battery was prepared and evaluated using these. Table 4 shows the results of the capacity retention rate after 200 cycles.
半価幅が0.1以上の場合には、200サイクル後の容量維持率が高いことがわかった。一方、半価幅が0.1より小さい場合には、合金材料の結晶性は比較的高く、微結晶状態であるとは言えない。そのため、充放電時の膨張および収縮に合金材料が充分に追随できず、合金材料粒子に割れが発生し、負極の集電ネットワークが損なわれたものと思われる。 When the half width was 0.1 or more, it was found that the capacity retention rate after 200 cycles was high. On the other hand, when the half width is smaller than 0.1, the crystallinity of the alloy material is relatively high and it cannot be said that it is in a microcrystalline state. For this reason, it is considered that the alloy material cannot sufficiently follow expansion and contraction during charge and discharge, cracks occur in the alloy material particles, and the current collecting network of the negative electrode is impaired.
《実施例4》
本実施例では、合金材料中に占めるA相の割合について、詳細に検討した。
B相がMSi2を構成すると仮定した場合に、生成する合金材料中のA相とB相の合計重量に占めるA相の割合が表5に示す割合(30〜98重量%)になるように原料を混合したこと以外、実施例1と同様にして、各種合金材料を製造し、分級を行って、最大粒径8μm、平均粒径5μmのTi−Si合金材料、Zr−Si合金材料、Ni−Si合金材料、Cu−Si合金材料およびFe−Si合金材料を得た。
Example 4
In this example, the ratio of the A phase in the alloy material was examined in detail.
When it is assumed that the B phase constitutes MSi 2 , the ratio of the A phase in the total weight of the A phase and the B phase in the alloy material to be generated is the ratio shown in Table 5 (30 to 98 wt%). Except that the raw materials were mixed, various alloy materials were produced and classified in the same manner as in Example 1, and Ti—Si alloy material, Zr—Si alloy material, Ni—Si alloy material having a maximum particle size of 8 μm and an average particle size of 5 μm, Ni -Si alloy material, Cu-Si alloy material and Fe-Si alloy material were obtained.
線源としてCuKα線を用い、各合金材料をX線回折測定で分析したところ、微結晶を示すスペクトルが得られた。また、X線回折測定で得られた回折スペクトルにおいて、回折角2θ=10°〜80°の範囲に観測される最も強度の強い回折ピークの半価幅と、Scherrerの式に基づいて算出した各合金材料の結晶粒(結晶子)の粒径は10nmであった。 When CuKα ray was used as a radiation source and each alloy material was analyzed by X-ray diffraction measurement, a spectrum showing microcrystals was obtained. Further, in the diffraction spectrum obtained by the X-ray diffraction measurement, each calculated based on the half-value width of the strongest diffraction peak observed in the diffraction angle range of 2θ = 10 ° to 80 ° and the Scherrer equation. The grain size of crystal grains (crystallites) of the alloy material was 10 nm.
上記の合金材料を用いたこと以外、実施例1と同様にして、ペレット状の負極を作製し、これらを用いて電池を作製し、評価した。200サイクル後の容量維持率の結果を表5に示す。 A pellet-shaped negative electrode was prepared in the same manner as in Example 1 except that the above alloy material was used, and a battery was prepared and evaluated using these. Table 5 shows the results of the capacity retention rate after 200 cycles.
合金材料中のA相の割合が95重量%より小さい範囲で、200サイクル後の容量維持率が高いことが示された。また、合金材料中のA相の割合が40重量%よりも小さいと、僅かではあるが、容量の低い電池となることが示された。よって、容量およびサイクル特性がバランスよく両立されるのは、合金材料中のA相の割合が40重量%〜95重量%の範囲であることが示された。 It was shown that the capacity retention rate after 200 cycles was high when the proportion of the A phase in the alloy material was less than 95% by weight. Further, it was shown that when the proportion of the A phase in the alloy material is smaller than 40% by weight, the battery has a small capacity. Therefore, it was shown that the ratio of the A phase in the alloy material is in the range of 40 wt% to 95 wt% in which the capacity and the cycle characteristics are balanced.
《比較例2》
B相がMSi2を構成すると仮定した場合に、生成する合金材料中のA相とB相の合計重量に占めるA相の割合が表6に示す割合(30〜98重量%)になるように原料を混合したこと以外、比較例1と同様にして、各種合金材料を製造し、分級を行って、最大粒径8μm、平均粒径5μmのCo−Si合金材料およびMn−Si合金材料を得た。
<< Comparative Example 2 >>
When it is assumed that the B phase constitutes MSi 2 , the ratio of the A phase in the total weight of the A phase and the B phase in the alloy material to be generated is the ratio shown in Table 6 (30 to 98 wt%). Except that the raw materials were mixed, various alloy materials were produced and classified in the same manner as in Comparative Example 1 to obtain Co—Si alloy materials and Mn—Si alloy materials having a maximum particle size of 8 μm and an average particle size of 5 μm. It was.
線源としてCuKα線を用い、各合金材料をX線回折測定で分析したところ、微結晶を示すスペクトルが得られた。また、X線回折測定で得られた回折スペクトルにおいて、回折角2θ=10°〜80°の範囲に観測される最も強度の強い回折ピークの半価幅と、Scherrerの式に基づいて算出した各合金材料の結晶粒(結晶子)の粒径は10nmであった。 When CuKα ray was used as a radiation source and each alloy material was analyzed by X-ray diffraction measurement, a spectrum showing microcrystals was obtained. Further, in the diffraction spectrum obtained by the X-ray diffraction measurement, each calculated based on the half-value width of the strongest diffraction peak observed in the diffraction angle range of 2θ = 10 ° to 80 ° and the Scherrer equation. The grain size of crystal grains (crystallites) of the alloy material was 10 nm.
上記の合金材料を用いたこと以外、実施例1と同様にして、ペレット状の負極を作製し、これらを用いて電池を作製し、評価した。200サイクル後の容量維持率の結果を表6に示す。 A pellet-shaped negative electrode was prepared in the same manner as in Example 1 except that the above alloy material was used, and a battery was prepared and evaluated using these. Table 6 shows the results of the capacity retention rate after 200 cycles.
遷移金属元素としてCoまたはMnを用いた場合、A相の割合が40重量%よりも大きい場合には、容量は高くなるが、200サイクル後の容量維持率が顕著に低くなることが示された。
遷移金属元素としてCoやMnを用いた場合、充電時の膨張に対する合金材料の耐性を、あまり向上させることができず、充電時の合金粒子の割れを十分に抑制できないものと考えられる。
When Co or Mn was used as the transition metal element, it was shown that when the proportion of the A phase was larger than 40% by weight, the capacity was increased, but the capacity retention rate after 200 cycles was significantly decreased. .
When Co or Mn is used as the transition metal element, it is considered that the resistance of the alloy material against expansion during charging cannot be improved so much that cracking of alloy particles during charging cannot be sufficiently suppressed.
ただし、比較例2の電池であっても、通常の充放電サイクル条件(例えば1時間率の電流による充放電)の場合には、充分に優れたサイクル特性を示した。よって、急速充放電が要求される場合でも、従来の合金材料を用いた電池に比べれば優れた性能が期待できる。 However, even the battery of Comparative Example 2 exhibited sufficiently excellent cycle characteristics under normal charge / discharge cycle conditions (for example, charge / discharge with a current of 1 hour rate). Therefore, even when rapid charge / discharge is required, superior performance can be expected as compared with a battery using a conventional alloy material.
《実施例5》
本実施例では、B相に含まれる遷移金属元素がTiの場合に関し、合金材料の粒度分布について検討した。
A相:B相(重量比)が80:20となるように原料を混合したこと以外、実施例1と同様にしてTi−Si合金材料を得た。得られた合金材料の粒度分布を調べたところ、粒径は0.5〜200μmの範囲に広く分布していた。平均粒径(D50)は50μmであった。また、得られた合金材料の結晶粒(結晶子)の粒径は10nmであった。
Example 5
In this example, regarding the case where the transition metal element contained in the B phase is Ti, the particle size distribution of the alloy material was examined.
A Ti—Si alloy material was obtained in the same manner as in Example 1 except that the raw materials were mixed so that the A phase: B phase (weight ratio) was 80:20. When the particle size distribution of the obtained alloy material was examined, the particle size was widely distributed in the range of 0.5 to 200 μm. The average particle size (D50) was 50 μm. Moreover, the grain size of the crystal grain (crystallite) of the obtained alloy material was 10 nm.
このTi−Si合金材料を、ふるい分級することにより、表1に示す様々な粒度分布を有する合金材料を得た。これらの合金材料を用いたこと以外、実施例1と同様にして、ペレット状の負極を作製し、これらを用いて電池を作製し、実施例1と同様に評価した。結果を表7に示す。 The Ti—Si alloy material was sieve classified to obtain alloy materials having various particle size distributions shown in Table 1. Except for using these alloy materials, a pellet-shaped negative electrode was produced in the same manner as in Example 1, and a battery was produced using these, and evaluated in the same manner as in Example 1. The results are shown in Table 7.
表7より、体積累積粒度分布における平均粒径(D50)が0.5〜20μmであり、10%径(D10)が0.1〜5μmであり、90%径(D90)が5〜80μmの場合に、電池が高容量となり、優れたサイクル特性(容量維持率)が得られることがわかった。 From Table 7, the average particle size (D50) in the volume cumulative particle size distribution is 0.5 to 20 μm, the 10% diameter (D10) is 0.1 to 5 μm, and the 90% diameter (D90) is 5 to 80 μm. In some cases, the battery has a high capacity, and excellent cycle characteristics (capacity retention ratio) can be obtained.
合金材料の平均粒径が大きくなると、電池容量は大きくなったが、容量維持率は低くなった。これは、合金材料の平均粒径が大きくなると、負極内での活物質の分布が不均一となり、充放電時の負極の膨張と収縮も不均一となり、集電劣化を引き起こしたためと考えられる。一方、合金材料の平均粒径が小さくなると、容量維持率は高くなったが、電池容量は低下した。これは、負極の合剤密度が低下したためと考えられる。 As the average particle size of the alloy material increased, the battery capacity increased, but the capacity retention rate decreased. This is presumably because when the average particle size of the alloy material is increased, the distribution of the active material in the negative electrode becomes non-uniform, and the negative electrode expands and contracts during charge and discharge, thereby causing current collection deterioration. On the other hand, when the average particle size of the alloy material was decreased, the capacity retention rate was increased, but the battery capacity was decreased. This is presumably because the density of the negative electrode mixture decreased.
《実施例6》
本実施例では、好ましい粒度分布を有する合金材料のB相に含まれる遷移金属元素の種類について検討した。遷移金属元素には、表8に示すように、Ti、Zr、Ni、Cu、Fe、CoおよびMnを用いた。
Example 6
In this example, the types of transition metal elements contained in the B phase of the alloy material having a preferable particle size distribution were examined. As the transition metal element, Ti, Zr, Ni, Cu, Fe, Co, and Mn were used as shown in Table 8.
A相:B相(重量比)が80:20となるように原料を混合したこと以外、実施例1と同様にしてTi−Si合金材料、Zr−Si合金材料、Ni−Si合金材料、Cu−Si合金材料、Fe−Si合金材料、Co−Si合金材料およびMn−Si合金材料を得た。得られた合金材料の結晶粒(結晶子)の粒径は10nmであった。 Ti-Si alloy material, Zr-Si alloy material, Ni-Si alloy material, Cu, as in Example 1, except that the raw materials were mixed so that the A phase: B phase (weight ratio) was 80:20. -Si alloy material, Fe-Si alloy material, Co-Si alloy material and Mn-Si alloy material were obtained. The grain size of crystal grains (crystallites) of the obtained alloy material was 10 nm.
これらの合金材料を、表8に示す粒度分布を有するように、ふるい分級した。全ての合金材料の平均粒径(D50)は1μmに統一した。これらの合金材料を用いたこと以外、実施例1と同様にして、ペレット状の負極を作製し、これらを用いて電池を作製し、実施例1と同様に評価した。なお、全ての合金材料に関し、負極の空隙率は22%に統一した。結果を表8に示す。 These alloy materials were sieve classified so as to have the particle size distribution shown in Table 8. The average particle size (D50) of all alloy materials was unified to 1 μm. Except for using these alloy materials, a pellet-shaped negative electrode was produced in the same manner as in Example 1, and a battery was produced using these, and evaluated in the same manner as in Example 1. In addition, regarding all the alloy materials, the porosity of the negative electrode was unified to 22%. The results are shown in Table 8.
表8が示すように、全ての電池が良好な初回放電容量を示した。一方、容量維持率は、遷移金属元素にCoおよびMnを用いた電池では低くなった。サイクル特性の劣化の主要因は、充放電に伴う集電性の劣化である。集電性の劣化は、充放電に伴う負極の膨張および収縮により、電極構造が変化し、負極全体の抵抗が増大するために起こる。このような現象は、合金材料を構成する遷移金属元素の種類に影響される。遷移金属元素を適切に選択することにより、合金材料の強度は、充放電時の膨張および収縮に適合した状態になると考えられる。 As Table 8 shows, all the batteries showed good initial discharge capacity. On the other hand, the capacity retention rate was low in batteries using Co and Mn as transition metal elements. The main factor of the deterioration of the cycle characteristics is the deterioration of the current collecting property due to charge / discharge. The deterioration of current collection occurs because the electrode structure changes due to expansion and contraction of the negative electrode accompanying charge / discharge, and the resistance of the entire negative electrode increases. Such a phenomenon is affected by the type of transition metal element constituting the alloy material. By appropriately selecting the transition metal element, the strength of the alloy material is considered to be in a state suitable for expansion and contraction during charging and discharging.
遷移金属元素として、Ti、Zr、Ni、CuおよびFeを用いた場合、容量維持率は良好であり、特にTiおよびZrを用いた場合が良好であり、Tiを用いた場合が最も良好であった。これは合金材料の強度が適度であり、充電時の割れが抑制されたためと考えられる。なお、遷移金属元素としてCoやMnを用いる場合でも、電極材料の導電性の改良や導電材の種類や量を改善することで、良好な特性が得られる可能性がある。 When Ti, Zr, Ni, Cu and Fe are used as the transition metal elements, the capacity retention rate is good, especially when Ti and Zr are used, and when Ti is used, the capacity is most favorable. It was. This is presumably because the strength of the alloy material was moderate and cracking during charging was suppressed. Even when Co or Mn is used as the transition metal element, good characteristics may be obtained by improving the conductivity of the electrode material or improving the type and amount of the conductive material.
《実施例7》
本実施例では、メカニカルアロイング法で得られた合金材料を、湿式粉砕することにより、粒度分布を制御した。遷移金属元素にはTiを用いた。
具体的には、以下の操作を行った。
まず、A相:B相(重量比)が80:20となるように原料を混合したこと以外、実施例1と同様にしてTi−Si合金材料を得た。得られた合金材料の平均粒径(D50)は50μmであり、結晶粒(結晶子)の粒径は10nmであった。
Example 7
In this example, the particle size distribution was controlled by wet-grinding the alloy material obtained by the mechanical alloying method. Ti was used as the transition metal element.
Specifically, the following operations were performed.
First, a Ti—Si alloy material was obtained in the same manner as in Example 1 except that the raw materials were mixed so that the A phase: B phase (weight ratio) was 80:20. The obtained alloy material had an average particle size (D50) of 50 μm, and the crystal grains (crystallites) had a particle size of 10 nm.
このTi−Si合金材料を、湿式ボールミルにより粉砕して、表9に示す様々な粒度分布を有する合金材料を得た。ボール状の媒体(メディア)にはφ5mmのジルコニアボールを用いた。粉砕容器にはポリエチレン製の500ml容器を用いた。粉砕容器内に酢酸n−ブチル120mlとともに、合金材料200gとジルコニアボール100個を投入した。ボールミルの回転数は120rpmとした。粉砕時間は所望の粒度分布に応じて変化させた。その後、酢酸n−ブチルを除去して合金材料を回収した。 This Ti—Si alloy material was pulverized by a wet ball mill to obtain alloy materials having various particle size distributions shown in Table 9. A zirconia ball having a diameter of 5 mm was used as a ball-shaped medium. A polyethylene 500 ml container was used as the grinding container. Along with 120 ml of n-butyl acetate, 200 g of an alloy material and 100 zirconia balls were placed in a pulverization vessel. The rotation speed of the ball mill was 120 rpm. The grinding time was varied according to the desired particle size distribution. Thereafter, n-butyl acetate was removed to recover the alloy material.
湿式粉砕により得られた合金材料の収率を、実施例5のふるい分級の場合とともに表9に示す。 The yield of the alloy material obtained by wet grinding is shown in Table 9 together with the case of sieving classification in Example 5.
表9が示すように、ふるい分級の場合に比べ、湿式粉砕を行った場合には、合金材料の収率が大きく向上した。よって、合金材料の粒度分布の制御は、合金材料をボール状の媒体とともに撹拌して粉砕することにより行うことが望ましい。 As Table 9 shows, the yield of the alloy material was greatly improved when wet pulverization was performed as compared with the case of sieve classification. Therefore, it is desirable to control the particle size distribution of the alloy material by stirring and pulverizing the alloy material together with a ball-shaped medium.
ここで、収率とは、分級(ふるい分級もしくは粉砕)する前の合金材料の仕込み重量に対する、分級後に回収された合金材料の重量の比を百分率(%)で示した値である。収率が100に近いほど、製造法が優れていることを示す。 Here, the yield is a value expressed as a percentage (%) of the ratio of the weight of the alloy material recovered after classification to the charged weight of the alloy material before classification (sieving classification or pulverization). The closer the yield is to 100, the better the production method.
湿式粉砕では、ふるい分級の場合に比べ、D50とD10との差およびD90とD50との差が小さくなり、粒度分布の幅が狭くなった。よって、湿式粉砕は、粒度分布の幅の狭い合金材料を得るのに適している。 In the wet pulverization, the difference between D50 and D10 and the difference between D90 and D50 were smaller than in the case of sieve classification, and the width of the particle size distribution was narrowed. Therefore, wet pulverization is suitable for obtaining an alloy material having a narrow particle size distribution.
本発明は、特に、携帯電話、デジタルカメラ等の各種電子機器の主電源およびメモリーバックアップ用電源として最適な非水電解質二次電池を提供するものであり、さらに、高い電気容量が要求されるとともに、大電流で急速な充放電を行う場合にも優れたサイクル特性が要求される用途に対しても好適な非水電解質二次電池を提供するものである。 In particular, the present invention provides a non-aqueous electrolyte secondary battery that is optimal as a main power source and a memory backup power source for various electronic devices such as mobile phones and digital cameras, and further requires a high electric capacity. The present invention also provides a non-aqueous electrolyte secondary battery suitable for applications that require excellent cycle characteristics even when performing rapid charge / discharge with a large current.
1 正極缶
2 負極缶
3 ガスケット
4 リチウム箔
5 負極
6 セパレータ
7 正極
8a、8b カーボンペースト
DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Negative electrode can 3
Claims (12)
前記負極は、Liを電気化学的に吸蔵および放出可能な合金材料を含み、
前記合金材料は、Siを主体とするA相と、遷移金属元素とSiとの金属間化合物からなるB相とを含み、
前記遷移金属元素が、Ti、Zr、Ni、CuおよびFeよりなる群から選ばれる少なくとも1種であり、
前記A相が微結晶の領域からなり、
前記微結晶の領域は、結晶子サイズが5nm〜50nmであり、
前記A相と前記B相との合計重量に占める前記A相の割合が、40重量%より多く、95重量%以下である、非水電解質二次電池。 A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte capable of reversibly inserting and extracting lithium,
The negative electrode includes an alloy material capable of electrochemically inserting and extracting Li,
The alloy material includes an A phase mainly composed of Si, and a B phase composed of an intermetallic compound of a transition metal element and Si,
The transition metal element is at least one selected from the group consisting of Ti, Zr, Ni, Cu and Fe;
The A phase consists of microcrystalline regions ,
The microcrystalline region has a crystallite size of 5 nm to 50 nm,
Before Symbol ratio of the A phase relative to the total weight of the A phase and the B phase, more than 40 wt%, 95 wt% or less, the non-aqueous electrolyte secondary battery.
次電池。 The nonaqueous electrolyte secondary battery according to claim 11 , wherein the density of the negative electrode is 1.6 to 2.4 g / cm 3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005323945A JP5030414B2 (en) | 2004-11-15 | 2005-11-08 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004330607 | 2004-11-15 | ||
JP2004330607 | 2004-11-15 | ||
JP2005323945A JP5030414B2 (en) | 2004-11-15 | 2005-11-08 | Nonaqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006164960A JP2006164960A (en) | 2006-06-22 |
JP5030414B2 true JP5030414B2 (en) | 2012-09-19 |
Family
ID=36666687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005323945A Active JP5030414B2 (en) | 2004-11-15 | 2005-11-08 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5030414B2 (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5152743B2 (en) * | 2007-06-06 | 2013-02-27 | 本城金属株式会社 | ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME |
US7896479B2 (en) * | 2008-04-30 | 2011-03-01 | Seiko Epson Corporation | Liquid jet head and a piezoelectric element |
JP2009286118A (en) * | 2008-04-30 | 2009-12-10 | Seiko Epson Corp | Liquid jet head and actuator apparatus |
JP2009286119A (en) * | 2008-04-30 | 2009-12-10 | Seiko Epson Corp | Liquid jet head and piezoelectric element |
EP2375476B1 (en) | 2008-12-30 | 2017-04-12 | LG Chem, Ltd. | Active anode substance for secondary battery |
US8287772B2 (en) * | 2009-05-14 | 2012-10-16 | 3M Innovative Properties Company | Low energy milling method, low crystallinity alloy, and negative electrode composition |
JP5598836B2 (en) * | 2009-08-03 | 2014-10-01 | 古河電気工業株式会社 | Negative electrode material for lithium ion secondary battery containing nano-sized particles, negative electrode for lithium ion secondary battery, lithium ion secondary battery |
JP5484816B2 (en) * | 2009-08-03 | 2014-05-07 | 古河電気工業株式会社 | Negative electrode material for lithium ion secondary battery containing nano-sized particles, negative electrode for lithium ion secondary battery, lithium ion secondary battery |
JP5520538B2 (en) * | 2009-08-03 | 2014-06-11 | 古河電気工業株式会社 | Negative electrode material for lithium ion secondary battery containing nano-sized particles, negative electrode for lithium ion secondary battery, lithium ion secondary battery |
JP5362502B2 (en) * | 2009-09-24 | 2013-12-11 | 山陽特殊製鋼株式会社 | Si alloy for negative electrode material of lithium secondary battery |
CN102511094B (en) | 2009-11-12 | 2016-04-13 | 株式会社Lg化学 | Cathode active material and the lithium secondary battery comprising it |
CN103003988A (en) * | 2010-07-15 | 2013-03-27 | 丰田自动车株式会社 | Method for producing anode material, anode material, method for producing lithium secondary battery, and lithium secondary battery |
KR101263265B1 (en) * | 2010-07-30 | 2013-05-10 | 일진전기 주식회사 | Negative active material |
KR101126202B1 (en) * | 2010-11-04 | 2012-03-22 | 삼성에스디아이 주식회사 | Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same |
GB2492167C (en) * | 2011-06-24 | 2018-12-05 | Nexeon Ltd | Structured particles |
WO2013069197A1 (en) * | 2011-11-11 | 2013-05-16 | 株式会社豊田自動織機 | Negative-electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery |
US9123955B2 (en) | 2012-04-06 | 2015-09-01 | Samsung Sdi Co., Ltd. | Negative active material, lithium battery including the material, and method for manufacturing the material |
JP2014107132A (en) * | 2012-11-28 | 2014-06-09 | Furukawa Electric Co Ltd:The | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery |
JP6135156B2 (en) * | 2013-02-05 | 2017-05-31 | 日本電気硝子株式会社 | Negative electrode active material powder for power storage device, negative electrode material for power storage device and negative electrode for power storage device using the same |
JP6076772B2 (en) * | 2013-02-19 | 2017-02-08 | 山陽特殊製鋼株式会社 | Si-based alloy negative electrode material for power storage device and electrode using the same |
KR101825921B1 (en) | 2013-07-05 | 2018-02-06 | 삼성에스디아이 주식회사 | Electrode for lithium secondary battery and lithium secondary battery comprising the same |
KR101825920B1 (en) | 2013-07-16 | 2018-03-22 | 삼성에스디아이 주식회사 | Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material |
JP5965445B2 (en) | 2013-09-25 | 2016-08-03 | 国立大学法人 東京大学 | Nonaqueous electrolyte secondary battery |
CN105580184B (en) | 2013-09-25 | 2019-03-12 | 国立大学法人东京大学 | Non-aqueous electrolyte secondary battery |
JP6338840B2 (en) * | 2013-10-07 | 2018-06-06 | 古河機械金属株式会社 | Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery |
KR20150074903A (en) * | 2013-12-24 | 2015-07-02 | 일진전기 주식회사 | Cathode plate for lithium secondary battery |
KR102152883B1 (en) | 2014-01-27 | 2020-09-07 | 삼성에스디아이 주식회사 | Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material |
WO2016067577A1 (en) * | 2014-10-29 | 2016-05-06 | 新日鐵住金株式会社 | Negative electrode active material, negative electrode, and battery |
JP2016115453A (en) * | 2014-12-12 | 2016-06-23 | 日立マクセル株式会社 | Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
JP6415361B2 (en) * | 2015-03-12 | 2018-10-31 | 日本新金属株式会社 | Coarse and uniform, spherical titanium silicide powder and method for producing the same |
JP2016225143A (en) * | 2015-05-29 | 2016-12-28 | エルジー・ケム・リミテッド | Negative electrode material for secondary battery and nonaqueous electrolyte secondary battery using the same |
EP3394920A4 (en) * | 2015-12-22 | 2019-06-26 | 3M Innovative Properties Company | Anode materials for lithium ion batteries and methods of making and using same |
EP3788665A1 (en) * | 2018-05-02 | 2021-03-10 | Maxwell Technologies, Inc. | Compositions and methods for silicon containing dry anode films |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4395898B2 (en) * | 1997-06-03 | 2010-01-13 | パナソニック株式会社 | Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using these anode materials |
JP2001291512A (en) * | 2000-04-05 | 2001-10-19 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP4344121B2 (en) * | 2002-09-06 | 2009-10-14 | パナソニック株式会社 | Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP2004319390A (en) * | 2003-04-18 | 2004-11-11 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP4368139B2 (en) * | 2003-05-08 | 2009-11-18 | パナソニック株式会社 | Anode material for non-aqueous electrolyte secondary battery |
JP3929429B2 (en) * | 2003-10-09 | 2007-06-13 | 三星エスディアイ株式会社 | Electrode for lithium secondary battery and lithium secondary battery |
-
2005
- 2005-11-08 JP JP2005323945A patent/JP5030414B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006164960A (en) | 2006-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5030414B2 (en) | Nonaqueous electrolyte secondary battery | |
KR100790271B1 (en) | Non-aqueous electrolyte secondary battery and production method thereof | |
JP5079334B2 (en) | Lithium ion secondary battery and method for producing the negative electrode | |
JP5072323B2 (en) | Nonaqueous electrolyte secondary battery and method for producing negative electrode material for nonaqueous electrolyte secondary battery | |
JP5200339B2 (en) | Nonaqueous electrolyte secondary battery | |
US7662514B2 (en) | Non-aqueous electrolyte secondary battery and method for producing negative electrode material for non-aqueous electrolyte secondary battery | |
JP4994631B2 (en) | Nonaqueous electrolyte secondary battery and positive electrode active material thereof | |
US7923150B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4996830B2 (en) | Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2004103340A (en) | Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery | |
KR20060004597A (en) | Negative active material and method for production thereof, non-aqueous electrolyte secondary cell using the same | |
JP2010033924A (en) | Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery using the same | |
JP5021982B2 (en) | Nonaqueous electrolyte secondary battery | |
KR102289691B1 (en) | Positive active material, method of manufacturing the same, and positive electrode and rechargeable lithium battery including the same | |
EP2395582A1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
JP4184479B2 (en) | Nonaqueous electrolyte secondary battery and method for producing the negative electrode | |
JP2006318926A (en) | Positive electrode active material and nonaqueous electrolyte secondary battery | |
JP3624417B2 (en) | NEGATIVE ELECTRODE ACTIVE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND NON-AQUEOUS ELECTROLYTE BATTERY | |
JP2007200683A (en) | Manufacturing method of cathode active substance for lithium secondary battery, cathode for lithium secondary battery and lithium secondary battery | |
CN102753483A (en) | Process for production of composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery | |
JP5360870B2 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP3848187B2 (en) | Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP2005071938A (en) | Negative electrode activator for secondary battery, negative electrode and secondary battery using the same, and manufacturing method of negative electrode activator for secondary battery and negative electrode for secondary battery using the activator | |
JP2001185150A (en) | Secondary battery using nonaqueous electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20061226 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080716 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110623 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120531 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120626 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5030414 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |