JP2007200683A - Manufacturing method of cathode active substance for lithium secondary battery, cathode for lithium secondary battery and lithium secondary battery - Google Patents

Manufacturing method of cathode active substance for lithium secondary battery, cathode for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP2007200683A
JP2007200683A JP2006017124A JP2006017124A JP2007200683A JP 2007200683 A JP2007200683 A JP 2007200683A JP 2006017124 A JP2006017124 A JP 2006017124A JP 2006017124 A JP2006017124 A JP 2006017124A JP 2007200683 A JP2007200683 A JP 2007200683A
Authority
JP
Japan
Prior art keywords
raw material
positive electrode
secondary battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017124A
Other languages
Japanese (ja)
Inventor
Shinichi Waki
新一 脇
Yoko Sano
陽子 佐野
Yasuhiko Mifuji
靖彦 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006017124A priority Critical patent/JP2007200683A/en
Publication of JP2007200683A publication Critical patent/JP2007200683A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a manganese oxide having a spinel structure as shown in a general formula Li<SB>1+a</SB>Mn<SB>2-x-a</SB>M<SB>x</SB>O<SB>4+y</SB>(0≤x≤0.5, -0.2≤y<0.5, 0≤a≤0.2, M for at least a kind of a transition metal selected from a group of Ni, Fe, and Ti), in which formation of impurities is controlled. <P>SOLUTION: The manufacturing method of a cathode active substance for a lithium secondary battery includes a process in which a Li raw material, an M raw material and a Mn raw material are mixed and crushed, and a process in which the mixed and crushed raw materials are calcined, and in the above mixing and crushing process, after the Li raw material and the Mn raw material are mixed and crushed, the Mn raw material is added and mixed to raise a reactivity of the Li raw material and the Mn raw material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池の分野に属し、詳しくは、スピネル構造を有するマンガン酸化物を含むリチウム二次電池用正極活物質とリチウム二次電池用正極及びリチウム二次電池の製造方法に関する。   The present invention belongs to the field of lithium secondary batteries, and in particular, relates to a positive electrode active material for lithium secondary batteries containing a manganese oxide having a spinel structure, a positive electrode for lithium secondary batteries, and a method for manufacturing a lithium secondary battery.

近年、移動体通信機器、携帯電子機器の主電源として利用されている非水電解質二次電池は、起電力が高く、高エネルギー密度である点に特長を有する。非水電解質二次電池用正極活物質には、層状構造を有するリチウム含有複合酸化物が主に用いられている。なかでもコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)等は、金属リチウムに対して4V以上の電位を有する。 In recent years, non-aqueous electrolyte secondary batteries used as a main power source for mobile communication devices and portable electronic devices are characterized by high electromotive force and high energy density. As a positive electrode active material for a non-aqueous electrolyte secondary battery, a lithium-containing composite oxide having a layered structure is mainly used. Among these, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and the like have a potential of 4 V or more with respect to metallic lithium.

スピネル構造を有するマンガン酸化物を非水電解質二次電池の正極活物質に用いる検討も活発である。例えば、LiMn24、Li4Mn512、Li2Mn49などの利用が提案されている。 Studies are also actively conducted on the use of manganese oxide having a spinel structure as a positive electrode active material of a non-aqueous electrolyte secondary battery. For example, utilization of LiMn 2 O 4 , Li 4 Mn 5 O 12 , Li 2 Mn 4 O 9 and the like has been proposed.

LiMn24は安価であるため、非水電解質二次電池の製造コストを低減する観点から注目されている。しかし、LiMn24を含む電池の充放電を3V付近で繰り返すと、放電容量が顕著に減少する。これは、ヤンテラー(Jahn−Teller)歪みに由来する結晶構造の変化が原因であると考えられている。 Since LiMn 2 O 4 is inexpensive, it has attracted attention from the viewpoint of reducing the manufacturing cost of the nonaqueous electrolyte secondary battery. However, when charging / discharging of the battery containing LiMn 2 O 4 is repeated at around 3 V, the discharge capacity is significantly reduced. This is considered to be caused by a change in crystal structure derived from the Jahn-Teller strain.

Li4Mn512もしくはLi2Mn49は、ヤンテラー歪みが比較的起こりにくい。特に、Li2Mn49は、カチオンサイトに欠損を有するため、容量密度も高い。しかし、充放電を3V付近で繰り返す場合の放電容量の減少は依然として大きい。 Li 4 Mn 5 O 12 or Li 2 Mn 4 O 9 is less susceptible to Yanterer distortion. In particular, Li 2 Mn 4 O 9 has a high capacity density because it has a defect at the cation site. However, the reduction in the discharge capacity when charging / discharging is repeated at around 3 V is still large.

特許文献1は、LiDx/bMn2-x4+δ(元素Dは、酸化数1価または多価の金属元素、0<x≦0.33、0≦δ<0.5、bは、元素Dの酸化数)の利用を提案している。元素Dには、Li、MgもしくはCoが提案されている。 Patent Document 1 discloses LiD x / b Mn 2−x O 4+ δ (element D is a monovalent or polyvalent metal element, 0 <x ≦ 0.33, 0 ≦ δ <0.5, b Proposes the use of the oxidation number of element D). As the element D, Li, Mg, or Co has been proposed.

また、特許文献2は、スピネル構造を有するマンガン酸化物の製造方法を提案している。この提案によれば、リチウム塩とマンガン塩とを混合粉砕し、大気中200―600℃で焼成を行う。
米国特許第5316877号明細書 米国特許第4980251号明細書
Patent Document 2 proposes a method for producing a manganese oxide having a spinel structure. According to this proposal, lithium salt and manganese salt are mixed and pulverized and fired at 200-600 ° C. in the atmosphere.
US Pat. No. 5,316,877 US Pat. No. 4,980,251

特許文献1によると、充放電を4V付近で繰り返す場合の放電容量の減少は抑制されるものの、3V付近の放電容量の減少に対しては十分ではない。   According to Patent Document 1, a decrease in discharge capacity when charging / discharging is repeated in the vicinity of 4V is suppressed, but it is not sufficient for a decrease in discharge capacity in the vicinity of 3V.

また、特許文献2においてスピネル構造を有するマンガン酸化物の製造方法が提案されているが、Mn原料にMn34、Mn23、MnO2を用いた場合にはMn原料が平均粒子径で1μm以下になるまで粉砕を行わなければ単一相が得られない。また、マンガン塩を1μm以下まで粉砕すると、焼成後得られるマンガン酸化物も1μm以下の微粒子となり、正極の充填密度が低下する。 Patent Document 2 proposes a method for producing a manganese oxide having a spinel structure. When Mn 3 O 4 , Mn 2 O 3 , and MnO 2 are used as the Mn raw material, the Mn raw material has an average particle diameter. Thus, a single phase cannot be obtained unless pulverization is performed until it becomes 1 μm or less. Further, when the manganese salt is pulverized to 1 μm or less, the manganese oxide obtained after firing also becomes fine particles of 1 μm or less, and the packing density of the positive electrode is lowered.

本発明は、スピネル構造を有するマンガン酸化物の製造方法であり、高充放電サイクル特性を有する高純度のスピネル構造を有するマンガン酸化物を製造することを目的とする。   The present invention is a method for producing a manganese oxide having a spinel structure, and an object thereof is to produce a manganese oxide having a high-purity spinel structure having high charge / discharge cycle characteristics.

本発明は、一般式Li1+aMn2-x-ax4+y(0≦x≦0.5、−0.2≦y<0.5、0≦a≦0.2、MはNi、Fe、Tiからなる群より選ばれる少なくとも一種の遷移金属)で表されるスピネル構造を有するリチウム二次電池用正極活物質の製造方法であって、Li原料とM原料とMn原料を混合粉砕する工程と、混合粉砕した原料を焼成する工程とを有し、前記原料を混合粉砕する工程で、Li原料とM原料とを混合粉砕した後、Mn原料を追加して混合粉砕することを特徴とする。 The present invention has the general formula Li 1 + a Mn 2−xa M x O 4 + y (0 ≦ x ≦ 0.5, −0.2 ≦ y <0.5, 0 ≦ a ≦ 0.2, M is A method for producing a positive electrode active material for a lithium secondary battery having a spinel structure represented by at least one transition metal selected from the group consisting of Ni, Fe, and Ti, wherein a Li raw material, an M raw material, and a Mn raw material are mixed A step of pulverizing and a step of firing the mixed and pulverized raw material. In the step of mixing and pulverizing the raw material, after mixing and pulverizing the Li raw material and the M raw material, adding and mixing and pulverizing the Mn raw material Features.

本発明によれば、高充放電サイクル特性を有する高純度のスピネル構造を有するマンガン酸化物を製造することが可能とり、MnとNi、FeおよびTiよりなる群から選択される少なくとも1種を置換することにより、サイクル寿命特性が向上する。   According to the present invention, it is possible to produce a manganese oxide having a high-purity spinel structure having high charge / discharge cycle characteristics, and at least one selected from the group consisting of Mn, Ni, Fe, and Ti is substituted. By doing so, the cycle life characteristics are improved.

また、本発明の正極をリチウム二次電池に用いることにより、高容量で充放電サイクル特性に優れるリチウム二次電池を提供することができる。   In addition, by using the positive electrode of the present invention for a lithium secondary battery, a lithium secondary battery having a high capacity and excellent charge / discharge cycle characteristics can be provided.

本発明は、一般式Li1+aMn2-x-ax4+y(0≦x≦0.5、−0.2≦y<0.5、0≦a≦0.2、MはNi、Fe、Tiからなる群より選ばれる少なくとも一種の遷移金属)で表されるスピネル構造を有するリチウム二次電池用正極活物質の製造方法であって、Li原料とM原料とMn原料を混合粉砕する工程と、混合粉砕した原料を焼成する工程とを有し、前記原料を混合粉砕する工程で、Li原料とM原料とを混合粉砕した後、Mn原料を追加して混合粉砕することを特徴とする。 The present invention has the general formula Li 1 + a Mn 2−xa M x O 4 + y (0 ≦ x ≦ 0.5, −0.2 ≦ y <0.5, 0 ≦ a ≦ 0.2, M is A method for producing a positive electrode active material for a lithium secondary battery having a spinel structure represented by at least one transition metal selected from the group consisting of Ni, Fe, and Ti, wherein a Li raw material, an M raw material, and a Mn raw material are mixed A step of pulverizing and a step of firing the mixed and pulverized raw material. In the step of mixing and pulverizing the raw material, after mixing and pulverizing the Li raw material and the M raw material, adding and mixing and pulverizing the Mn raw material Features.

本発明のおけるマンガン酸化物は、一般式:Li1+aMn2-x-ax4+y(MはNi、Fe、Tiからなる群より選ばれる少なくとも一種の遷移金属、0≦x≦0.5、−0.2≦y≦0.5、0≦a≦0.2)で表される。すなわち、本発明に係るマンガン酸化物は、MnがNi、FeおよびTiよりなる群から選択される少なくとも1種で置換された結晶構造を有する。このような結晶構造は、非常に安定であり、ヤンテラー歪みを生じにくいと考えられる。よって、良好なサイクル寿命特性が得られる。 The manganese oxide in the present invention has a general formula: Li 1 + a Mn 2−xa M x O 4 + y (M is at least one transition metal selected from the group consisting of Ni, Fe and Ti, 0 ≦ x ≦ 0.5, −0.2 ≦ y ≦ 0.5, 0 ≦ a ≦ 0.2). That is, the manganese oxide according to the present invention has a crystal structure in which Mn is substituted with at least one selected from the group consisting of Ni, Fe and Ti. Such a crystal structure is considered to be very stable and hardly cause Yanterer distortion. Therefore, good cycle life characteristics can be obtained.

上記一般式において、Mnと置換されたリチウム量を示すa値は、0〜0.2の範囲であればよい。a値が0.2を超えると、放電容量が減少する。なお、a<0であると通常Liが占有する8aサイトにMnあるいは元素Mが配位される。8aサイトのLiは充放電反応に寄与するため異種元素が置換すると放電容量が低下する。そのため、0≦aであることが望ましい。a値の好ましい範囲は、0≦a≦0.15である。   In the above general formula, the a value indicating the amount of lithium substituted with Mn may be in the range of 0 to 0.2. When the a value exceeds 0.2, the discharge capacity decreases. When a <0, Mn or element M is coordinated to the 8a site that is usually occupied by Li. Since Li at the 8a site contributes to the charge / discharge reaction, the discharge capacity decreases when a different element is substituted. Therefore, it is desirable that 0 ≦ a. A preferable range of the a value is 0 ≦ a ≦ 0.15.

また、過剰の酸素量を示すy値は、−0.2〜0.5の範囲であればよい。y値が0.5より大きくなるためには、Mnあるいは添加元素の価数が4以上となる必要があり、合成が困難となる。なお、マンガン酸化物にカチオン欠損を付与し、ヤンテラー歪みを抑制する観点からは、0≦yであることが望ましい。y値の好ましい範囲は、0≦y≦0.5である。   Moreover, y value which shows excess oxygen amount should just be the range of -0.2-0.5. In order for the y value to be greater than 0.5, the valence of Mn or the additive element needs to be 4 or more, which makes synthesis difficult. In addition, it is desirable that 0 ≦ y from the viewpoint of imparting a cation deficiency to the manganese oxide and suppressing Yanterer distortion. A preferable range of the y value is 0 ≦ y ≦ 0.5.

本発明の上記スピネル構造を有するマンガン酸化物の製造方法は、Li原料とM原料とMn原料を混合粉砕する工程と、混合粉砕した原料を焼成する工程とを有し、前記原料を混合粉砕する工程で、Li原料とM原料とを平均粒子径が1μm以下になるまで混合粉砕
した後、Mn原料を追加してMn原料の平均粒子径が3μm以上30μm以下になるように混合粉砕することを特徴とする。本発明によれば、Li原料とM原料が微粒子化することにより、Mn原料との反応性が高くなり、高純度のスピネル構造を有するマンガン酸化物が得られやすくなる。また、Mn原料は微粉砕されないため、焼成後のスピネル構造を有するマンガン酸化物が微粒子にならず電極作製時に高い充填密度が可能となる。
The method for producing a manganese oxide having the spinel structure according to the present invention includes a step of mixing and pulverizing a Li raw material, an M raw material, and a Mn raw material, and a step of firing the mixed and pulverized raw material, and mixing and pulverizing the raw material. In the process, the Li raw material and the M raw material are mixed and pulverized until the average particle diameter becomes 1 μm or less, and then the Mn raw material is added and mixed and pulverized so that the average particle diameter of the Mn raw material becomes 3 μm or more and 30 μm or less. Features. According to the present invention, when the Li raw material and the M raw material are made into fine particles, the reactivity with the Mn raw material becomes high, and it becomes easy to obtain a manganese oxide having a high-purity spinel structure. In addition, since the Mn raw material is not finely pulverized, the manganese oxide having a spinel structure after firing does not become fine particles, and a high packing density is possible during electrode production.

さらに発明は、前記混合した原料を焼成する工程において、焼成温度が300℃以上600℃以下であることを特徴とする。   Furthermore, the invention is characterized in that, in the step of firing the mixed raw materials, the firing temperature is 300 ° C. or higher and 600 ° C. or lower.

300℃未満の場合、原料が分解せず不純物として残る。一方、600℃以下の場合、スピネル構造を有するマンガン酸化物がカチオン欠損状態となる。これにより、放電容量が大きくなる。また、3Vで充放電を行う場合にMnの価数の低下を抑制でき、充放電時の放電容量の低下を抑制することができる。   When the temperature is lower than 300 ° C., the raw material is not decomposed and remains as an impurity. On the other hand, when the temperature is 600 ° C. or lower, the manganese oxide having a spinel structure is in a cation deficient state. This increases the discharge capacity. Moreover, when charging / discharging at 3V, the fall of the valence of Mn can be suppressed and the fall of the discharge capacity at the time of charging / discharging can be suppressed.

次に、スピネル構造を有するマンガン酸化物の製造法の一例について説明する。   Next, an example of a method for producing a manganese oxide having a spinel structure will be described.

例えばリチウム塩と、元素Mの塩とを、所定モル比で予め粉砕混合し、Mn原料を追加して粉砕混合する。混合物を空気中で300〜600℃で、5〜24時間焼成すれば、所望のマンガン酸化物が得られる。二酸化マンガンには、例えば、電解二酸化マンガンが好適である。   For example, a lithium salt and a salt of the element M are previously pulverized and mixed at a predetermined molar ratio, and an Mn raw material is added and pulverized and mixed. If the mixture is baked in air at 300 to 600 ° C. for 5 to 24 hours, the desired manganese oxide is obtained. As manganese dioxide, for example, electrolytic manganese dioxide is suitable.

リチウム塩には、水酸化リチウム、炭酸リチウムなどが適している。元素Mの塩は、例えば水酸化物、硝酸塩、炭酸塩、硫酸塩、酢酸塩、酸化物などを用いることができる。   Suitable lithium salts include lithium hydroxide and lithium carbonate. As the salt of the element M, for example, hydroxide, nitrate, carbonate, sulfate, acetate, oxide and the like can be used.

なお、元素MがNiである場合は、水酸化ニッケル、炭酸ニッケルなどが好適である。元素MがFeである場合は、水酸化第二鉄、オキシ水酸化第二鉄などが好適である。元素MがTiである場合は、メタ水酸化チタン(β−型)、オルト水酸化チタン(α−型)、テトラメトキシチタンなどが好適である。   In addition, when the element M is Ni, nickel hydroxide, nickel carbonate, etc. are suitable. When the element M is Fe, ferric hydroxide, ferric oxyhydroxide, and the like are preferable. When the element M is Ti, meta titanium hydroxide (β-type), ortho titanium hydroxide (α-type), tetramethoxy titanium, and the like are preferable.

次に、上記の正極活物質を含む正極、負極活物質を含む負極およびリチウムイオン伝導性の非水電解質を含む非水電解質二次電池について説明する。非水電解質二次電池の形状は、特に限定されない。本発明は、例えば、コイン型、円筒型、角型、シート型などの電池に適用可能である。   Next, a positive electrode including the positive electrode active material, a negative electrode including a negative electrode active material, and a nonaqueous electrolyte secondary battery including a lithium ion conductive nonaqueous electrolyte will be described. The shape of the nonaqueous electrolyte secondary battery is not particularly limited. The present invention is applicable to, for example, coin-type, cylindrical-type, square-type, and sheet-type batteries.

正極は、コイン型電池の場合、正極合剤を、例えばペレット状に成形したものである。正極合剤には、正極活物質の他に、導電剤、結着剤、液状成分(分散媒)などが任意成分として含まれている。円筒型電池もしくは角型電池の正極は、例えば、正極集電体の両面に、正極合剤ペーストを塗着し、乾燥し、圧延して、正極合剤層を形成することにより作製される。正極合剤ペーストは、正極合剤を、液状の分散媒と混合して、調製される。   In the case of a coin-type battery, the positive electrode is obtained by forming a positive electrode mixture into, for example, a pellet shape. In addition to the positive electrode active material, the positive electrode mixture contains a conductive agent, a binder, a liquid component (dispersion medium) and the like as optional components. The positive electrode of the cylindrical battery or the square battery is produced by, for example, applying a positive electrode mixture paste on both surfaces of a positive electrode current collector, drying, and rolling to form a positive electrode mixture layer. The positive electrode mixture paste is prepared by mixing the positive electrode mixture with a liquid dispersion medium.

負極は、コイン型電池の場合、ペレット状に打ち抜いた金属リチウムもしくはリチウム合金を用いることができる。ただし、良好なサイクル特性を得るためには、負極合剤をペレット状に成形したものが好ましい。負極合剤には、負極活物質の他に、結着剤、導電剤、増粘剤などが任意成分として含まれている。円筒型電池もしくは角型電池の場合、負極は正極と同様に、例えば、負極集電体の両面に、負極合剤ペーストを塗着し、乾燥し、圧延して、負極合剤層を形成することにより作製される。   In the case of a coin-type battery, the negative electrode can use metallic lithium or a lithium alloy punched into a pellet. However, in order to obtain good cycle characteristics, it is preferable to form the negative electrode mixture in a pellet form. In addition to the negative electrode active material, the negative electrode mixture contains a binder, a conductive agent, a thickener and the like as optional components. In the case of a cylindrical battery or a prismatic battery, the negative electrode is, for example, coated with a negative electrode mixture paste on both sides of the negative electrode current collector, dried and rolled to form a negative electrode mixture layer in the same manner as the positive electrode. It is produced by this.

負極活物質は、特に限定されないが、正極活物質との相性を考慮すると、ケイ素元素を含むことが好ましい。例えば、負極活物質は、ケイ素単体、ケイ素酸化物、ケイ素炭化物、ケイ素窒化物およびケイ素合金よりなる群から選択される少なくとも1種であることが
好ましい。なかでもケイ素合金を用いることが特に好ましい。ただし、炭素材料(例えば黒鉛、易黒鉛化性炭素材料、難黒鉛化性炭素材料など)も好ましく用いることができる。
The negative electrode active material is not particularly limited, but preferably contains silicon element in consideration of compatibility with the positive electrode active material. For example, the negative electrode active material is preferably at least one selected from the group consisting of simple silicon, silicon oxide, silicon carbide, silicon nitride, and silicon alloy. Among these, it is particularly preferable to use a silicon alloy. However, carbon materials (for example, graphite, graphitizable carbon material, non-graphitizable carbon material, etc.) can also be preferably used.

ケイ素合金は、ケイ素を主体とするA相と、遷移金属元素とケイ素元素との金属間化合物からなるB相とを含むことが望ましい。A相とB相とを含むケイ素合金は、膨張による影響が緩和されやすく、電子伝導性の低下も生じにくい。よって、本発明の正極極活物質と組み合わせることで、非常に優れたサイクル寿命特性を実現できる。   The silicon alloy preferably includes an A phase mainly composed of silicon and a B phase made of an intermetallic compound of a transition metal element and a silicon element. In the silicon alloy containing the A phase and the B phase, the influence due to expansion is easily mitigated, and the electronic conductivity is hardly lowered. Therefore, very excellent cycle life characteristics can be realized by combining with the positive electrode active material of the present invention.

A相は、Liの吸蔵および放出を担う相である。A相は、電気化学的にLiと反応可能な相である。A相は、Siを主体とする相であればよいが、高容量を実現する観点からは、Si単体であることが好ましい。ただし、Si単体は、半導体であり、電子伝導性に乏しい。よって、微量の不純物を5重量%程度までA相に含ませることが有効である。不純物には、例えばリン、ホウ素、水素、遷移金属元素等が挙げられる。   The A phase is a phase responsible for insertion and extraction of Li. The A phase is a phase that can electrochemically react with Li. The A phase may be a phase mainly composed of Si, but is preferably Si alone from the viewpoint of realizing a high capacity. However, Si alone is a semiconductor and has poor electron conductivity. Therefore, it is effective to include a trace amount of impurities in the A phase up to about 5% by weight. Examples of impurities include phosphorus, boron, hydrogen, and transition metal elements.

B相は、遷移金属元素とケイ素との金属間化合物からなる。ケイ素を含む金属間化合物は、A相との親和性が高い。よって、充電時の合金膨張時においてもA相とB相との界面に亀裂が生じにくい。また、B相は、Si単体相に比較して電子伝導性が高く、かつ硬度も高い。よって、B相は、A相の低い電子伝導性を補うとともに、合金粒子の形状維持に寄与する。B相は、複数種存在していてもよい。組成の異なる2種以上の金属間化合物がB相として存在してもよい。   The B phase is composed of an intermetallic compound of a transition metal element and silicon. The intermetallic compound containing silicon has high affinity with the A phase. Therefore, even when the alloy expands during charging, cracks are unlikely to occur at the interface between the A phase and the B phase. In addition, the B phase has higher electron conductivity and higher hardness than the Si single phase. Therefore, the B phase supplements the low electronic conductivity of the A phase and contributes to maintaining the shape of the alloy particles. A plurality of B phases may be present. Two or more intermetallic compounds having different compositions may exist as the B phase.

A相およびB相は、微結晶または非晶質の領域からなることが望ましい。微結晶または非晶質の領域において、結晶子(結晶粒)のサイズは、100nm以下であることが好ましく、5nm以上100nm以下であることが更に好ましい。   The A phase and the B phase are preferably composed of microcrystalline or amorphous regions. In the microcrystalline or amorphous region, the size of crystallites (crystal grains) is preferably 100 nm or less, more preferably 5 nm or more and 100 nm or less.

結晶子サイズは、X線回折測定により求めることができる。具体的には、X線回折測定で得られた合金の回折スペクトルのうち、各相に帰属されるピークの半価幅を求める。その半価幅とScherrerの式から、結晶子サイズを算出することができる。各相に帰属されるピークが複数存在する場合には、最も強度の大きなピークの半価幅を求め、これにScherrerの式を適用する。通常、半価幅が0.09°以上であれば、結晶子サイズは100nm以下であると判定できる。   The crystallite size can be determined by X-ray diffraction measurement. Specifically, the half-value width of the peak attributed to each phase is obtained from the diffraction spectrum of the alloy obtained by X-ray diffraction measurement. The crystallite size can be calculated from the half width and Scherrer's equation. When there are a plurality of peaks attributed to each phase, the half width of the peak with the highest intensity is obtained, and the Scherrer formula is applied thereto. Usually, if the half width is 0.09 ° or more, the crystallite size can be determined to be 100 nm or less.

金属間化合物を構成する遷移金属元素は、Ti、Zr、Ni、CuおよびFeよりなる群から選ばれる少なくとも1種であることが望ましく、Tiであることが特に望ましい。チタンのケイ化物は、他の元素のケイ化物よりも高い電子伝導性を有し、かつ高い硬度を有する。   The transition metal element constituting the intermetallic compound is preferably at least one selected from the group consisting of Ti, Zr, Ni, Cu and Fe, and particularly preferably Ti. Titanium silicides have higher electronic conductivity and higher hardness than other elemental silicides.

リチウムイオン伝導性の非水電解質には、ゲル状電解質や固体電解質でもよいが、リチウム塩を溶解した非水溶媒が最も一般的である。非水溶媒には、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類等を挙げることができる。これらは複数を組み合わせて用いることが好ましい。   The lithium ion conductive non-aqueous electrolyte may be a gel electrolyte or a solid electrolyte, but a non-aqueous solvent in which a lithium salt is dissolved is most common. Nonaqueous solvents include, for example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl Chain carbonates such as methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate, and γ-lactones such as γ-butyrolactone , 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, etc. Can do. These are preferably used in combination.

非水溶媒に溶解させるリチウム塩には、例えばLiClO4、LiBF4、LiPF6
LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウム、イミド類(リチウム・ビスペンタフルオロエチルスルホン酸イミド(LiN(C25SO22)など)等を挙げることができる。これらは単独で用いてもよく、複数を組み合わせて用いてもよい。リチウム塩の非水溶媒に対する溶解量は、特に限定されないが、0.2〜2.0mol/Lが好ましく、0.5〜1.5mol/Lがより好ましい。
Examples of the lithium salt dissolved in the non-aqueous solvent include LiClO 4 , LiBF 4 , LiPF 6 ,
LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl, LiBr, LiI, chloroborane Lithium, lithium tetraphenylborate, imides (lithium bispentafluoroethylsulfonic acid imide (LiN (C 2 F 5 SO 2 ) 2, etc.)) and the like can be given. These may be used alone or in combination. The amount of lithium salt dissolved in the non-aqueous solvent is not particularly limited, but is preferably 0.2 to 2.0 mol / L, and more preferably 0.5 to 1.5 mol / L.

次に、本発明を実施例に基づいて具体例に説明するが、本発明は以下の実施例に限定されるものではない。実施例および比較例においては、以下の要領で正極およびコイン型電池を作製し、評価した。   EXAMPLES Next, although this invention is demonstrated to a specific example based on an Example, this invention is not limited to a following example. In Examples and Comparative Examples, positive electrodes and coin-type batteries were produced and evaluated in the following manner.

(実施例1)
水酸化リチウム一水和物(関東化学株式会社、鹿特級)を直径5mmのジルコニア製ボールと共にボールミルによりイソプロパノール中で15時間粉砕し平均粒子径0.3μmとした。次に、電解二酸化マンガン(三井金属、平均粒子径:30μm)を加え1時間さらに混合粉砕を行い、二酸化マンガンの平均粒子径を7μmとした。このようにして得られたスラリー状の混合物をボールから分離後、ロータリーエバポレーターにより、減圧下40℃にて溶媒を蒸発乾燥し、粉末状の混合物を得た。なお、原料の混合比はLi:Mnのモル比で1:2となるようにした。この粉末状の混合物を空気中400℃で12時間焼成し、LiMn24.2で表されるカチオン欠損型のスピネル構造を有するマンガン酸化物を得た。これを試料Aとした。なお、活物質の組成はカチオンの定量分析をICP発光分光分析により、酸素の定量分析を赤外線吸収法によりそれぞれ行い算出した。
Example 1
Lithium hydroxide monohydrate (Kanto Chemical Co., Ltd., Deer Special Grade) was pulverized in isopropanol with a zirconia ball having a diameter of 5 mm for 15 hours in an isopropanol to an average particle size of 0.3 μm. Next, electrolytic manganese dioxide (Mitsui Metals, average particle size: 30 μm) was added and further mixed and pulverized for 1 hour, so that the average particle size of manganese dioxide was 7 μm. The slurry-like mixture thus obtained was separated from the balls, and then the solvent was evaporated and dried at 40 ° C. under reduced pressure by a rotary evaporator to obtain a powder-like mixture. The mixing ratio of the raw materials was 1: 2 in terms of the Li: Mn molar ratio. This powdery mixture was baked in air at 400 ° C. for 12 hours to obtain a manganese oxide having a cation-deficient spinel structure represented by LiMn 2 O 4.2 . This was designated as Sample A. The composition of the active material was calculated by performing quantitative analysis of cations by ICP emission spectroscopic analysis and quantitative analysis of oxygen by infrared absorption method.

(実施例2)
水酸化リチウム一水和物(関東化学株式会社、鹿特級)および水酸化ニッケル(高純度化学研究所、99.9%up)とを直径5mmのジルコニア製ボールと共にボールミルによりイソプロパノール中で15時間粉砕し平均粒子径を0.3μmとした。次に、電解二酸化マンガン(三井金属、平均粒子径:30μm)を加え1時間さらに混合粉砕を行い、二酸化マンガンの平均粒子径を7μmとした。このようにして得られたスラリー状の混合物をボールから分離後、ロータリーエバポレーターにより、減圧下40℃にて溶媒を蒸発乾燥し、粉末状の混合物を得た。なお、原料の混合比はLi:Mn:Niのモル比で1:1.6:0.4となるようにした。この粉末状の混合物を空気中400℃で12時間焼成し、LiMn1.6Ni0.44.2で表されるカチオン欠損型のスピネル構造を有するマンガン酸化物を得た。これを試料Bとした。
(Example 2)
Lithium hydroxide monohydrate (Kanto Chemical Co., Ltd., Shika Special Grade) and nickel hydroxide (High Purity Chemical Laboratory, 99.9% up) were ground in isopropanol with a ball mill made of zirconia having a diameter of 5 mm for 15 hours. The average particle size was 0.3 μm. Next, electrolytic manganese dioxide (Mitsui Metals, average particle size: 30 μm) was added and further mixed and pulverized for 1 hour, so that the average particle size of manganese dioxide was 7 μm. The slurry-like mixture thus obtained was separated from the balls, and then the solvent was evaporated and dried at 40 ° C. under reduced pressure by a rotary evaporator to obtain a powder-like mixture. The mixing ratio of the raw materials was 1: 1.6: 0.4 in terms of a molar ratio of Li: Mn: Ni. This powdery mixture was calcined in air at 400 ° C. for 12 hours to obtain a manganese oxide having a cation-deficient spinel structure represented by LiMn 1.6 Ni 0.4 O 4.2 . This was designated as Sample B.

(実施例3)
水酸化ニッケルの代わりに水酸化第二鉄(高純度化学研究所、99%up)を使用した以外は実施例2と同様に合成を行い、LiMn1.6Fe0.44.2で表されるカチオン欠損型のスピネル構造を有するマンガン酸化物を得た。これを試料Cとした。
(Example 3)
A cation deficient type represented by LiMn 1.6 Fe 0.4 O 4.2 was synthesized in the same manner as in Example 2 except that ferric hydroxide (99% up) was used instead of nickel hydroxide. A manganese oxide having a spinel structure was obtained. This was designated as Sample C.

(実施例4)
水酸化ニッケルの代わりにメタ水酸化チタン(β-型),(H2TiO3)(キシダ化学株式会社)を使用した以外は実施例2と同様に合成を行い、LiMn1.6Ti0.44.2で表されるカチオン欠損型のスピネル構造を有するマンガン酸化物を得た。これを試料Dとした。
Example 4
Synthesis was carried out in the same manner as in Example 2 except that titanium meta-hydroxide (β-type), (H 2 TiO 3 ) (Kishida Chemical Co., Ltd.) was used instead of nickel hydroxide, and LiMn 1.6 Ti 0.4 O 4.2 A manganese oxide having a cation-deficient spinel structure represented was obtained. This was designated as Sample D.

(実施例5)
焼成温度を500℃とした以外は実施例1と同様に合成を行い得られた試料Eとした。
このとき、焼成温度が高いため脱酸素反応が起こった。
(Example 5)
Sample E obtained by synthesis in the same manner as in Example 1 except that the firing temperature was 500 ° C. was used.
At this time, a deoxygenation reaction occurred because the firing temperature was high.

(実施例6)
焼成温度を600℃とした以外は実施例1と同様に合成を行い得られた試料Fとした。このとき、焼成温度が高いため脱酸素反応が起こった。
(Example 6)
A sample F obtained by synthesis in the same manner as in Example 1 except that the firing temperature was 600 ° C. was used. At this time, a deoxygenation reaction occurred because the firing temperature was high.

(比較例1)
水酸化リチウム一水和物(関東化学株式会社、鹿特級)と電解二酸化マンガン(三井金属、平均粒子径:30μm)を直径5mmのジルコニア製ボールと共にボールミルによりイソプロパノール中で1時間混合粉砕を行い、それぞれ10μm、7μmとした。このようにして得られたスラリー状の混合物をボールから分離後、ロータリーエバポレーターにより、減圧下40℃にて溶媒を蒸発乾燥し、粉末状の混合物を得た。なお、原料の混合比はLi:Mnのモル比で1:2となるようにした。この粉末状の混合物を空気中400℃で12時間焼成し、得られた試料Gとした。
(Comparative Example 1)
Lithium hydroxide monohydrate (Kanto Chemical Co., Ltd., deer special grade) and electrolytic manganese dioxide (Mitsui Metals, average particle size: 30 μm) are mixed and ground in isopropanol for 1 hour in a ball mill with a zirconia ball having a diameter of 5 mm, The thickness was 10 μm and 7 μm, respectively. The slurry-like mixture thus obtained was separated from the balls, and then the solvent was evaporated and dried at 40 ° C. under reduced pressure by a rotary evaporator to obtain a powder-like mixture. The mixing ratio of the raw materials was 1: 2 in terms of the Li: Mn molar ratio. This powdery mixture was baked in air at 400 ° C. for 12 hours to obtain a sample G obtained.

(比較例2)
水酸化リチウム一水和物(関東化学株式会社、鹿特級)および水酸化ニッケル(高純度化学研究所、99.9%up)と電解二酸化マンガン(三井金属、平均粒子径:30μm)を直径5mmのジルコニア製ボールと共にボールミルによりイソプロパノール中で1時間混合粉砕を行い、それぞれ10μm、3μm、7μmとした。このようにして得られたスラリー状の混合物をボールから分離後、ロータリーエバポレーターにより、減圧下40℃にて溶媒を蒸発乾燥し、粉末状の混合物を得た。なお、原料の混合比はLi:Mn:Niのモル比で1:1.6:0.4となるようにした。この粉末状の混合物を空気中400℃で12時間焼成し、得られた試料Hとした。
(Comparative Example 2)
Lithium hydroxide monohydrate (Kanto Chemical Co., Inc., Shika Special Grade) and nickel hydroxide (High Purity Chemical Laboratory, 99.9% up) and electrolytic manganese dioxide (Mitsui Metals, average particle size: 30 μm) 5 mm in diameter Were mixed and ground for 1 hour in isopropanol by a ball mill together with zirconia balls of 10 μm, 3 μm and 7 μm, respectively. The slurry-like mixture thus obtained was separated from the balls, and then the solvent was evaporated and dried at 40 ° C. under reduced pressure by a rotary evaporator to obtain a powder-like mixture. The mixing ratio of the raw materials was 1: 1.6: 0.4 in terms of a molar ratio of Li: Mn: Ni. This powdery mixture was baked in air at 400 ° C. for 12 hours to obtain Sample H thus obtained.

(比較例3)
水酸化ニッケルの代わりに水酸化第二鉄(高純度化学研究所、99%up)を使用した以外は比較例2と同様に合成を行い、得られた試料Iとした。
(Comparative Example 3)
Synthesis was carried out in the same manner as in Comparative Example 2 except that ferric hydroxide (High Purity Chemical Laboratory, 99% up) was used instead of nickel hydroxide, and Sample I was obtained.

(比較例4)
水酸化ニッケルの代わりにメタ水酸化チタン(β−型),(H2TiO3)(キシダ化学株式会社)を使用した以外は比較例2と同様に合成を行い、得られた試料Jとした。
(Comparative Example 4)
Synthesis was performed in the same manner as in Comparative Example 2 except that titanium meta-hydroxide (β-type), (H 2 TiO 3 ) (Kishida Chemical Co., Ltd.) was used instead of nickel hydroxide, and the obtained sample J was obtained. .

(比較例5)
水酸化リチウム(関東化学株式会社、鹿特級)と電解二酸化マンガン(三井金属、平均粒子径:30μm)を直径5mmのジルコニア製ボールと共にボールミルによりイソプロパノール中で16時間混合粉砕を行い、それぞれ0.7μm、0.5μmとした。このようにして得られたスラリー状の混合物をボールから分離後、ロータリーエバポレーターにより、減圧下40℃にて溶媒を蒸発乾燥し、粉末状の混合物を得た。この粉末状の混合物を空気中400℃で12時間焼成し、LiMn24.2で表されるカチオン欠損型のスピネル構造を有するマンガン酸化物を得た。これを試料Kとした。
(Comparative Example 5)
Lithium hydroxide (Kanto Chemical Co., Ltd., Shika Special Grade) and electrolytic manganese dioxide (Mitsui Metals, average particle size: 30 μm) were mixed and ground in isopropanol for 16 hours in a ball mill with zirconia balls having a diameter of 5 mm, each 0.7 μm 0.5 μm. The slurry-like mixture thus obtained was separated from the balls, and then the solvent was evaporated and dried at 40 ° C. under reduced pressure by a rotary evaporator to obtain a powder-like mixture. This powdery mixture was baked in air at 400 ° C. for 12 hours to obtain a manganese oxide having a cation-deficient spinel structure represented by LiMn 2 O 4.2 . This was designated as Sample K.

(比較例6)
焼成温度を700℃とした以外は実施例1と同様に合成を行い得られた試料Lとした。
(Comparative Example 6)
A sample L obtained by synthesis in the same manner as in Example 1 except that the firing temperature was 700 ° C. was used.

(評価1)
試料A〜Lについて、平均粒子径とX線回折測定(CuKα線)を行った。結果を表1に示す。
(Evaluation 1)
Samples A to L were subjected to average particle diameter and X-ray diffraction measurement (CuKα ray). The results are shown in Table 1.

Figure 2007200683
試料A〜Dはスピネルの単一相が得られたのに対し、試料G〜Jはスピネル以外の不純物が確認された。このことから、水酸化リチウム一水和物とMn置換元素の原料を予め粉砕することにより、スピネル構造を有するマンガン酸化物の単一相が得られやすい傾向が見られる。
Figure 2007200683
Samples A to D obtained a single phase of spinel, while samples G to J showed impurities other than spinel. From this fact, there is a tendency that a single phase of manganese oxide having a spinel structure can be easily obtained by previously pulverizing the raw materials of lithium hydroxide monohydrate and the Mn substitution element.

また、試料Kはスピネル構造を有するマンガン酸化物の単一相が得られているが、Mn原料も粉砕されるため、マンガン酸化物の平均粒子径が0.5μmと小さい。このように活物質の粒子径が小さいと電極作製時の充填密度が小さくなる。   In Sample K, a single phase of manganese oxide having a spinel structure is obtained, but since the Mn raw material is also pulverized, the average particle size of manganese oxide is as small as 0.5 μm. Thus, when the particle diameter of an active material is small, the packing density at the time of electrode preparation will become small.

試料A、E、F、Lより焼成温度が低い程カチオン欠損型のスピネル構造となる傾向が見られる。   As the firing temperature is lower than those of Samples A, E, F, and L, a tendency to form a cation-deficient spinel structure is observed.

(実施例7)
(1)正極の作製
実施例1で得られた試料Aと、導電剤であるカーボンブラックと、結着剤であるフッ素樹脂(ポリテトラフルオロエチレン)とを、重量比90:6:4の割合で混合し、正極合剤を得た。結着剤は水性ディスパージョンの状態で使用した。この正極合剤を、1ton/cm2の圧力で、直径4.3mm、厚さ1.1mmのペレット状に成形した。その後、ペレット状の正極を250℃で10時間、大気中で乾燥した。
(Example 7)
(1) Production of positive electrode Sample A obtained in Example 1, carbon black as a conductive agent, and fluororesin (polytetrafluoroethylene) as a binder in a weight ratio of 90: 6: 4 To obtain a positive electrode mixture. The binder was used in the form of an aqueous dispersion. This positive electrode mixture was molded into a pellet shape having a diameter of 4.3 mm and a thickness of 1.1 mm at a pressure of 1 ton / cm 2 . Thereafter, the pellet-shaped positive electrode was dried in the air at 250 ° C. for 10 hours.

(2)負極活物質(ケイ素合金)の作製
ケイ素と合金化させる遷移金属元素の原料には、金属Tiを用いた。金属Tiは、純度99.9%であり、粒径100μmの粉体であった。ケイ素の原料としては、Si単体粉末(純度99.9%、平均粒径3μm)を用いた。
(2) Production of negative electrode active material (silicon alloy) Metal Ti was used as a raw material of the transition metal element to be alloyed with silicon. The metal Ti was a powder having a purity of 99.9% and a particle diameter of 100 μm. As a raw material of silicon, Si simple powder (purity 99.9%, average particle size 3 μm) was used.

ケイ素単体からなるA相と、金属間化合物からなるB相との合計に占める、A相の割合が、約20重量%となるように、Ti:Si=36.8:63.2(重量比)で原料を混合した。   Ti: Si = 36.8: 63.2 (weight ratio) so that the proportion of the A phase in the total of the A phase composed of simple silicon and the B phase composed of the intermetallic compound is about 20% by weight. ) The raw materials were mixed.

各混合粉を1.7kg秤量し、振動ミル装置(中央化工機(株)製、型番FV−20)に投入した。振動ミル装置に、さらにステンレス鋼製ボール(直径2cm)を300kg投入した。容器内部を真空に引いた後、アルゴンガス(純度99.999%、日本酸素(
株)製)を導入して、1気圧にした。ミル装置の作動条件は、振幅8mm、回転数1200rpmとし、これらの条件でメカニカルアロイング操作を80時間行った。上記操作によって得られたTi−Si合金を回収し、粒径45μm以下に分級した。
1.7 kg of each mixed powder was weighed and put into a vibration mill device (manufactured by Chuo Kako Co., Ltd., model number FV-20). Further, 300 kg of stainless steel balls (diameter 2 cm) were put into the vibration mill apparatus. After evacuating the inside of the container, argon gas (purity 99.999%, Japanese oxygen (
Co., Ltd.) was introduced to 1 atm. The operating conditions of the mill apparatus were an amplitude of 8 mm and a rotational speed of 1200 rpm, and mechanical alloying operation was performed for 80 hours under these conditions. The Ti—Si alloy obtained by the above operation was recovered and classified to a particle size of 45 μm or less.

CuKα線を用い、各合金をX線回折測定で分析したところ、微結晶を示すスペクトルが得られた。また、X線回折測定で得られた回折スペクトルにおいて、回折角2θ=10°〜80°の範囲に観測される最も強度の強い回折ピークの半価幅と、Scherrerの式に基づいて算出した各合金の結晶粒(結晶子)の粒径は約10nmであった。   When each alloy was analyzed by X-ray diffraction measurement using CuKα rays, a spectrum showing microcrystals was obtained. Further, in the diffraction spectrum obtained by the X-ray diffraction measurement, each calculated based on the half-value width of the strongest diffraction peak observed in the diffraction angle range of 2θ = 10 ° to 80 ° and the Scherrer equation. The grain size of the alloy crystal grains (crystallites) was about 10 nm.

X線回折測定の結果から、各合金中には、Si単体からなるA相が存在し、Ti−Si合金中には、それぞれTiSi2からなるB相が存在していることが判明した。 As a result of X-ray diffraction measurement, it was found that each alloy has an A phase composed of Si alone, and each Ti—Si alloy has a B phase composed of TiSi 2 .

(3)負極の作製
厚み0.5mmの金属リチウム箔を、直径4.3mmに打ち抜いたものを負極とした。
(3) Production of negative electrode A negative electrode was prepared by punching a metal lithium foil having a thickness of 0.5 mm to a diameter of 4.3 mm.

(4)非水電解質の調製
プロピレンカーボネート(PC)と、エチレンカーボネート(EC)と、ジメトキシエタン(DME)との体積比3:1:3の混合溶媒に、LiN(CF3SO22を1モル/Lの濃度で溶解したものを用いた。
(4) Preparation of non-aqueous electrolyte LiN (CF 3 SO 2 ) 2 was added to a mixed solvent of propylene carbonate (PC), ethylene carbonate (EC), and dimethoxyethane (DME) in a volume ratio of 3: 1: 3. Those dissolved at a concentration of 1 mol / L were used.

(5)コイン型電池の作製
図1に示すような外径6.8mm、厚み2.1mmの寸法を有するコイン型電池を作製した。
(5) Production of coin-type battery A coin-type battery having an outer diameter of 6.8 mm and a thickness of 2.1 mm as shown in FIG. 1 was produced.

正極端子を兼ねる正極缶1には、耐食性に優れたステンレス鋼を用いた。負極端子を兼ねる負極缶2にも、正極缶1と同じステンレス鋼を用いた。正極缶1と負極缶2とを絶縁するガスケット3には、ポリプロピレンを用いた。正極缶1とガスケット3との接面および負極缶2とガスケット3との接面には、ピッチを塗布した。ペレット状の正極4は、正極缶1の底面に載置した。負極缶2に円柱状に打ち抜いたLi金属7を圧着し、ペレット状の負極5は、Li金属7の上に載置した。正極4の上には、ポリエチレン製の不織布からなるセパレータ6を配した。正極缶1に非水電解質を注いだ後、正極缶1と負極缶2とを嵌合させて電池Aを完成させた。   For the positive electrode can 1 also serving as the positive electrode terminal, stainless steel having excellent corrosion resistance was used. The same stainless steel as the positive electrode can 1 was also used for the negative electrode can 2 that also served as the negative electrode terminal. Polypropylene was used for the gasket 3 that insulates the positive electrode can 1 and the negative electrode can 2. Pitch was applied to the contact surface between the positive electrode can 1 and the gasket 3 and the contact surface between the negative electrode can 2 and the gasket 3. The pellet-shaped positive electrode 4 was placed on the bottom surface of the positive electrode can 1. Li metal 7 punched into a columnar shape was pressed onto the negative electrode can 2, and the pellet-shaped negative electrode 5 was placed on the Li metal 7. On the positive electrode 4, a separator 6 made of a non-woven fabric made of polyethylene was disposed. After pouring a non-aqueous electrolyte into the positive electrode can 1, the positive electrode can 1 and the negative electrode can 2 were fitted to complete the battery A.

(実施例8)
正極活物質に試料Bを使用した以外は、実施例7と同様にして電池Bを作製した。
(Example 8)
A battery B was produced in the same manner as in Example 7 except that the sample B was used as the positive electrode active material.

(実施例9)
正極活物質に試料Cを使用した以外は、実施例7と同様にして電池Cを作製した。
Example 9
A battery C was produced in the same manner as in Example 7, except that the sample C was used as the positive electrode active material.

(実施例10)
正極活物質に試料Dを使用した以外は、実施例7と同様にして電池Dを作製した。
(Example 10)
A battery D was produced in the same manner as in Example 7 except that the sample D was used as the positive electrode active material.

(実施例11)
正極活物質に試料Eを使用した以外は、実施例7と同様にして電池Eを作製した。
(Example 11)
A battery E was produced in the same manner as in Example 7 except that the sample E was used as the positive electrode active material.

(実施例12)
正極活物質に試料Fを使用した以外は、実施例7と同様にして電池Fを作製した。
(Example 12)
A battery F was produced in the same manner as in Example 7 except that the sample F was used as the positive electrode active material.

(比較例7)
正極活物質に試料Gを使用した以外は、実施例7と同様にして電池Gを作製した。
(Comparative Example 7)
A battery G was produced in the same manner as in Example 7 except that the sample G was used as the positive electrode active material.

(比較例8)
正極活物質に試料Hを使用した以外は、実施例7と同様にして電池Hを作製した。
(Comparative Example 8)
A battery H was produced in the same manner as in Example 7 except that the sample H was used as the positive electrode active material.

(比較例9)
正極活物質に試料Iを使用した以外は、実施例7と同様にして電池Iを作製した。
(Comparative Example 9)
A battery I was produced in the same manner as in Example 7 except that the sample I was used as the positive electrode active material.

(比較例10)
正極活物質に試料Jを使用した以外は、実施例7と同様にして電池Jを作製した。
(Comparative Example 10)
A battery J was produced in the same manner as in Example 7 except that the sample J was used as the positive electrode active material.

(比較例11)
正極活物質に試料Kを使用した以外は、実施例7と同様にして電池Kを作製した。
(Comparative Example 11)
A battery K was produced in the same manner as in Example 7 except that the sample K was used as the positive electrode active material.

(比較例12)
正極活物質に試料Lを使用した以外は、実施例7と同様にして電池Lを作製した。
(Comparative Example 12)
A battery L was produced in the same manner as in Example 7 except that the sample L was used as the positive electrode active material.

(評価2)
(初期放電容量)
20℃に設定した恒温槽の中、電池電圧2.5〜3.5Vの間で電流密度0.1mA/cm2で電池A〜Lの定電流充放電を行った。2サイクル目の活物質当たりの放電容量および電池容量を表2に示す。
(Evaluation 2)
(Initial discharge capacity)
In a thermostat set at 20 ° C., the batteries A to L were charged and discharged at a current density of 0.1 mA / cm 2 at a battery voltage of 2.5 to 3.5 V. Table 2 shows the discharge capacity and battery capacity per active material in the second cycle.

Figure 2007200683
表2より、電池A〜Dの活物質当たりの放電容量が電池G〜Jに比べて大きい。これは電池A〜D正極活物質の方が高純度であるためである。また、電池Aに比べ電池Kの電池容量が小さいがこれは活物質の平均粒子径が小さく電極の充填密度が低いためである。
Figure 2007200683
From Table 2, the discharge capacity per active material of batteries A to D is larger than batteries G to J. This is because the batteries A to D positive electrode active material have higher purity. Further, the battery capacity of the battery K is smaller than that of the battery A because the average particle diameter of the active material is small and the packing density of the electrode is low.

電池A、E、F、Lの結果より焼成温度が低い程活物質当たりの放電容量が大きいことがわかるが、これはカチオン欠損型のスピネル構造の方が放電容量が大きいためである。   From the results of the batteries A, E, F, and L, it can be seen that the lower the firing temperature, the larger the discharge capacity per active material. This is because the cation deficient spinel structure has a larger discharge capacity.

(サイクル寿命)
20℃に設定した恒温槽の中で、電池A〜Hの定電流充放電を50回繰り返した。
(Cycle life)
The constant current charging / discharging of the batteries A to H was repeated 50 times in a thermostat set to 20 ° C.

充電は、電流密度0.4mA/cm2、充電終止電圧3.5Vで行い、放電は、電流密
度0.4mA/cm2、放電終止電圧2.5Vで行った。
Charging was performed at a current density of 0.4 mA / cm 2 and a charge end voltage of 3.5 V, and discharging was performed at a current density of 0.4 mA / cm 2 and a discharge end voltage of 2.5 V.

2サイクル目の放電容量に対する50サイクル目の放電容量の減少量を百分率(%)で求め、サイクル劣化率とした。サイクル劣化率が0(%)に近いほど、サイクル寿命が優れている。結果を表2に示す。   The amount of decrease in the discharge capacity at the 50th cycle relative to the discharge capacity at the 2nd cycle was determined as a percentage (%), and was defined as the cycle deterioration rate. The closer the cycle deterioration rate is to 0 (%), the better the cycle life. The results are shown in Table 2.

表2より、電池A〜Dの活物質当たりのサイクル劣化率が電池G〜Jに比べて小さい。これは電池A〜D正極活物質が高純度であるためである。   From Table 2, the cycle deterioration rate per active material of batteries A to D is smaller than batteries G to J. This is because the battery A to D positive electrode active material has high purity.

電池A、E、F、Lの結果より焼成温度が低い程活物質当たりの放電容量が大きいことがわかるが、これはカチオン欠損型のスピネル構造の方がサイクル時の正極活物質の結晶構造歪みが小さいためであるといえる。   From the results of batteries A, E, F, and L, it can be seen that the lower the firing temperature, the greater the discharge capacity per active material. This is because the cation-deficient spinel structure has a crystal structure distortion of the positive electrode active material during cycling. This is because of the small size.

本発明は、スピネル構造を有するマンガン酸化物の製造方法であり、高純度のスピネル構造を有するマンガン酸化物を製造するのに有用である。   The present invention is a method for producing a manganese oxide having a spinel structure, and is useful for producing a manganese oxide having a high-purity spinel structure.

本発明は、様々な非水電解質二次電池に適用可能であり、例えば、民生用電子機器、携帯情報端末、携帯電子機器、ポータブル機器、コードレス機器等の駆動用電源となる非水電解質二次電池に適用可能である。また、本発明は、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等の電源にも適用可能である。   The present invention can be applied to various non-aqueous electrolyte secondary batteries. For example, non-aqueous electrolyte secondary batteries serving as driving power sources for consumer electronic devices, portable information terminals, portable electronic devices, portable devices, cordless devices, and the like. Applicable to batteries. The present invention is also applicable to a power source for a small household electric power storage device, a motorcycle, an electric vehicle, a hybrid electric vehicle, and the like.

電池の形状は、特に限定されず、例えばコイン型、ボタン型、シート型、円筒型、偏平型、角型など何れの形状にも本発明を利用できる。極板群の形態も限定されず、例えば捲回型、積層型など何れの形態にも本発明を利用できる。電池の大きさも限定されず、小型、中型、大型など何れの大きさにも本発明を利用できる。   The shape of the battery is not particularly limited, and the present invention can be applied to any shape such as a coin shape, a button shape, a sheet shape, a cylindrical shape, a flat shape, and a square shape. The form of the electrode plate group is not limited, and the present invention can be applied to any form such as a wound type and a laminated type. The size of the battery is not limited, and the present invention can be used for any size such as small size, medium size, and large size.

本発明の一実施例に係るコイン型電池の縦断面図1 is a longitudinal sectional view of a coin-type battery according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 正極缶
2 負極缶
3 ガスケット
4 正極
5 負極
6 セパレータ
7 リチウム箔

DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Negative electrode can 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator 7 Lithium foil

Claims (5)

一般式Li1+aMn2-x-ax4+y(0≦x≦0.5、−0.2≦y<0.5、0≦a≦0.2、MはNi、Fe、Tiからなる群より選ばれる少なくとも一種の遷移金属)で表されるスピネル構造を有するリチウム二次電池用正極活物質の製造方法であって、Li原料とM原料とMn原料を混合粉砕する工程と、混合粉砕した原料を焼成する工程とを有し、前記原料を混合粉砕する工程で、Li原料とM原料とを混合粉砕した後、Mn原料を追加して混合粉砕することを特徴とするリチウム二次電池用正極活物質の製造方法。 Formula Li 1 + a Mn 2-xa M x O 4 + y (0 ≦ x ≦ 0.5, -0.2 ≦ y <0.5,0 ≦ a ≦ 0.2, M is Ni, Fe, A method for producing a positive electrode active material for a lithium secondary battery having a spinel structure represented by (at least one kind of transition metal selected from the group consisting of Ti), wherein a Li raw material, an M raw material, and a Mn raw material are mixed and pulverized; And a step of firing the mixed and pulverized raw material. In the step of mixing and pulverizing the raw material, the Li raw material and the M raw material are mixed and pulverized, and then the Mn raw material is added and mixed and pulverized. A method for producing a positive electrode active material for a secondary battery. 前記原料を混合粉砕する工程で、Li原料とM原料とを平均粒子径が1μm以下になるまで混合粉砕した後、Mn原料を追加してMn原料の平均粒子径が3μm以上30μm以下になるように混合粉砕することを特徴とする請求項1に記載のリチウム二次電池用正極活物質の製造方法。   In the step of mixing and pulverizing the raw materials, the Li raw material and the M raw material are mixed and pulverized until the average particle diameter is 1 μm or less, and then the Mn raw material is added so that the average particle diameter of the Mn raw material becomes 3 μm or more and 30 μm or less. The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the mixture is pulverized and ground. 前記混合粉砕した原料を焼成する工程において、焼成温度が300℃以上600℃以下であることを特徴とする請求項1に記載のリチウム二次電池用正極活物質の製造方法。   2. The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein in the step of firing the mixed and pulverized raw material, a firing temperature is 300 ° C. or more and 600 ° C. or less. 一般式Li1+aMn2-x-ax4+y(0≦x≦0.5、−0.2≦y<0.5、0≦a≦0.2、MはNi、Fe、Tiからなる群より選ばれる少なくとも一種の遷移金属)で表される正極活物質と導電剤と結着剤とを有するリチウム二次電池用正極の製造方法であって、Li原料とM原料とを混合粉砕した後、Mn原料を追加して混合粉砕する工程と、
混合粉砕した原料を焼成して正極活物質を得る工程と、前記正極活物質と導電剤と結着剤とを混練合する工程と、を有することを特徴とするリチウム二次電池用正極の製造方法。
Formula Li 1 + a Mn 2-xa M x O 4 + y (0 ≦ x ≦ 0.5, -0.2 ≦ y <0.5,0 ≦ a ≦ 0.2, M is Ni, Fe, A method for producing a positive electrode for a lithium secondary battery, comprising: a positive electrode active material represented by (at least one transition metal selected from the group consisting of Ti), a conductive agent, and a binder; After mixing and grinding, adding Mn raw material and mixing and grinding;
Manufacturing a positive electrode for a lithium secondary battery, comprising: a step of firing a mixed and pulverized raw material to obtain a positive electrode active material; and a step of kneading the positive electrode active material, a conductive agent and a binder. Method.
一般式Li1+aMn2-x-ax4+y(0≦x≦0.5、−0.2≦y<0.5、0≦a≦0.2、MはNi、Fe、Tiからなる群より選ばれる少なくとも一種の遷移金属)で表される正極活物質と導電剤と結着剤とからなる正極と、リチウムを吸蔵放出可能な負極活物質からなる負極と、を有するリチウム二次電池の製造方法であって、Li原料とM原料とを混合粉砕した後、Mn原料を追加して混合粉砕する工程と、混合粉砕した原料を焼成して正極活物質を得る工程と、前記正極活物質と導電剤と結着剤とを混練合して正極を得る工程と、負極活物質と導電剤と結着剤とを混練合して負極を得る工程と、前記正極と前記負極と有機電解液とセパレータとを、正極ケースと負極ケースとガスケットとにより密封する工程とを有することを特徴とするリチウム二次電池の製造方法。 Formula Li 1 + a Mn 2-xa M x O 4 + y (0 ≦ x ≦ 0.5, -0.2 ≦ y <0.5,0 ≦ a ≦ 0.2, M is Ni, Fe, Lithium having a positive electrode composed of a positive electrode active material represented by (at least one transition metal selected from the group consisting of Ti), a conductive agent, and a binder, and a negative electrode composed of a negative electrode active material capable of occluding and releasing lithium. A method for producing a secondary battery, comprising mixing and pulverizing Li raw material and M raw material, then adding and pulverizing Mn raw material, firing the mixed and pulverized raw material to obtain a positive electrode active material, A step of kneading and mixing the positive electrode active material, a conductive agent and a binder, obtaining a positive electrode, a step of kneading and mixing the negative electrode active material, a conductive agent and a binder, and obtaining the negative electrode; and the positive electrode and the negative electrode And a step of sealing the organic electrolyte and the separator with a positive electrode case, a negative electrode case, and a gasket. A method for manufacturing a lithium secondary battery.
JP2006017124A 2006-01-26 2006-01-26 Manufacturing method of cathode active substance for lithium secondary battery, cathode for lithium secondary battery and lithium secondary battery Pending JP2007200683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017124A JP2007200683A (en) 2006-01-26 2006-01-26 Manufacturing method of cathode active substance for lithium secondary battery, cathode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017124A JP2007200683A (en) 2006-01-26 2006-01-26 Manufacturing method of cathode active substance for lithium secondary battery, cathode for lithium secondary battery and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2007200683A true JP2007200683A (en) 2007-08-09

Family

ID=38455084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017124A Pending JP2007200683A (en) 2006-01-26 2006-01-26 Manufacturing method of cathode active substance for lithium secondary battery, cathode for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2007200683A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021046A (en) * 2007-07-10 2009-01-29 Panasonic Corp Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP2013249225A (en) * 2012-05-31 2013-12-12 Jgc Catalysts & Chemicals Ltd Manufacturing method for lithium/manganese composite oxide, lithium/manganese composite oxide obtained by the manufacturing method, positive active material for secondary battery including lithium/manganese composite oxide, positive electrode for secondary battery including positive active material, and lithium ion secondary battery using positive active material as positive electrode
JP2016048671A (en) * 2014-08-25 2016-04-07 株式会社東芝 Positive electrode and nonaqueous electrolyte battery
US9496581B2 (en) 2009-02-09 2016-11-15 Varta Microbattery Gmbh Button cells and method of producing same
US9799858B2 (en) 2009-06-18 2017-10-24 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
CN117658243A (en) * 2024-01-31 2024-03-08 成都大学 Potassium ion battery anode material and preparation method thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021046A (en) * 2007-07-10 2009-01-29 Panasonic Corp Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte secondary battery
US11258092B2 (en) 2009-02-09 2022-02-22 Varta Microbattery Gmbh Button cells and method of producing same
US11024869B2 (en) 2009-02-09 2021-06-01 Varta Microbattery Gmbh Button cells and method of producing same
US11791493B2 (en) 2009-02-09 2023-10-17 Varta Microbattery Gmbh Button cells and method of producing same
US11276875B2 (en) 2009-02-09 2022-03-15 Varta Microbattery Gmbh Button cells and method of producing same
US11233264B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US11233265B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US9799913B2 (en) 2009-02-09 2017-10-24 Varta Microbattery Gmbh Button cells and method of producing same
US9496581B2 (en) 2009-02-09 2016-11-15 Varta Microbattery Gmbh Button cells and method of producing same
US11217844B2 (en) 2009-06-18 2022-01-04 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362385B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024905B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024906B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10971776B2 (en) 2009-06-18 2021-04-06 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11158896B2 (en) 2009-06-18 2021-10-26 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024904B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US9799858B2 (en) 2009-06-18 2017-10-24 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024907B1 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362384B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
JP2013249225A (en) * 2012-05-31 2013-12-12 Jgc Catalysts & Chemicals Ltd Manufacturing method for lithium/manganese composite oxide, lithium/manganese composite oxide obtained by the manufacturing method, positive active material for secondary battery including lithium/manganese composite oxide, positive electrode for secondary battery including positive active material, and lithium ion secondary battery using positive active material as positive electrode
JP2016048671A (en) * 2014-08-25 2016-04-07 株式会社東芝 Positive electrode and nonaqueous electrolyte battery
CN117658243A (en) * 2024-01-31 2024-03-08 成都大学 Potassium ion battery anode material and preparation method thereof
CN117658243B (en) * 2024-01-31 2024-04-23 成都大学 Potassium ion battery anode material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4994631B2 (en) Nonaqueous electrolyte secondary battery and positive electrode active material thereof
JP5030414B2 (en) Nonaqueous electrolyte secondary battery
JP4431064B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP5072323B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode material for nonaqueous electrolyte secondary battery
US7923150B2 (en) Non-aqueous electrolyte secondary battery
JP4853608B2 (en) Lithium secondary battery
US20100112448A1 (en) Positive electrode active material for lithium secondary battery and method of manufacturing the same
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
US20100216033A1 (en) Cathode material and non-aqueous electrolyte secondary battery using it
WO2011068255A1 (en) Pyrophosphate compound and method for producing same
JP2010033924A (en) Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery using the same
JP5021982B2 (en) Nonaqueous electrolyte secondary battery
JP2008077990A (en) Non-aqueous electrolyte secondary battery
KR20200041974A (en) A positive electrode active material for a non-aqueous electrolyte secondary battery and a method for manufacturing the same, and a non-aqueous electrolyte secondary battery using the positive electrode active material
JP2008115075A (en) Composite oxide containing lithium and nonaqueous secondary battery using the same
JP4491949B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP2007200683A (en) Manufacturing method of cathode active substance for lithium secondary battery, cathode for lithium secondary battery and lithium secondary battery
US7972729B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing positive electrode material for non-aqueous electrolyte secondary battery
JP2012018832A (en) Cathode active material for lithium secondary battery, manufacturing method thereof, precursor of cathode active material, manufacturing method thereof, and lithium secondary battery using cathode active material
KR101080619B1 (en) Negative electrode active material method of producing the same and nonaqueous electrolyte cell
JP2013173632A (en) Lithium-manganese-based composite oxide, positive electrode active material for secondary battery, and secondary battery
JP2013012336A (en) Secondary battery and charging method of the same
JP6362033B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2002117843A (en) Nonaqueous electrolyte secondary battery
JP2018095529A (en) Lithium-manganese composite oxide powder and method for producing the same, and positive electrode for nonaqueous electrolyte secondary battery