JP2018095529A - Lithium-manganese composite oxide powder and method for producing the same, and positive electrode for nonaqueous electrolyte secondary battery - Google Patents

Lithium-manganese composite oxide powder and method for producing the same, and positive electrode for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2018095529A
JP2018095529A JP2016243258A JP2016243258A JP2018095529A JP 2018095529 A JP2018095529 A JP 2018095529A JP 2016243258 A JP2016243258 A JP 2016243258A JP 2016243258 A JP2016243258 A JP 2016243258A JP 2018095529 A JP2018095529 A JP 2018095529A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
manganese
oxide powder
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016243258A
Other languages
Japanese (ja)
Inventor
恭平 北川
Kyohei Kitagawa
恭平 北川
祐耶 染野
Yuya Someno
祐耶 染野
遠藤 孝志
Takashi Endo
孝志 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Denko Co Ltd
Original Assignee
Shin Nihon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nihon Denko Co Ltd filed Critical Shin Nihon Denko Co Ltd
Priority to JP2016243258A priority Critical patent/JP2018095529A/en
Publication of JP2018095529A publication Critical patent/JP2018095529A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide spinel type lithium-manganese composite oxide powder for a nonaqueous electrolyte secondary battery, a production method of the same, and a positive electrode using the spinel type lithium-manganese composite oxide powder.SOLUTION: In spinel type lithium-manganese composite oxide powder, the spinel type lithium-manganese composite oxide is represented by general formula LiMMnO(M is one, two or more kinds of metal elements selected from Al, Mg, and Co, x is in the range of 0≤x≤0.33 and y is in the range of 0≤y≤0.2), in which particle size distribution measured by the laser diffractive scattering method has two frequency peaks, the first frequency peak has an apex between 4.0 to 7.0 μm, the second frequency peak has an apex between 10.0 to 17.0 μm, the height of the second peak is in the range of 2.5 to 5.0 times higher than that of the first peak, and the entire powder is in the range of size of 2.0 to 45.0 μm.SELECTED DRAWING: Figure 1

Description

本発明は非水電解質二次電池用正極に用いる、充填性に優れ、密度の高い、リチウムマンガン複合酸化物粉末およびその製造方法ならびに非水電解質二次電池用正極に関する。   The present invention relates to a lithium manganese composite oxide powder having excellent filling properties and high density used for a positive electrode for a non-aqueous electrolyte secondary battery, a method for producing the same, and a positive electrode for a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池は起電力やエネルギー密度の点で優れており、小型ビデオカメラ、携帯電話、ノートパソコンなどの携帯機器用の電源から自転車や電動バイク、電気自動車などの移動体向けや、蓄電用電源にまで広く使われている。   Lithium-ion rechargeable batteries are superior in terms of electromotive force and energy density. They can be used for power sources for portable devices such as small video cameras, mobile phones, and laptop computers, for mobile devices such as bicycles, electric bikes, and electric vehicles, and for storage Widely used for power supplies.

リチウムイオン二次電池に用いられる正極材料には、コバルト酸リチウムLiCoO、ニッケルコバルトマンガン酸リチウムLiNi1/3Co1/3Mn1/3等いくつか種類があるが、その一つとしてスピネル型リチウムマンガン複合酸化物が利用されている。 There are several types of positive electrode materials used in lithium ion secondary batteries, such as lithium cobaltate LiCoO 2 and nickel cobalt lithium manganate LiNi 1/3 Co 1/3 Mn 1/3 O 2. Spinel type lithium manganese composite oxide is used.

スピネル型リチウムマンガン複合酸化物は、原料のMnが安価であるという利点はあるが真密度が4.1から4.3g/cmとコバルト酸リチウムの5.0から5.1g/cmや、ニッケルコバルトマンガン酸リチウムの4.6から4.8g/cmと比較して低いために、単位体積当たりのエネルギー密度が、他の正極材料と比較して見劣りしてしまうという課題がある。 The spinel type lithium manganese composite oxide has the advantage that the raw material Mn is inexpensive, but the true density is 4.1 to 4.3 g / cm 3 and the lithium cobalt oxide is 5.0 to 5.1 g / cm 3. Since nickel cobalt lithium manganate is low compared with 4.6 to 4.8 g / cm 3 , the energy density per unit volume is inferior compared with other positive electrode materials.

特許文献1では、マンガン酸化物と炭酸リチウムとの混合物を1000℃以上1100℃以下で第1の焼成を行った後、再度600℃で第2の焼成を行うことで、一次粒子を3μm〜5μmに成長させることにより、電極密度を高くする方法が開示されている。   In patent document 1, after performing the 1st baking of 1000 to 1100 degrees C or less for the mixture of manganese oxide and lithium carbonate, the second baking is again performed at 600 degrees C, and primary particles are 3 micrometers-5 micrometers. A method for increasing the electrode density by growing the electrode is disclosed.

特許文献2では、リチウム化合物、マンガン化合物、置換金属化合物、融点800℃以下の金属化合物、及びフッ素化合物を水懸濁液で混合してスラリーを調製し、スプレードライヤーを用いて乾燥し、その後850℃で焼成することで、充填密度が高く体積当たりの放電容量が高いリチウムマンガン複合酸化物が得られることが開示されている。   In Patent Document 2, a lithium compound, a manganese compound, a substituted metal compound, a metal compound having a melting point of 800 ° C. or less, and a fluorine compound are mixed with an aqueous suspension to prepare a slurry, dried using a spray dryer, and then 850. It is disclosed that a lithium manganese composite oxide having a high packing density and a high discharge capacity per volume can be obtained by firing at 0 ° C.

特許文献3ではホウ酸を焼結助剤として加え、焼成することにより充填性を改善することが提案されている。   Patent Document 3 proposes that boric acid is added as a sintering aid and the filling property is improved by firing.

特許文献4ではローラコンパクタを用いて、スピネル型LiMn粉末を圧密、塊成化処理を行ったのちに焼成することにより、高密度のスピネル型LiMnを製造する方法が提案されている。 Patent Document 4 proposes a method for producing a high-density spinel-type LiMn 2 O 4 by using a roller compactor to sinter the spinel-type LiMn 2 O 4 powder after performing compaction and agglomeration treatment. ing.

特許文献5ではリチウムニッケルマンガンコバルト酸化物について、10μm以下の粒子割合を26〜60体積%の範囲で、プレス密度を高くする方法が提案されている。   Patent Document 5 proposes a method of increasing the press density of lithium nickel manganese cobalt oxide with a particle ratio of 10 μm or less in the range of 26 to 60% by volume.

特許文献6ではリチウムニッケル複合酸化物について、平均粒径が2〜4μmである微細二次粒子と平均粒径が6〜15μmであり、微細二次粒子の混合される割合が体積比で1〜10%とする方法が開示されている。   In Patent Document 6, the lithium nickel composite oxide has a fine secondary particle having an average particle diameter of 2 to 4 μm and an average particle diameter of 6 to 15 μm, and the mixing ratio of the fine secondary particles is 1 to 1 in volume ratio. A method of 10% is disclosed.

特許文献7ではリチウムニッケルマンガンコバルト酸化物について、3ton/cmで圧縮処理した頻度粒度分布において、その頻度に2つの極大値を有し、大粒子側の極大頻度値(P1(%))に対する小粒子側の極大頻度値(P2(%))の比(P2/P1)が0<P2/P1≦0.4、であることが提案されている。 In Patent Document 7, in the frequency particle size distribution obtained by compressing lithium nickel manganese cobalt oxide at 3 ton / cm 2 , the frequency has two local maximum values, with respect to the local maximum frequency value (P1 (%)) on the large particle side. It has been proposed that the ratio (P2 / P1) of local maximum frequency values (P2 (%)) on the small particle side is 0 <P2 / P1 ≦ 0.4.

特開2001−155728号公報JP 2001-155728 A 特開2001−48547号公報JP 2001-48547 A 特許第3881111号公報Japanese Patent No. 3881111 特許第4086931号公報Japanese Patent No. 4086931 特開2012−121805号公報JP 2012-121805 A WO2011−99494号公報WO2011-99494 特開2012−253009号公報JP2012-253009A

上記の通り、これまでにも検討がなされてきているが、充填性に優れ、密度の高いスピネル型リチウムマンガン複合酸化物が望まれている。より具体的には、充放電容量、サイクル特性、保存特性などの電池特性を損なうことなく、正極の電極密度を高められるスピネル型リチウムマンガン複合酸化物が求められている。   As described above, although studies have been made so far, a spinel type lithium manganese oxide having excellent filling properties and high density is desired. More specifically, there is a need for a spinel-type lithium manganese composite oxide that can increase the electrode density of the positive electrode without impairing battery characteristics such as charge / discharge capacity, cycle characteristics, and storage characteristics.

電極密度は、正極材料だけで決まるものではなく、導電助剤、結着剤の種類及び配合割合、及びプレス圧力によっても変わる。   The electrode density is not determined only by the positive electrode material, but also varies depending on the conductive auxiliary agent, the type and blending ratio of the binder, and the pressing pressure.

特許文献1に示されたリチウムマンガン酸化物は、実施例における電池特性は、電流密度を変更したときの放電容量だけであり、サイクル特性、保存特性等の寿命に関する記載は一切なく、電池特性を損なわずに電極密度を改善したという記載は無い。   In the lithium manganese oxide disclosed in Patent Document 1, the battery characteristics in the examples are only the discharge capacity when the current density is changed, there is no description about the life such as the cycle characteristics and the storage characteristics, and the battery characteristics are There is no description that the electrode density was improved without damage.

特許文献2のリチウムマンガン複合酸化物は、実施例1〜11においてサイクル特性等が示されているが、最も良い実施例1でも、放電容量が90mAh/gと低く30回後の容量維持率が97%に止まっている。体積当たりの放電容量が高い実施例においては、容量維持率及び回復率が低下しており、体積当たりの放電容量改善に伴い寿命特性が低下していることが確認できる。   The lithium manganese composite oxide of Patent Document 2 shows cycle characteristics and the like in Examples 1 to 11. Even in the best example 1, the discharge capacity is as low as 90 mAh / g, and the capacity retention rate after 30 times is high. Only 97%. In an example in which the discharge capacity per volume is high, the capacity retention rate and the recovery rate are lowered, and it can be confirmed that the life characteristics are lowered as the discharge capacity per volume is improved.

特許文献3の、スピネル型LiMnの圧縮密度は、活物質単独で2.63g/cmにとどまっており、電極密度は低いままである。また正極作製後の電極密度に関する記載は全くない。 The compression density of spinel-type LiMn 2 O 4 in Patent Document 3 is 2.63 g / cm 3 with the active material alone, and the electrode density remains low. Moreover, there is no description about the electrode density after positive electrode preparation.

特許文献4の高密度スピネル型LiMnの製造方法では、LiMnのタップ密度だけで、密度を比較しており、正極作製後の電極密度に関する記載は全くない。 In the method for producing a high-density spinel type LiMn 2 O 4 of Patent Document 4, the density is compared only with the tap density of LiMn 2 O 4 , and there is no description regarding the electrode density after the positive electrode is manufactured.

特許文献5のリチウムニッケルマンガンコバルト酸化物においては、粉末のみのプレス密度を改善する方法であり、導電材や結着剤を含んだ正極作製時の密度に関する記載は全くない。   The lithium nickel manganese cobalt oxide of Patent Document 5 is a method for improving the press density of only powder, and there is no description regarding the density at the time of producing a positive electrode containing a conductive material and a binder.

特許文献6のリチウムニッケル複合酸化物においては、微粒二次粒子の体積割合を指定しているが、その目的は安全性を改善することであり、粒度分布の2つのピークを制御することにより、充放電容量、サイクル特性などの電池特性を損なうことなく充填性に優れ、電極密度を高く出来ることについての開示はない。   In the lithium nickel composite oxide of Patent Document 6, the volume ratio of fine secondary particles is specified, but the purpose is to improve safety, by controlling the two peaks of the particle size distribution, There is no disclosure about excellent fillability and high electrode density without impairing battery characteristics such as charge / discharge capacity and cycle characteristics.

特許文献7のリチウムニッケルマンガンコバルト酸化物においては、3ton/cmの圧縮処理した後の粒度分布について指定しているものであって、圧縮処理前、つまり当該酸化物合成後の粒度分布は図1、3に示すとおり、一つの極大頻度値をもつ粒度分布であり、粒度分布の2つのピークを制御することにより、充放電容量、サイクル特性などの電池特性を損なうことなく充填性に優れ、電極密度を高く出来ることについての開示はない。 In the lithium nickel manganese cobalt oxide of Patent Document 7, the particle size distribution after the compression treatment of 3 ton / cm 2 is specified, and the particle size distribution before the compression treatment, that is, after the oxide synthesis is shown in the figure. As shown in 1 and 3, it is a particle size distribution having one maximum frequency value, and by controlling two peaks of the particle size distribution, it has excellent filling properties without impairing battery characteristics such as charge / discharge capacity and cycle characteristics, There is no disclosure that the electrode density can be increased.

そこで、本発明は、これらの実情に鑑み、充放電容量、サイクル特性、保存特性などの電池特性を損なうことなく充填性に優れ、電極密度を高く出来る非水電解質二次電池用スピネル型リチウムマンガン複合酸化物粉末、及びその製造方法、及び前記スピネル型リチウムマンガン複合酸化物粉末を用いた正極を提供することを目的とする。   Therefore, in view of these circumstances, the present invention is a spinel type lithium manganese for non-aqueous electrolyte secondary batteries that has excellent filling properties and high electrode density without impairing battery characteristics such as charge / discharge capacity, cycle characteristics, and storage characteristics. It aims at providing the positive electrode using composite oxide powder, its manufacturing method, and the said spinel type lithium manganese composite oxide powder.

上記課題を解決するために、本発明者らは鋭意研究し、その結果、スピネル型リチウムマンガン複合酸化物粉末(以下単にリチウムマンガン複合酸化物粉末ということがある)の粒度分布の形状を制御することにより、充填性が高い粉末となること、および電極を製造したときに密度が高く体積当たりのエネルギー密度を高くできることを知見した。   In order to solve the above problems, the present inventors have intensively studied and, as a result, controlled the shape of the particle size distribution of spinel type lithium manganese composite oxide powder (hereinafter sometimes simply referred to as lithium manganese composite oxide powder). As a result, it has been found that the powder has a high filling property, and that when the electrode is manufactured, the density is high and the energy density per volume can be increased.

本発明は、これらの知見に基づいて完成したもので、その発明の要旨は次の通りである。   The present invention has been completed based on these findings, and the gist of the invention is as follows.

(1)一般式:Li1+xMn2−x−y(MはAl、Mg、及びCoから選ばれた1種または2種以上の金属元素であり、xは0≦x≦0.33の範囲を、yは0≦y≦0.2の範囲をとる。)で表されるスピネル型リチウムマンガン複合酸化物であって、レーザ回析・散乱法で計測される粒度分布が、2つの頻度ピークを有し、第一の頻度ピークが4.0から7.0μmの間に頂点を有し、第二の頻度ピークが10.0から17.0μmの間に頂点を有し、第二のピークの高さが第一のピークの高さの2.5から5.0倍の範囲をとり、かつ粉末の全てが2.0から45.0μmの範囲に入ることを特徴とするスピネル型リチウムマンガン複合酸化物粉末。 (1) General formula: Li 1 + x M y Mn is 2-x-y O 4 ( M is one or more metal elements selected Al, Mg, and from Co, x is 0 ≦ x ≦ 0 .33, and y takes the range of 0 ≦ y ≦ 0.2.) The spinel-type lithium-manganese composite oxide represented by the following formula, and the particle size distribution measured by the laser diffraction / scattering method is Has two frequency peaks, the first frequency peak has a peak between 4.0 and 7.0 μm, the second frequency peak has a peak between 10.0 and 17.0 μm, The height of the second peak is in the range of 2.5 to 5.0 times the height of the first peak, and all of the powder is in the range of 2.0 to 45.0 μm Spinel type lithium manganese oxide powder.

(2) 前記スピネル型リチウムマンガン複合酸化物粉末は、その二次粒子表面及び内部にリン酸塩をPOとして全体で0.1質量%〜2.0質量%含むことを特徴とする上記(1)に記載のスピネル型リチウムマンガン複合酸化物粉末。 (2) The spinel-type lithium manganese composite oxide powder as described above, wherein the secondary particle surface and the inside thereof contain 0.1 mass% to 2.0 mass% of phosphate as PO 4 in total ( Spinel type lithium manganese composite oxide powder according to 1).

(3)前記リン酸塩がリン酸アルミニウム、リン酸マグネシウム、リン酸リチウム、リン酸二水素アンモニウムのいずれかあるいはその組み合わせであることを特徴とする上記(2)に記載のスピネル型リチウムマンガン複合酸化物粉末。   (3) The spinel type lithium manganese composite as described in (2) above, wherein the phosphate is any one of aluminum phosphate, magnesium phosphate, lithium phosphate, ammonium dihydrogen phosphate, or a combination thereof. Oxide powder.

(4)リチウム化合物、マンガン化合物、他の金属M化合物(金属MとはAl、Mg及びCoから選ばれた1種または2種以上の金属元素)、ホウ酸塩及びリン酸塩を混合し、600〜900℃で焼成し、解砕、整粒することを特徴とする上記(1)〜(3)のいずれかに記載のスピネル型リチウムマンガン複合酸化物粉末の製造方法。   (4) Lithium compound, manganese compound, other metal M compound (metal M is one or more metal elements selected from Al, Mg and Co), borate and phosphate, The method for producing a spinel-type lithium-manganese composite oxide powder according to any one of the above (1) to (3), which is calcined at 600 to 900 ° C., crushed and sized.

(5)上記(1)〜(3)のいずれかに記載のスピネル型リチウムマンガン複合酸化物と導電助剤及び結着剤からなり、導電材の割合は6質量%以下、結着剤の割合は4質量%以下であるリチウム二次電池用正極であり、プレス荷重4MPa時の該正極の合剤密度が2.75g/cm以上2.87g/cm以下であることを特徴とするリチウム二次電池用正極。 (5) The spinel-type lithium manganese composite oxide according to any one of (1) to (3) above, a conductive additive and a binder, and the proportion of the conductive material is 6% by mass or less, and the proportion of the binder. Is a positive electrode for a lithium secondary battery of 4% by mass or less, and the mixture density of the positive electrode at a press load of 4 MPa is 2.75 g / cm 3 or more and 2.87 g / cm 3 or less. Secondary battery positive electrode.

本発明によれば、密度が高く体積当たりのエネルギー密度が高いリチウム二次電池用正極を製造することができる、非水電解質二次電池用リチウムマンガン複合酸化物粉末を提供することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the lithium manganese complex oxide powder for nonaqueous electrolyte secondary batteries which can manufacture the positive electrode for lithium secondary batteries with a high density and a high energy density per volume. .

レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例1のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 1 of this invention measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例2のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 2 of this invention measured using the particle size distribution measuring apparatus of a laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例3のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 3 of this invention measured using the particle size distribution measuring apparatus of a laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例4のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 4 of this invention measured using the particle size distribution measuring apparatus of a laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例5のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 5 of this invention measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例6のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 6 of this invention measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例7のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 7 of this invention measured using the particle size distribution measuring apparatus of a laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例8のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 8 of this invention measured using the particle size distribution measuring apparatus of a laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例9のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 9 of this invention measured using the particle size distribution measuring apparatus of a laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例10のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 10 of this invention measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例11のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 11 of this invention measured using the particle size distribution measuring apparatus of a laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例12のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 12 of this invention measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例13のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 13 of this invention measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例14のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 14 of this invention measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例15のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 15 of this invention measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、本発明の実施例16のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of Example 16 of this invention measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、比較例1のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of the comparative example 1 measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、比較例2のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of the comparative example 2 measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、比較例3のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of the comparative example 3 measured using the particle size distribution measuring apparatus of a laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、比較例4のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of the comparative example 4 measured using the particle size distribution measuring apparatus of a laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、比較例5のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of the comparative example 5 measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method. レーザ回析・散乱法の粒度分布測定装置を用いて測定した、比較例6のリチウムマンガン複合酸化物粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of the lithium manganese complex oxide powder of the comparative example 6 measured using the particle size distribution measuring apparatus of the laser diffraction / scattering method.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のリチウムマンガン複合酸化物粉末は、化学組成が一般式:Li1+xMn2−x−y(MはAl、Mg、及びCoから選ばれた1種または2種以上の金属元素であり、xは0≦x≦0.33の範囲を、yは0≦y≦0.2の範囲をとる。)で表され、レーザ回析・散乱法で計測される粒度分布が、2つの頻度ピークを有し、第一の頻度ピークが4.0から7.0μmの間に頂点を有し、第二の頻度ピークが10.0から17.0μmの間に頂点を有し、第二のピークの高さが第一のピークの高さの2.5から5.0倍の範囲をとり、かつ粉末の全てが2.0μmから45.0μmの範囲に入ることを特徴とする。 The lithium manganese composite oxide powder of the present invention has a chemical composition of the general formula: Li 1 + x M y Mn 2−xy O 4 (M is one or more metals selected from Al, Mg, and Co) X is in the range of 0 ≦ x ≦ 0.33, and y is in the range of 0 ≦ y ≦ 0.2.) The particle size distribution measured by the laser diffraction / scattering method is Has two frequency peaks, the first frequency peak has a peak between 4.0 and 7.0 μm, the second frequency peak has a peak between 10.0 and 17.0 μm, The height of the second peak is in the range of 2.5 to 5.0 times the height of the first peak, and all of the powder is in the range of 2.0 μm to 45.0 μm .

本発明に係るスピネル型リチウムマンガン複合酸化物は、化学組成が一般式:Li1+xMn2−x−yで表される。すなわち、基本物質であるスピネル型リチウムマンガン酸化物(化学式:LiMn)のMnの一部を第三の金属元素Mに置換したものも含まれ、また、Mnに対してLiをやや過剰に含むものも含まれる。この金属元素Mは、電池内部へのマンガン成分の溶出抑制や高温特性の改善に効果があるものとして選択され、Al、Mg、及びCoから選ばれた元素の1種又は2種以上を充当することができる。金属元素Mの置換量は、化学式:Li1+xMn2−x−yにおいて、yが0≦y≦0.2の範囲とする。置換量が多すぎると、これらを正極活物質として利用した二次電池の放電容量が低下する傾向があるためであり、放電容量の極端な低下は好ましくないため、y≦0.2に制限する。また、Mは必ずしも含有させる必要はないので、yの下限は0とする。 Spinel-type lithium manganese complex oxide according to the present invention, the chemical composition formula: represented by Li 1 + x M y Mn 2 -x-y O 4. That is, some of the basic substances spinel-type lithium manganese oxide (chemical formula: LiMn 2 O 4 ) in which a part of Mn is replaced with the third metal element M are included, and Li is slightly excessive with respect to Mn. Also included in This metal element M is selected as having an effect on suppressing elution of manganese components into the battery and improving high-temperature characteristics, and applies one or more elements selected from Al, Mg, and Co. be able to. The substitution amount of the metal element M is set such that y is in the range of 0 ≦ y ≦ 0.2 in the chemical formula: Li 1 + x M y Mn 2−xy O 4 . This is because if the amount of substitution is too large, the discharge capacity of secondary batteries using these as a positive electrode active material tends to decrease, and an extreme decrease in discharge capacity is not preferable, so y ≦ 0.2 is limited. . Moreover, since it is not always necessary to contain M, the lower limit of y is 0.

また、本発明に係るスピネル型リチウムマンガン複合酸化物においては、Liは、1〜1.33(xが0≦x≦0.33の範囲)とする。Li比が大きくなるにしたがい、リチウム二次電池としての放電容量が低下し、例えばLi:1.33(x=0.33)では、Mn価数がほぼ4となって理論上4V領域では充放電しなくなるので、xの上限を0.33とした。したがって、xの範囲は0≦x≦0.33の範囲とした。   In the spinel-type lithium manganese composite oxide according to the present invention, Li is set to 1 to 1.33 (x is in a range of 0 ≦ x ≦ 0.33). As the Li ratio increases, the discharge capacity as a lithium secondary battery decreases. For example, when Li: 1.33 (x = 0.33), the Mn valence is almost 4 and the charge is theoretically increased in the 4V region. Since the discharge does not occur, the upper limit of x is set to 0.33. Therefore, the range of x is set to 0 ≦ x ≦ 0.33.

本発明のリチウムマンガン複合酸化物で、二次粒子表面及び内部にリン酸塩をPOとして全体で0.1質量%〜2.0質量%含むとしたのは、マンガン溶出量が少なく、サイクル特性に優れた非水電解質二次電池用リチウムマンガン複合酸化物とするためである。POとして全体で0.1質量%未満ではリン酸塩添加の効果がはっきりと見られず、2.0質量%を超えて多い場合は、活物質として働くリチウムマンガン複合酸化物分の比率減による容量減少が大きくなり、初期放電容量の低下を招くので好ましくない。また、リン酸塩は真密度が低いため、リチウムマンガン複合酸化物の真密度の低下を招くため好ましくない。そのため0.1質量%〜2.0質量%の範囲とした。 In the lithium manganese composite oxide of the present invention, the amount of manganese elution is small because the surface contains and contains 0.1 mass% to 2.0 mass% of phosphate as PO 4 on the surface and inside of the secondary particles. This is because a lithium manganese composite oxide for a non-aqueous electrolyte secondary battery having excellent characteristics is obtained. If the total amount of PO 4 is less than 0.1% by mass, the effect of phosphate addition is not clearly seen. If it exceeds 2.0% by mass, the proportion of lithium manganese composite oxide that acts as an active material is reduced. This is not preferable because the capacity decrease due to the increase in the initial discharge capacity is reduced. In addition, since phosphate has a low true density, it is not preferable because the true density of the lithium manganese composite oxide is reduced. Therefore, it was set as the range of 0.1 mass%-2.0 mass%.

リン酸塩としてはリン酸のアルカリ金属塩、アルカリ土類金属塩、M金属のリン酸塩などが使用出来るがリン酸アルミニウム、リン酸マグネシウム、リン酸リチウム、リン酸二水素アンモニウムのいずれかあるいはその組み合わせが好ましい。   As the phosphate, an alkali metal salt of phosphoric acid, an alkaline earth metal salt, a phosphate of M metal, etc. can be used, but any of aluminum phosphate, magnesium phosphate, lithium phosphate, ammonium dihydrogen phosphate or That combination is preferred.

本発明における粉末は、リチウム塩、マンガン塩などの原料を混合、焼成、解砕、整粒して得られた粉末(粒子)のことであり、二次粒子(一次粒子が焼結した粒子)の状態となっている。本発明の二次粒子は、その粒度分布が、2つの頻度ピークを有し、第一の頻度ピークが4.0から7.0μmの間に頂点を有し、第二の頻度ピークが10.0から17.0μmの間に頂点を有し、第二のピークの高さが第一のピークの高さの2.5から5.0倍の範囲をとり、かつ粉末の全てが2.0μmから45.0μmの範囲に入ることが好ましい。この粒度分布は、レーザ回析・散乱法を用いた粒度分布測定装置、例えば、日機装株式会社の商品名マイクロトラックHRAx100等を用いて測定することができる。   The powder in the present invention is a powder (particle) obtained by mixing, firing, crushing, and sizing raw materials such as lithium salt and manganese salt, and secondary particles (particles obtained by sintering primary particles). It is in the state of. The particle size distribution of the secondary particles of the present invention has two frequency peaks, the first frequency peak has a peak between 4.0 and 7.0 μm, and the second frequency peak is 10. It has an apex between 0 and 17.0 μm, the height of the second peak ranges from 2.5 to 5.0 times the height of the first peak, and all of the powder is 2.0 μm To 45.0 μm. This particle size distribution can be measured using a particle size distribution measuring apparatus using a laser diffraction / scattering method, for example, trade name Microtrac HRAx100 manufactured by Nikkiso Co., Ltd.

本発明におけるリチウムマンガン複合酸化物粉末の粒度分布について、前記の通りとした理由を以下に述べる。   The reason why the particle size distribution of the lithium manganese composite oxide powder in the present invention is as described above will be described below.

(1)粉末の全てが粒度分布の測定結果に於いて2.0μmから45.0μmの範囲内とする理由は次の通りである。   (1) The reason why all the powders are in the range of 2.0 μm to 45.0 μm in the particle size distribution measurement result is as follows.

2.0μm未満の微粒子は、粉末の比表面積増大の原因となり、比表面積が大きいリチウムマンガン複合酸化物は、電解液中へのMn溶出を引き起こし易く、Mn溶出を主原因とした寿命特性低下が進みやすいため好ましくない。
一方、45.0μmを超える粒子は、正極板の設計厚みにも依存するが、正極製造のためにスラリー調製し、アルミニウム箔上に塗工した際に、筋引き等の塗工不良を引き起こし易いため好ましくない。
Fine particles of less than 2.0 μm cause an increase in the specific surface area of the powder, and a lithium manganese composite oxide having a large specific surface area tends to cause elution of Mn into the electrolyte, resulting in a decrease in life characteristics mainly due to Mn elution. It is not preferable because it is easy to proceed.
On the other hand, particles exceeding 45.0 μm depend on the design thickness of the positive electrode plate, but when a slurry is prepared for the production of the positive electrode and coated on an aluminum foil, it tends to cause poor coating such as stringing. Therefore, it is not preferable.

(2)第一の頻度ピークが4.0から7.0μmの間に頂点を有する粒度分布とする理由としては、4μm以下に頂点をもつ粒度分布では、物理的に2.0μm未満の微粉を含むことになり、粉末として比表面積が増大してしまう。比表面積が大きいリチウムマンガン複合酸化物は、電解液中へのMn溶出を引き起こし易く、寿命特性が低下するため好ましくない。一方、7.0μmを超えて大きくすると、第二のピークとの粒径差がとれず、密度向上効果が見られなくなるためである。   (2) The reason why the first frequency peak has a particle size distribution having an apex between 4.0 and 7.0 μm is as follows. In the particle size distribution having an apex at 4 μm or less, a fine powder of less than 2.0 μm is physically added. As a result, the specific surface area increases as a powder. A lithium-manganese composite oxide having a large specific surface area is not preferable because it easily causes Mn elution into the electrolytic solution and deteriorates life characteristics. On the other hand, if it exceeds 7.0 μm, the particle size difference from the second peak cannot be obtained, and the effect of improving the density cannot be seen.

(3)第二の頻度ピークが10.0から17.0μmの間に頂点を有する粒度分布とする理由としては、頻度ピークが17.0μmを超えて大きくすると、最大粒子径を45.0μm以下とすることが困難となるためであり、10.0μm未満よりも小さくすると、第一のピークとの粒径差がとれず、密度向上効果が見られなくなるためである。   (3) The reason why the second frequency peak has a particle size distribution having an apex between 10.0 and 17.0 μm is that when the frequency peak is larger than 17.0 μm, the maximum particle size is 45.0 μm or less. This is because if the particle size is less than 10.0 μm, the particle size difference from the first peak cannot be obtained, and the effect of improving the density cannot be seen.

(4)第二のピークに属する粒子を大粒子、第一のピークに属する粒子を小粒子と表現した場合、大粒子の隙間を小粒子が埋める形で、正極を製造したときに高い合剤密度を実現している。   (4) When a particle belonging to the second peak is expressed as a large particle and a particle belonging to the first peak is expressed as a small particle, a high mixture is obtained when the positive electrode is manufactured in such a manner that the small particle fills the gap between the large particles The density is realized.

大粒子と小粒子の粒径が近い場合は、前述の効果は発現されず合剤密度が低い正極となり、好ましくない。そのため、第一の頻度ピークと第二の頻度ピークの頂点は、それぞれ4.0〜7.0μmと10.0〜17.0μmの組合せが好ましく、さらに好ましくは、5.0〜6.0μmと13.0〜15.0μmの組合せである。   When the particle sizes of the large particles and the small particles are close to each other, the above-described effects are not exhibited, and the positive electrode has a low mixture density, which is not preferable. Therefore, the peak of the first frequency peak and the second frequency peak is preferably a combination of 4.0 to 7.0 μm and 10.0 to 17.0 μm, respectively, more preferably 5.0 to 6.0 μm. The combination is 13.0 to 15.0 μm.

(5)第二の頻度ピークの高さが第一の頻度ピークの高さに対し5.0倍を超えて高い、あるいは第一の頻度ピークが無い粒度分布の場合、小粒子が大粒子の隙間を十分に満たすことができず、正極を製造したときに合剤密度が低くなる。反対に、第二の頻度ピークの高さが第一の頻度ピークの高さに対し2.5倍未満の低い粒度分布の場合、粉末における小粒子の割合が多すぎて、粉末自体の嵩密度を低下させるため、好ましくない。そのため、第二の頻度ピークの高さは、第一の頻度ピークの高さの2.5倍から5.0倍とすることが好ましい。さらに好ましくは、3.0から3.5倍である。   (5) In the case of a particle size distribution in which the height of the second frequency peak is higher than 5.0 times the height of the first frequency peak, or there is no first frequency peak, The gap cannot be sufficiently filled, and the density of the mixture decreases when the positive electrode is manufactured. Conversely, if the second frequency peak has a low particle size distribution that is less than 2.5 times the height of the first frequency peak, the proportion of small particles in the powder is too high and the bulk density of the powder itself Is not preferable. For this reason, the height of the second frequency peak is preferably 2.5 to 5.0 times the height of the first frequency peak. More preferably, it is 3.0 to 3.5 times.

上記(1)〜(5)の理由より、レーザ回析・散乱法で計測される粒度分布が、2つの頻度ピークを有し、第一の頻度ピークが4.0から7.0μmの間に頂点を有し、第二の頻度ピークが10.0から17.0μmの間に頂点を有し、第二のピークの高さが第一のピークの高さの2.5から5.0倍の範囲をとり、かつ粉末の全てが2.0から45.0μmの範囲に入るようなスピネル型リチウムマンガン複合酸化物を用いて、導電材の割合は6質量%以下、結着剤の割合は4質量%以下で正極を作製した場合、プレス荷重4MPa時の正極の合剤密度が2.75g/cm以上とすることが可能になる。 For the reasons (1) to (5) above, the particle size distribution measured by the laser diffraction / scattering method has two frequency peaks, and the first frequency peak is between 4.0 and 7.0 μm. Has a peak, the second frequency peak has a peak between 10.0 and 17.0 μm, and the height of the second peak is 2.5 to 5.0 times the height of the first peak And using a spinel type lithium manganese composite oxide in which all of the powder falls within the range of 2.0 to 45.0 μm, the proportion of the conductive material is 6% by mass or less, and the proportion of the binder is When a positive electrode is produced at 4 mass% or less, the mix density of the positive electrode at a press load of 4 MPa can be 2.75 g / cm 3 or more.

次いで、本発明のリチウムマンガン複合酸化物粉末の製造方法について説明する。   Next, a method for producing the lithium manganese composite oxide powder of the present invention will be described.

本発明のスピネル型リチウムマンガン複合酸化物粉末は、炭酸リチウム、水酸化リチウムなどのリチウム塩とMnO、Mn、Mnなどのマンガン酸化物(焼成により酸化物となるものであれば炭酸マンガン、水酸化マンガンも使用可能)、Al、Mg及びCoから選ばれた1種または2種以上の金属酸化物あるいは金属水酸化物(以下、M金属化合物という)、ホウ酸をBとして全体で0.01質量%〜0.1質量%、またはリン酸塩をPOとして全体で0.1質量%〜2.0質量%とホウ酸をBとして全体で0.01質量%〜0.1質量%と共に混合、焼成、解砕、整粒することで得られる。 The spinel-type lithium manganese composite oxide powder of the present invention includes lithium salts such as lithium carbonate and lithium hydroxide and manganese oxides such as MnO 2 , Mn 2 O 3 , and Mn 3 O 4 (which become oxides upon firing). Manganese carbonate and manganese hydroxide if available), one or more metal oxides or metal hydroxides selected from Al, Mg and Co (hereinafter referred to as M metal compounds), boric acid as B 0.01 mass% to 0.1 mass% as a whole, or 0.1 mass% to 2.0 mass% as a whole with phosphate as PO 4 and 0.01 mass% as a whole with B as boric acid It is obtained by mixing, firing, crushing, and sizing with 0.1% by mass.

マンガン酸化物は、2つの頻度ピークをもつ粒度分布にするために、平均粒径の異なる2種類以上のマンガン酸化物を混合して使用しても構わない。   Manganese oxides may be used by mixing two or more types of manganese oxides having different average particle diameters in order to obtain a particle size distribution having two frequency peaks.

マンガン酸化物とM金属化合物は事前に液相から共沈法で作製したマンガンM金属含有水酸化物(あるいは酸化物)、マンガン酸化物とM金属化合物を事前に焼成して作製したマンガンM金属含有酸化物を使用しても構わない。   Manganese oxide and M metal compound are manganese M metal-containing hydroxides (or oxides) prepared in advance from the liquid phase by coprecipitation, and manganese M metal prepared by firing manganese oxide and M metal compounds in advance. A contained oxide may be used.

M金属化合物は同様に原料として使用するマンガン酸化物より小さな平均粒子径を持つ物を使用する事が好ましい。   Similarly, it is preferable to use an M metal compound having an average particle size smaller than that of the manganese oxide used as a raw material.

リン酸塩としてはリン酸のアルカリ金属塩、アルカリ土類金属塩、M金属のリン酸塩などが使用出来るがリン酸アルミニウム、リン酸マグネシウム、リン酸リチウム、リン酸二水素アンモニウムのいずれかあるいはその組み合わせが好ましい。   As the phosphate, an alkali metal salt of phosphoric acid, an alkaline earth metal salt, a phosphate of M metal, etc. can be used, but any of aluminum phosphate, magnesium phosphate, lithium phosphate, ammonium dihydrogen phosphate or That combination is preferred.

リン酸塩の混合方法、タイミングはリチウム塩とマンガン酸化物とM金属化合物と一緒に混合しても、リン酸塩がリン酸二水素アンモニウム等、水溶液になる物では水溶液にして噴霧添加するのでも構わない。混合方法としては、特に限定するものではないが、精密混合機で乾式混合することが好ましい。   The mixing method and timing of the phosphate can be mixed with the lithium salt, manganese oxide, and M metal compound, but if the phosphate is an aqueous solution such as ammonium dihydrogen phosphate, it is sprayed as an aqueous solution. It doesn't matter. Although it does not specifically limit as a mixing method, It is preferable to dry-mix with a precision mixer.

リン酸塩を加えた後に焼成(加熱処理)することで、二次粒子の表面及び一部内部に結晶性の高いリン酸塩をリチウムマンガン複合酸化物粒子にPOとして全体で0.1質量%〜2.0質量%含ませることができる。 By firing (heating treatment) after adding the phosphate, 0.1 mass in total is obtained as a highly crystalline phosphate on the surface and part of the secondary particles as lithium manganese composite oxide particles PO 4. % To 2.0% by mass.

混合した混合物を、焼成する時の焼成温度は、600〜900℃の範囲とする。焼成時間は焼成温度などにより必ずしも同一ではないが、5〜24時間程度とすることが好ましい。これらの加熱時間や焼成時間を制御する理由は、焼成温度が低いとスピネル型の結晶構造とならないか、異相が混じりやすいので、焼成温度の下限を600℃とする。一方、焼成温度が高すぎると酸素欠損が生じ、サイクル特性が大幅に低下する問題があるので加熱温度の上限を900℃とする。   The firing temperature when firing the mixed mixture is set to a range of 600 to 900 ° C. The firing time is not necessarily the same depending on the firing temperature, but is preferably about 5 to 24 hours. The reason for controlling these heating time and firing time is that if the firing temperature is low, a spinel crystal structure is not formed or a different phase is likely to be mixed, so the lower limit of the firing temperature is 600 ° C. On the other hand, if the firing temperature is too high, oxygen vacancies occur and the cycle characteristics are significantly degraded.

さらに焼成時に焼結助剤としてホウ酸をBとして全体で0.01質量%〜0.1質量%となるように加えると更に良い。   Further, it is better to add boric acid as a sintering aid at the time of firing so that the total amount is 0.01 mass% to 0.1 mass%.

ホウ酸の添加量はBとして0.01質量%未満ではホウ酸を添加した焼結助剤としての効果がはっきりとは見られず、0.1質量%を超える量を加えた場合は、その焼成条件(焼成温度、焼成時間)にもよるが、粒子成長が進みすぎることや、電池抵抗の上昇などマイナス面が見られてくるため好ましくない。加えたホウ酸は焼結助剤の役割と共に二次粒子の表面及び内部に存在し、Bとして全体で0.01質量%〜0.1質量%となるように加えた場合、マンガンの溶出抑制効果が向上する。なお、ホウ酸としては、ホウ酸水溶液や酸化ホウ素等で良い。   If the amount of boric acid added is less than 0.01% by mass as B, the effect as a sintering aid to which boric acid has been added is not clearly seen. If an amount exceeding 0.1% by mass is added, Although it depends on the firing conditions (firing temperature, firing time), it is not preferable because negative growth such as excessive particle growth and an increase in battery resistance is observed. The added boric acid is present on the surface and inside of the secondary particles together with the role of the sintering aid, and when added so that the total amount of B is 0.01% by mass to 0.1% by mass, the dissolution of manganese is suppressed. The effect is improved. The boric acid may be a boric acid aqueous solution, boron oxide or the like.

焼成することによって、リチウムマンガン複合酸化物が得られる。焼成した後に、例えば解砕整粒機等により解砕、整粒することで、所望の粒度分布を有する二次粒子(一次粒子が焼結した粒子)とする。二次粒子の表面及び内部にリン酸塩またはリン酸塩とホウ酸が存在するリチウムマンガン複合酸化物粉末を得ることができる。   By firing, a lithium manganese composite oxide is obtained. After firing, secondary particles (particles obtained by sintering primary particles) having a desired particle size distribution are obtained by, for example, crushing and sizing with a pulverizing and granulating machine or the like. Lithium manganese composite oxide powder in which phosphate or phosphate and boric acid are present on the surface and inside of the secondary particles can be obtained.

本発明のリチウムマンガン複合酸化物粉末が、マンガン溶出量が少なく、サイクル特性(耐久性)に優れた特性の発現理由は必ずしも明確ではないが、以下の通りと推定される。   The reason why the lithium manganese composite oxide powder of the present invention has a small amount of manganese elution and excellent cycle characteristics (durability) is not necessarily clear, but is estimated as follows.

電解液中に電解質塩として一般的にLiPFが使われることが多い。LiPFは電池内の水分と反応し、次式(1)、(2)に示すように、フッ酸(フッ化水素酸)を生成する。そしてリチウムマンガン複合酸化物粉末内のマンガン分は次式(3−1)、(3−2)に示すようにフッ酸と反応し溶解し、また水を生成する。二次電池内に存在する水がマンガン溶出の原因となり、充放電時や放置時に於ける電池劣化原因の一つとなっている。 In general, LiPF 6 is often used as an electrolyte salt in the electrolytic solution. LiPF 6 reacts with moisture in the battery to generate hydrofluoric acid (hydrofluoric acid) as shown in the following formulas (1) and (2). The manganese content in the lithium manganese composite oxide powder reacts with hydrofluoric acid and dissolves as shown in the following formulas (3-1) and (3-2), and generates water. Water present in the secondary battery causes manganese elution, which is one of the causes of battery deterioration during charging and discharging and when left.

電解液中にリン酸リチウムを加える事で次式(4−1)〜(5−3)に示すようにフッ酸の発生が抑制され、また、電池正極作成時に単にリン酸リチウムを加えることでもマンガンの溶出は減少する。   By adding lithium phosphate to the electrolyte, the generation of hydrofluoric acid is suppressed as shown in the following formulas (4-1) to (5-3), and it is also possible to simply add lithium phosphate at the time of making the battery positive electrode. Manganese elution is reduced.

化学反応式は、下記のとおりと推定できる。   The chemical reaction formula can be estimated as follows.

電解質塩として用いられるLiPFは水と反応し次式(1)、(2)によりフッ酸HFを生成する。 LiPF 6 used as an electrolyte salt reacts with water to generate hydrofluoric acid HF according to the following formulas (1) and (2).

LiPF+HO → LiF+2HF+POF ・・・ (1)
POF+3HO → 3HF+HPO ・・・ (2)
そしてリチウムマンガン複合酸化物粉末内のマンガン分は次式(3−1)、(3−2)によりフッ酸と反応し溶解し、また水を生成する。
LiPF 6 + H 2 O → LiF + 2HF + POF 3 (1)
POF 3 + 3H 2 O → 3HF + H 3 PO 4 (2)
The manganese content in the lithium manganese composite oxide powder reacts with hydrofluoric acid according to the following formulas (3-1) and (3-2) to dissolve, and generates water.

Mn酸化物+2HF → MnF(溶解)+HO ・・・ (3−1)
Mn酸化物をLiMnで表した場合は
4LiMn+8HF → 3Mn+4LiF+2MnF+4HO・・ (3−2)
つまり、二次電池内に存在する水がマンガン溶出の大きな原因となっている。
Mn oxide + 2HF → MnF 2 (dissolved) + H 2 O (3-1)
When the Mn oxide is represented by LiMn 2 O 4 , 4LiMn 2 O 4 + 8HF → 3Mn 2 O 4 + 4LiF + 2MnF 2 + 4H 2 O. (3-2)
That is, water present in the secondary battery is a major cause of manganese elution.

リン酸塩は次式(4−1)〜(4−3)にて水あるいは次式(5−1)〜(5−3)にてフッ酸を先に捕捉する。そして発生したリン酸分自体はリチウムマンガン複合酸化物粉末内のマンガンを分解溶出する働きが小さいためマンガンの溶出を抑制できる。また水は再発生しない。   The phosphate first captures water in the following formulas (4-1) to (4-3) or hydrofluoric acid in the following formulas (5-1) to (5-3). Since the generated phosphoric acid content itself has a small function of decomposing and eluting manganese in the lithium manganese composite oxide powder, elution of manganese can be suppressed. Water is not regenerated.

LiPO+HO → LiHPO+LiOH ・・・・・ (4−1)
LiPO+2HO → LiHPO+2LiOH ・・・ (4−2)
LiPO+3HO → HPO+3LiOH ・・・・・ (4−3)
LiPO+HF → LiHPO+LiF ・・・・・・ (5−1)
LiPO+2HF → LiHPO+2LiF ・・・・ (5−2)
LiPO+3HF → HPO+3LiF ・・・・・・ (5−3)
単にリン酸リチウムを加えた場合に於いても電解液中のPO濃度が高くなるため式(2)の反応式が進みにくくなり、LiPFの分解が抑制され電池内のフッ酸濃度は低下するが、二次電池では充放電による粒子界面の電位が変わり、その界面の状態影響が大きいため、本発明のようにリン酸塩がリチウムマンガン複合酸化物粉末の二次粒子表面及び内部に存在する方がより効果が大きくなる。リチウムマンガン複合酸化物粉末の二次粒子表面及び内部にリン酸塩が存在することで、電解液及び電解質との反応性が下がり、更に耐久性が向上するものと推定できる。
次いで、本発明のリチウムマンガン複合酸化物粉末を用いた正極の製造方法について説明する。
Li 3 PO 4 + H 2 O → Li 2 HPO 4 + LiOH (4-1)
Li 3 PO 4 + 2H 2 O → LiH 2 PO 4 + 2LiOH (4-2)
Li 3 PO 4 + 3H 2 O → H 3 PO 4 + 3LiOH (4-3)
Li 3 PO 4 + HF → Li 2 HPO 4 + LiF (5-1)
Li 3 PO 4 + 2HF → LiH 2 PO 4 + 2LiF (5-2)
Li 3 PO 4 + 3HF → H 3 PO 4 + 3LiF (5-3)
Even when lithium phosphate is simply added, the PO 4 concentration in the electrolyte solution becomes high, so that the reaction formula (2) becomes difficult to proceed, the decomposition of LiPF 6 is suppressed, and the hydrofluoric acid concentration in the battery decreases. However, in the secondary battery, the potential at the particle interface changes due to charge / discharge, and the influence of the state of the interface is large. Therefore, as in the present invention, phosphate exists on the surface and inside of the secondary particle of the lithium manganese composite oxide powder. The effect is greater. It can be estimated that the presence of phosphate on the surface and inside of the secondary particles of the lithium manganese composite oxide powder decreases the reactivity with the electrolyte and the electrolyte and further improves the durability.
Subsequently, the manufacturing method of the positive electrode using the lithium manganese complex oxide powder of this invention is demonstrated.

(1)正極の構成材料として、リチウムマンガン複合酸化物粉末を正極活物質とし、導電助剤に黒鉛系とアモルファスカーボン系の2種類を使用、結着剤にはポリフッ化ビニリデン(PVdF)を用いることができる。   (1) As a constituent material of the positive electrode, lithium manganese composite oxide powder is used as a positive electrode active material, two types of graphite and amorphous carbon are used as a conductive additive, and polyvinylidene fluoride (PVdF) is used as a binder. be able to.

(2)導電助剤については、なるべく少ない割合とし、活物質の割合をなるべく高くした方が、正極のエネルギー密度は高くなる。そのため、導電助剤はなるべく粒径が小さく、活物質の電池性能が十分に引き出せる最小限の割合で良い。正極活物質や導電助剤の粒径にも依存するが、リチウムマンガン複合酸化物の場合、導電助剤の割合は4から6質量%で十分な電池性能を引き出すことができる。導電助剤の割合が6質量%を超えても、そのエネルギー密度が高くなることは少なく、寧ろ真密度2.2g/cm程度の導電助剤の割合が増大することにより合剤密度は低下し、体積当たりのエネルギー密度低下の原因となる。 (2) About the conductive assistant, the energy density of the positive electrode becomes higher when the proportion is made as small as possible and the proportion of the active material is made as high as possible. Therefore, the conductive auxiliary agent may have a particle size as small as possible, and a minimum ratio that can sufficiently bring out the battery performance of the active material. Although it depends on the particle size of the positive electrode active material and the conductive auxiliary agent, in the case of the lithium manganese composite oxide, the ratio of the conductive auxiliary agent is 4 to 6% by mass, and sufficient battery performance can be obtained. Even if the proportion of the conductive auxiliary exceeds 6% by mass, the energy density is rarely increased, but rather, the mixture density is lowered by increasing the proportion of the conductive auxiliary having a true density of about 2.2 g / cm 3. In addition, the energy density per volume is reduced.

(3)結着剤は、リチウムイオン二次電池として繰返し充放電を行っても、活物質がアルミニウム集電体から剥離しないような割合で添加する必要がある。また、結着剤PVdFは、導電性を持たない樹脂であり、割合を多くすると抵抗増大の要因にもなる。結着剤の割合については、正極活物質、導電助剤の粒径にも依存するが、リチウムマンガン複合酸化物の場合、結着剤の割合を3から4質量%とすることで十分な結着性が得られる。一方、結着剤の割合が4質量%を超えると、抵抗増大によりエネルギー密度の低下の原因となる。   (3) It is necessary to add the binder at such a rate that the active material does not peel from the aluminum current collector even when the lithium ion secondary battery is repeatedly charged and discharged. Further, the binder PVdF is a resin that does not have electrical conductivity, and increasing the ratio also causes an increase in resistance. The ratio of the binder depends on the particle size of the positive electrode active material and the conductive additive, but in the case of the lithium manganese composite oxide, it is sufficient to set the ratio of the binder to 3 to 4% by mass. Wearability is obtained. On the other hand, if the proportion of the binder exceeds 4% by mass, the increase in resistance causes a decrease in energy density.

前記(1)〜(3)の理由から、リチウムマンガン複合酸化物を用いた正極を構成する導電助剤の割合を6%質量以下、結着剤の割合を4質量%以下と設定した。   For the reasons (1) to (3), the proportion of the conductive auxiliary agent constituting the positive electrode using the lithium manganese composite oxide was set to 6% by mass or less, and the ratio of the binder was set to 4% by mass or less.

以下実施例(発明例)および比較例に基づいて本発明の効果を詳細に説明する。但し、本発明はこれらの実施例に限定されるものではない。   Hereinafter, effects of the present invention will be described in detail based on examples (invention examples) and comparative examples. However, the present invention is not limited to these examples.

(実施例1)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化マグネシウムを表1記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.025質量%となるように加え、再度混合した。ここでマンガン酸化物は電解二酸化マンガン(MnO)であり、平均粒径5μmのマンガン酸化物と15μmのマンガン酸化物を質量比で3対7の割合で予備混合したものを使用した。
Example 1
Lithium carbonate, manganese oxide, aluminum hydroxide, and magnesium oxide were weighed so as to have the composition shown in Table 1. After dry mixing with a precision mixer, a 2% by mass boric acid aqueous solution was calculated from the pure Mn content to add 0.025% by mass of boron after calcination, and mixed again. Here, the manganese oxide was electrolytic manganese dioxide (MnO 2 ), which was prepared by premixing manganese oxide having an average particle size of 5 μm and 15 μm manganese oxide in a mass ratio of 3 to 7.

その一部造粒された混合粉を大気中で800℃20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。得られた粉末をレーザ回析・散乱法による粒度分布測定装置、日機装株式会社の商品名マイクロトラックHRAx100で計測した。その結果を図1に示す。図1のスピネル型リチウムマンガン複合酸化物粉末の粒度分布に示すように、スピネル型リチウムマンガン複合酸化物粉末の粒度分布は2つの頻度ピークを有し、第一の頻度ピークが5.5μmを頂点とし、第二の頻度ピークが14.3μmを頂点とし、第二のピークの高さが第一のピークの高さの3.4倍であり、かつ粉末の全てが2.0μmから45.0μmの範囲に入ることを確認した。   The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder. The obtained powder was measured with a particle size distribution measuring device by a laser diffraction / scattering method, a trade name of Microtrac HRAx100 of Nikkiso Co., Ltd. The result is shown in FIG. As shown in the particle size distribution of the spinel type lithium manganese composite oxide powder in FIG. 1, the particle size distribution of the spinel type lithium manganese composite oxide powder has two frequency peaks, and the first frequency peak is at the top of 5.5 μm. The second frequency peak is at the top of 14.3 μm, the height of the second peak is 3.4 times the height of the first peak, and all of the powder is 2.0 μm to 45.0 μm Confirmed to be in the range.

以下に記す実施例、比較例においても、同様に粒度分布測定を行った。その結果を、実施例2〜16はそれぞれ図2〜16に、比較例1〜6はそれぞれ図17〜22に示した。   In the examples and comparative examples described below, the particle size distribution was measured in the same manner. The results are shown in FIGS. 2 to 16 for Examples 2 to 16, and FIGS. 17 to 22 for Comparative Examples 1 to 6, respectively.

(実施例2)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化マグネシウムを表1記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.02質量%となるように、さらに15質量%リン酸二水素アンモニウム水溶液をリン酸塩(PO)として焼成後全体の0.6質量%となるように加え、再度混合した。ここでマンガン酸化物は電解二酸化マンガン(MnO)であり、平均粒径5μmのマンガン酸化物と15μmのマンガン酸化物を質量比で3対7の割合で予備混合したものを使用した。その一部造粒された混合粉を大気中で800℃20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
(Example 2)
Lithium carbonate, manganese oxide, aluminum hydroxide, and magnesium oxide were weighed so as to have the composition shown in Table 1. After dry-mixing with a precision mixer, a 2% by mass boric acid aqueous solution is calculated from the pure Mn content so that it becomes 0.02% by mass after calcination as boron, and further a 15% by mass ammonium dihydrogen phosphate aqueous solution. Was added as phosphate (PO 4 ) so as to be 0.6% by mass of the whole after firing and mixed again. Here, the manganese oxide was electrolytic manganese dioxide (MnO 2 ), which was prepared by premixing manganese oxide having an average particle size of 5 μm and 15 μm manganese oxide in a mass ratio of 3 to 7. The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder.

(実施例3〜5)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化マグネシウムを表1記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.025質量%となるように加え、再度混合した。ここでマンガン酸化物は電解二酸化マンガン(MnO)であり、平均粒径5μmのマンガン酸化物と15μmのマンガン酸化物を質量比で表1記載の割合で予備混合したものを使用した。その一部造粒された混合粉を大気中で800℃20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
(Examples 3 to 5)
Lithium carbonate, manganese oxide, aluminum hydroxide, and magnesium oxide were weighed so as to have the composition shown in Table 1. After dry mixing with a precision mixer, a 2% by mass boric acid aqueous solution was calculated from the pure Mn content to add 0.025% by mass of boron after calcination, and mixed again. Here, the manganese oxide was electrolytic manganese dioxide (MnO 2 ), which was prepared by premixing manganese oxide having an average particle size of 5 μm and manganese oxide having a particle diameter of 15 μm at a mass ratio shown in Table 1. The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder.

(実施例6、7)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化マグネシウムを表1記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.020質量%となるように、さらに15質量%リン酸二水素アンモニウム水溶液をリン酸塩(PO)として焼成後全体の0.6質量%となるように加え、再度混合した。ここでマンガン酸化物は電解二酸化マンガン(MnO)であり、平均粒径5μmのマンガン酸化物と15μmのマンガン酸化物を質量比で表1記載の割合で予備混合したものを使用した。その一部造粒された混合粉を大気中で800℃20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
(Examples 6 and 7)
Lithium carbonate, manganese oxide, aluminum hydroxide, and magnesium oxide were weighed so as to have the composition shown in Table 1. Dry-mix with a precision mixer, and then calculate a 2% by weight boric acid aqueous solution from the pure Mn amount so that it becomes 0.020% by weight of the total after firing as boron, and further a 15% by weight ammonium dihydrogen phosphate aqueous solution. Was added as phosphate (PO 4 ) so as to be 0.6% by mass of the whole after firing and mixed again. Here, the manganese oxide was electrolytic manganese dioxide (MnO 2 ), which was prepared by premixing manganese oxide having an average particle size of 5 μm and manganese oxide having a particle diameter of 15 μm at a mass ratio shown in Table 1. The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder.

(実施例8)
炭酸リチウム、マンガン酸化物、水酸化アルミニウムを表1記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.030質量%となるように、さらに15質量%リン酸二水素アンモニウム水溶液をリン酸塩(PO)として焼成後全体の0.9質量%となるように加え、再度混合した。ここでマンガン酸化物はMnであり、平均粒径6μmのマンガン酸化物と14μmのマンガン酸化物を質量比で3対7の割合で予備混合したものを使用した。その一部造粒された混合粉を大気中で800℃20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
(Example 8)
Lithium carbonate, manganese oxide, and aluminum hydroxide were weighed so as to have the composition shown in Table 1. After dry-mixing with a precision mixer, 2% by weight boric acid aqueous solution is calculated from the pure Mn content, so that it becomes 0.030% by weight of the total after baking as boron, and further 15% by weight ammonium dihydrogen phosphate aqueous solution. Was added as phosphate (PO 4 ) so as to be 0.9% by mass of the whole after firing and mixed again. Here, the manganese oxide was Mn 3 O 4 , and a manganese oxide having an average particle diameter of 6 μm and a manganese oxide of 14 μm premixed at a mass ratio of 3 to 7 was used. The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder.

(実施例9)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化コバルト、酸化マグネシウムを表1記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.020質量%となるように、さらに15質量%リン酸二水素アンモニウム水溶液をリン酸塩(PO)として焼成後全体の0.9質量%となるように加え、再度混合した。ここでマンガン酸化物は、Mnであり、平均粒径6μmのマンガン酸化物と14μmのマンガン酸化物を質量比で3対7の割合で予備混合したものを使用した。その一部造粒された混合粉を大気中で800℃、20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
Example 9
Lithium carbonate, manganese oxide, aluminum hydroxide, cobalt oxide, and magnesium oxide were weighed so as to have the composition shown in Table 1. Dry-mix with a precision mixer, and then calculate a 2% by weight boric acid aqueous solution from the pure Mn amount so that it becomes 0.020% by weight of the total after firing as boron, and further a 15% by weight ammonium dihydrogen phosphate aqueous solution. Was added as phosphate (PO 4 ) so as to be 0.9% by mass of the whole after firing and mixed again. Here, the manganese oxide was Mn 3 O 4 , and a manganese oxide having an average particle diameter of 6 μm and a manganese oxide of 14 μm premixed at a mass ratio of 3 to 7 was used. The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder.

(実施例10)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化コバルト、酸化マグネシウムを表1記載の組成になるように秤量した。精密混合機で乾式混合し、その後15質量%リン酸二水素アンモニウム水溶液をリン酸塩(PO)として焼成後全体の0.6質量%となるように加え、再度混合した。ここでマンガン酸化物はMnであり、平均粒径6μmのマンガン酸化物と14μmのマンガン酸化物を質量比で3対7の割合で予備混合したものを使用した。その一部造粒された混合粉を大気中で800℃、20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
(Example 10)
Lithium carbonate, manganese oxide, aluminum hydroxide, cobalt oxide, and magnesium oxide were weighed so as to have the composition shown in Table 1. After dry-mixing with a precision mixer, a 15% by mass aqueous solution of ammonium dihydrogen phosphate was added as phosphate (PO 4 ) so as to be 0.6% by mass after firing and mixed again. Here, the manganese oxide was Mn 3 O 4 , and a manganese oxide having an average particle diameter of 6 μm and a manganese oxide of 14 μm premixed at a mass ratio of 3 to 7 was used. The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder.

(実施例11)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、リン酸マグネシウムを表1記載の組成になるように秤量した。リン酸マグネシウムは、リン酸塩(PO)として焼成後全体の0.4質量%となるように加えた。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.020質量%となるように加え、再度混合した。ここでマンガン酸化物はMnであり、平均粒径6μmのマンガン酸化物と14μmのマンガン酸化物を質量比で3対7の割合で予備混合したものを使用した。その一部造粒された混合粉を大気中で800℃、20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
(Example 11)
Lithium carbonate, manganese oxide, aluminum hydroxide, and magnesium phosphate were weighed so as to have the composition shown in Table 1. Magnesium phosphate was added as a phosphate (PO 4 ) so as to be 0.4% by mass after firing. After dry mixing with a precision mixer, a 2% by mass boric acid aqueous solution was calculated from the pure Mn content, and added as boron so that it would be 0.020% by mass of the total after firing, and mixed again. Here, the manganese oxide was Mn 3 O 4 , and a manganese oxide having an average particle diameter of 6 μm and a manganese oxide of 14 μm premixed at a mass ratio of 3 to 7 was used. The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder.

(実施例12)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化マグネシウム、リン酸リチウムを表1記載の組成になるように秤量した。リン酸リチウムは、リン酸塩(PO)として焼成後全体の0.6質量%となるように加えた。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.020質量%となるように加え、再度混合した。ここでマンガン酸化物はMnであり、平均粒径6μmのマンガン酸化物と14μmのマンガン酸化物を質量比で3対7の割合で予備混合したものを使用した。その一部造粒された混合粉を大気中で800℃、20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
(Example 12)
Lithium carbonate, manganese oxide, aluminum hydroxide, magnesium oxide, and lithium phosphate were weighed so as to have the composition shown in Table 1. Lithium phosphate was added as a phosphate (PO 4 ) so as to be 0.6% by mass after firing. After dry mixing with a precision mixer, a 2% by mass boric acid aqueous solution was calculated from the pure Mn content, and added as boron so that it would be 0.020% by mass of the total after firing, and mixed again. Here, the manganese oxide was Mn 3 O 4 , and a manganese oxide having an average particle diameter of 6 μm and a manganese oxide of 14 μm premixed at a mass ratio of 3 to 7 was used. The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder.

(実施例13)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化マグネシウム、リン酸アルミニウムを表1記載の組成になるように秤量した。リン酸アルミニウムは、リン酸塩(PO)として焼成後全体の0.6質量%となるように加えた。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.020質量%となるように加え、再度混合した。ここでマンガン酸化物はMnであり、平均粒径6μmのマンガン酸化物と14μmのマンガン酸化物を質量比で3対7の割合で予備混合したものを使用した。その一部造粒された混合粉を大気中で800℃、20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
(Example 13)
Lithium carbonate, manganese oxide, aluminum hydroxide, magnesium oxide, and aluminum phosphate were weighed so as to have the composition shown in Table 1. Aluminum phosphate was added as a phosphate (PO 4 ) so as to be 0.6% by mass after firing. After dry mixing with a precision mixer, a 2% by mass boric acid aqueous solution was calculated from the pure Mn content, and added as boron so that it would be 0.020% by mass of the total after firing, and mixed again. Here, the manganese oxide was Mn 3 O 4 , and a manganese oxide having an average particle diameter of 6 μm and a manganese oxide of 14 μm premixed at a mass ratio of 3 to 7 was used. The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder.

(実施例14)
炭酸リチウム、アルミウムを添加したマンガン酸化物、酸化マグネシウムを表1記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.025質量%となるように、さらに15質量%リン酸二水素アンモニウム水溶液をリン酸塩(PO)として焼成後全体の0.6質量%となるように加え、再度混合した。ここでアルミニウムを添加したマンガン酸化物とは、平均粒径5μmの電解二酸化マンガン(MnO)と15μmの電解二酸化マンガンを質量比で3対7の割合で予備混合した後に、所定量の水酸化アルミニウムを加え精密混合した粉末を、870℃で8時間の熱処理を施しMnとしたものを使用した。その一部造粒された混合粉を大気中で800℃20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
(Example 14)
Lithium carbonate, manganese oxide to which aluminum was added, and magnesium oxide were weighed so as to have the composition shown in Table 1. After dry-mixing with a precision mixer, a 2% by mass boric acid aqueous solution is calculated from the pure Mn content so that it becomes 0.025% by mass after calcination as boron, and a further 15% by mass ammonium dihydrogen phosphate aqueous solution. Was added as phosphate (PO 4 ) so as to be 0.6% by mass of the whole after firing and mixed again. Here, the manganese oxide to which aluminum is added is a premixed mixture of electrolytic manganese dioxide (MnO 2 ) having an average particle size of 5 μm and electrolytic manganese dioxide of 15 μm at a mass ratio of 3 to 7, and then a predetermined amount of hydroxide. A powder prepared by adding aluminum and precision mixing was subjected to a heat treatment at 870 ° C. for 8 hours to obtain Mn 2 O 3 . The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder.

(実施例15)
炭酸リチウム、アルミウムを添加したマンガン酸化物、酸化マグネシウムを表1記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.020質量%となるように、さらに15質量%リン酸二水素アンモニウム水溶液をリン酸塩(PO)として焼成後全体の0.6質量%となるように加え、再度混合した。ここでアルミニウムを添加したマンガン酸化物とは、平均粒径6μmのMnと14μmのMnを質量比で3対7の割合で予備混合した後に、所定量の水酸化アルミニウムを加え精密混合した粉末を、870℃で8時間の熱処理を施しMnとしたものを使用した。その一部造粒された混合粉を大気中で800℃、20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
(Example 15)
Lithium carbonate, manganese oxide to which aluminum was added, and magnesium oxide were weighed so as to have the composition shown in Table 1. Dry-mix with a precision mixer, and then calculate a 2% by weight boric acid aqueous solution from the pure Mn amount so that it becomes 0.020% by weight of the total after firing as boron, and further a 15% by weight ammonium dihydrogen phosphate aqueous solution. Was added as phosphate (PO 4 ) so as to be 0.6% by mass of the whole after firing and mixed again. Here, the manganese oxide added with aluminum is prepared by premixing Mn 3 O 4 having an average particle diameter of 6 μm and Mn 3 O 4 having a particle diameter of 14 μm at a mass ratio of 3 to 7, and then adding a predetermined amount of aluminum hydroxide. In addition, the precisely mixed powder was heat treated at 870 ° C. for 8 hours to obtain Mn 2 O 3 . The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized to obtain a spinel type lithium manganese composite oxide powder.

(実施例16)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化マグネシウムを表1記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.025質量%となるように加え、再度混合した。ここでマンガン酸化物は、平均粒径14μmのMnを使用した。その一部造粒された混合粉を大気中で800℃、20時間焼成後、ジェットミルを用いて粉砕し、大気中で680℃、20時間の再焼成後に整粒してスピネル型リチウムマンガン複合酸化物粉末を得た。
(Example 16)
Lithium carbonate, manganese oxide, aluminum hydroxide, and magnesium oxide were weighed so as to have the composition shown in Table 1. After dry mixing with a precision mixer, a 2% by mass boric acid aqueous solution was calculated from the pure Mn content to add 0.025% by mass of boron after calcination, and mixed again. Here, Mn 3 O 4 having an average particle size of 14 μm was used as the manganese oxide. The partially granulated mixed powder is fired in air at 800 ° C. for 20 hours, pulverized using a jet mill, resized in air at 680 ° C. for 20 hours, and then sized to spinel lithium manganese composite An oxide powder was obtained.

Figure 2018095529
Figure 2018095529

(比較例1)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化マグネシウムを表2記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.025質量%となるように加え、再度混合した。ここでマンガン酸化物は、平均粒径15μmの電解二酸化マンガン(MnO)を使用した。その一部造粒された混合粉を大気中で800℃、20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末として、比較例1を合成した。
(Comparative Example 1)
Lithium carbonate, manganese oxide, aluminum hydroxide, and magnesium oxide were weighed so as to have the composition shown in Table 2. After dry mixing with a precision mixer, a 2% by mass boric acid aqueous solution was calculated from the pure Mn content to add 0.025% by mass of boron after calcination, and mixed again. Here, electrolytic manganese dioxide (MnO 2 ) having an average particle size of 15 μm was used as the manganese oxide. The partially granulated mixed powder was fired in the air at 800 ° C. for 20 hours, crushed and sized, and a spinel type lithium manganese composite oxide powder was synthesized as Comparative Example 1.

(比較例2〜5)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化マグネシウムを表2記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.020質量%となるように、さらに15質量%リン酸二水素アンモニウム水溶液をリン酸塩(PO)として焼成後全体の0.6質量%となるように加え、再度混合した。ここでマンガン酸化物は、表2記載のMn、電解二酸化マンガン(MnO)、またはアルミニウムを添加したマンガン酸化物として、比較例2では平均粒径14μmのMn34を使用し、比較例3では平均粒径5μmのMnO2と15μmのMnO2を質量比で4対6の割合で予備混合したものを使用し、比較例4では平均粒径15μmのMnO2を使用し、比較例5では平均粒径6μmのMn23と14μmのMn23を質量比で15対85の割合で予備混合した後に、所定量の水酸化アルミニウムを加え精密混合した粉末を、870℃で8時間の熱処理を施しMnとしたものを使用した。その一部造粒された混合粉を大気中で800℃20時間焼成し、解砕、整粒してスピネル型リチウムマンガン複合酸化物粉末の比較例2〜5を合成した。
(Comparative Examples 2 to 5)
Lithium carbonate, manganese oxide, aluminum hydroxide, and magnesium oxide were weighed so as to have the composition shown in Table 2. Dry-mix with a precision mixer, and then calculate a 2% by weight boric acid aqueous solution from the pure Mn amount so that it becomes 0.020% by weight of the total after firing as boron, and further a 15% by weight ammonium dihydrogen phosphate aqueous solution. Was added as phosphate (PO 4 ) so as to be 0.6% by mass of the whole after firing and mixed again. Here, the manganese oxide is Mn 3 O 4 listed in Table 2, electrolytic manganese dioxide (MnO 2 ), or manganese oxide to which aluminum is added. In Comparative Example 2, Mn 3 O 4 having an average particle size of 14 μm is used. In Comparative Example 3, MnO 2 having an average particle diameter of 5 μm and MnO 2 having an average particle diameter of 15 μm were premixed at a mass ratio of 4 to 6, and MnO 2 having an average particle diameter of 15 μm was used in Comparative Example 4. after preliminarily mixed at a ratio of 15: 85 at the Mn 2 O 3 and 14μm of Mn 2 O 3 of Comparative example 5 in average particle size 6μm mass ratio, the powder was refined mixture by adding a predetermined amount of aluminum hydroxide, 870 A heat treatment was performed at 8 ° C. for 8 hours to obtain Mn 2 O 3 . The partially granulated mixed powder was baked at 800 ° C. for 20 hours in the air, pulverized and sized to synthesize comparative examples 2 to 5 of spinel type lithium manganese composite oxide powder.

(比較例6)
炭酸リチウム、マンガン酸化物、水酸化アルミニウム、酸化マグネシウムを表1記載の組成になるように秤量した。精密混合機で乾式混合し、その後2質量%ホウ酸水溶液をMn純分量から計算することでホウ素として焼成後全体の0.020質量%となるように加え、再度混合した。ここでマンガン酸化物は、平均粒径14μmのMnを使用した。その一部造粒された混合粉を大気中で800℃、20時間焼成後、ジェットミルを用いて粉砕し、大気中で400℃10時間の再焼成後に、整粒してスピネル型リチウムマンガン複合酸化物粉末の比較例6を合成した。
(Comparative Example 6)
Lithium carbonate, manganese oxide, aluminum hydroxide, and magnesium oxide were weighed so as to have the composition shown in Table 1. After dry mixing with a precision mixer, a 2% by mass boric acid aqueous solution was calculated from the pure Mn content, and added as boron so that it would be 0.020% by mass of the total after firing, and mixed again. Here, Mn 3 O 4 having an average particle size of 14 μm was used as the manganese oxide. The partially granulated mixed powder is fired at 800 ° C. for 20 hours in the air, pulverized using a jet mill, re-fired at 400 ° C. for 10 hours in the air, and then sized and spinel type lithium manganese composite A comparative example 6 of oxide powder was synthesized.

Figure 2018095529
Figure 2018095529

(正極作製)
上記、各実施例および比較例にて合成したリチウムマンガン複合酸化物粉末を正極活物質として正極を作製した。導電助剤にはティムカル社の商品名KS6とSuper−P、結着剤にクレハ社の商品名KFポリマー(PVdFをNメチルピロリドンに溶解させた溶液)を使用した。重量比で、「正極活物質:KS6:Super−P:結着剤」を「90:5:1:4」の割合で秤量し、NMPを加えてホモジナイザーを用いてスラリーを調製した。得られたスラリーを厚さ20μmのアルミニウム製集電体に塗布し、乾燥、直径11mmに打ち抜き後にハンドプレスを用いて荷重4MPaで加圧し、120℃設定の減圧乾燥を行うことにより正極を作製した。
(Preparation of positive electrode)
A positive electrode was produced using the lithium manganese composite oxide powder synthesized in the above Examples and Comparative Examples as the positive electrode active material. Timcal's trade name KS6 and Super-P were used as the conductive assistant, and Kureha's trade name KF polymer (a solution in which PVdF was dissolved in N-methylpyrrolidone) was used as the binder. In a weight ratio, “positive electrode active material: KS6: Super-P: binder” was weighed at a ratio of “90: 5: 1: 4”, NMP was added, and a slurry was prepared using a homogenizer. The obtained slurry was applied to an aluminum current collector having a thickness of 20 μm, dried, punched out to a diameter of 11 mm, pressurized with a hand press using a load of 4 MPa, and dried at 120 ° C. under reduced pressure to produce a positive electrode. .

(正極合剤密度)
上記、各実施例および比較例にて合成したリチウムマンガン複合酸化物粉末を用いた正極について、合剤密度を測定した。その測定結果を表3に示す。
(Positive electrode mixture density)
About the positive electrode using the lithium manganese complex oxide powder synthesize | combined in the said each Example and comparative example, the mixture density was measured. The measurement results are shown in Table 3.

Figure 2018095529
Figure 2018095529

本発明の実施例に示すように、第二のピークの高さが第一のピークの高さの2.5から5.0倍の範囲で、プレス荷重4MPaでの電極の合剤密度が2.75g/cm以上となり、比較例に対して高い合剤密度を示した。 As shown in the examples of the present invention, the mixture density of the electrode is 2 when the height of the second peak is in the range of 2.5 to 5.0 times the height of the first peak and the press load is 4 MPa. It was 0.75 g / cm 3 or more, and a high mixture density was shown relative to the comparative example.

(コインセル組立)
前記実施例及び比較例の正極と、負極、電解液およびセパレータには、それぞれ順に、金属リチウムを円板状に切り出したもの、エチレンカーボネートとジエチルカーボネートを体積比で3:7の割合で混合した溶媒に溶質LiPFを1mol/l溶かしたもの、ポリプロピレン製の微多孔膜を使用し、コイン型電池CR2032タイプ(直径20mm、高さ3.2mm)を組立てて電池評価測定を行った。
(Coin cell assembly)
In the positive electrode, negative electrode, electrolyte solution, and separator of the examples and comparative examples, metal lithium was cut out in a disc shape, and ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7. Using a solution of 1 mol / l of solute LiPF 6 in a solvent and a microporous membrane made of polypropylene, a coin type battery CR2032 type (diameter 20 mm, height 3.2 mm) was assembled, and battery evaluation measurement was performed.

(電池評価)
初期容量は、25℃恒温槽内で、充放電の電流密度を10mAh/g、4.3Vまで定電流充電後、3.0Vまで定電流放電する方法で測定した。放電容量、平均放電電圧、正極合剤密度の94%を乗じて、体積当たりのエネルギー密度を算出した。サイクル特性は60℃の恒温槽内で、充放電の電流密度を50mAh/g、電圧範囲3.0〜4.3Vで繰返し充放電を行い、初回放電容量に対する100回後の放電容量から容量維持率を算出した。その結果を表4に示す。
(Battery evaluation)
The initial capacity was measured in a constant temperature bath at 25 ° C. by charging and discharging the current density to 10 mAh / g, 4.3 V to a constant current, and then to a constant current to 3.0 V. The energy density per volume was calculated by multiplying the discharge capacity, average discharge voltage, and 94% of the positive electrode mixture density. The cycle characteristics were repeated in a constant temperature bath of 60 ° C. with a charge / discharge current density of 50 mAh / g and a voltage range of 3.0 to 4.3 V, and the capacity maintained from the discharge capacity after 100 times the initial discharge capacity. The rate was calculated. The results are shown in Table 4.

(溶出試験)
実施例1〜16及び比較例1〜6で得られたスピネル型リチウムマンガン複合酸化物粉末について、次のように溶出試験を行った。
(Dissolution test)
About the spinel type lithium manganese complex oxide powder obtained in Examples 1-16 and Comparative Examples 1-6, the elution test was done as follows.

予め洗浄乾燥した、内容積100mlの密閉可能なフッ素樹脂製容器にそれぞれのスピネル型リチウムマンガン複合酸化物粉末を個別に5.00gを秤取り、それに前記した(コインセル組立、評価)で使用したものと同じ電解液を25mlと、水を意図的に0.03質量%加え、密閉後60℃恒温槽で7日間保存した。その後、電解液中に溶出したMn濃度の分析をICP発光分光分析法で実施した。その測定結果を表4に示す。   5.00 g of each spinel-type lithium manganese composite oxide powder was weighed individually in a sealable fluororesin container having an internal volume of 100 ml, which had been washed and dried in advance, and used in the above (coin cell assembly, evaluation) 25 ml of the same electrolyte solution and 0.03% by mass of water were intentionally added, and after sealing, stored in a 60 ° C. constant temperature bath for 7 days. Thereafter, the analysis of the Mn concentration eluted in the electrolytic solution was performed by ICP emission spectroscopy. The measurement results are shown in Table 4.

Figure 2018095529
Figure 2018095529

表4に示す通り、本発明の実施例では、体積当たりのエネルギー密度が1080mWh/cmを超える値を示しており、比較例の1050mWh/cm未満と比べ少なくとも3%以上、最大で8.7%(実施例1と比較例2の比較)エネルギー密度が高くなった。レーザ回析・散乱法で計測される粒度分布が、2つの頻度ピークを有し、第一の頻度ピークが4.0から7.0μmの間に頂点を有し、第二の頻度ピークが10.0から17.0μmの間に頂点を有し、第二のピークの高さが第一のピークの高さの2.5から5.0倍の範囲をとり、かつ粉末の全てが2.0μmから45.0μmの範囲に入るようにすることで、リチウムマンガン複合酸化物の体積当たりエネルギー密度を高くできる。 As shown in Table 4, in the embodiment of the present invention shows a value energy density exceeding 1080mWh / cm 3 per unit volume, and 1050mWh / cm less than 3 Comparative Example than at least 3% or more, up to eight. 7% (Comparison between Example 1 and Comparative Example 2) The energy density was high. The particle size distribution measured by the laser diffraction / scattering method has two frequency peaks, the first frequency peak has a peak between 4.0 and 7.0 μm, and the second frequency peak is 10 The peak has a peak between 0.0 and 17.0 μm, the height of the second peak is in the range of 2.5 to 5.0 times the height of the first peak, and all of the powder is 2. By making it fall within the range of 0 μm to 45.0 μm, the energy density per volume of the lithium manganese composite oxide can be increased.

本発明の実施例で、リン酸塩をPOとして全体で0.4質量%〜0.9質量%の範囲とすることにより、リン酸塩を含まない比較例1、実施例1,3〜5よりもMn溶出量が低減しており、体積当たりのエネルギー密度が高く、かつマンガン溶出量が少ないリチウムマンガン複合酸化物ができることを確認した。またホウ素を添加していない実施例10では、サイクル特性(容量維持率)が劣っていた。さらに、2.0μm以下の粉末が残存した比較例6では、Mn溶出量が多くなっていた。 In the examples of the present invention, the total amount of phosphate in the range of 0.4% to 0.9% by mass with PO 4 as PO 4 was used. It was confirmed that a lithium manganese composite oxide in which the Mn elution amount was lower than 5, the energy density per volume was high, and the manganese elution amount was small was obtained. In Example 10 in which no boron was added, the cycle characteristics (capacity retention rate) were inferior. Furthermore, in Comparative Example 6 in which a powder of 2.0 μm or less remained, the Mn elution amount was large.

以上の実施例から、本発明によれば、体積当たりのエネルギー密度が高い正極を得ることができ、マンガン溶出量が少なく、サイクル特性(耐久性)に優れた非水電解質二次電池用スピネル型リチウムマンガン複合酸化物粉末が得られることが確認できた。   From the above examples, according to the present invention, a positive electrode having a high energy density per volume can be obtained, the manganese elution amount is small, and the spinel type for non-aqueous electrolyte secondary batteries excellent in cycle characteristics (durability) is obtained. It was confirmed that lithium manganese composite oxide powder was obtained.

Claims (5)

一般式:Li1+xMn2−x−y(MはAl、Mg及びCoから選ばれた1種または2種以上の金属元素であり、xは0≦x≦0.33の範囲を、yは0≦y≦0.2の範囲をとる。)で表されるスピネル型リチウムマンガン複合酸化物であって、レーザ回析・散乱法で計測される粒度分布が、2つの頻度ピークを有し、第一の頻度ピークが4.0から7.0μmの間に頂点を有し、第二の頻度ピークが10.0から17.0μmの間に頂点を有し、第二のピークの高さが第一のピークの高さの2.5から5.0倍の範囲をとり、かつ粉末の全てが2.0から45.0μmの範囲に入ることを特徴とするスピネル型リチウムマンガン複合酸化物粉末。 General formula: Li 1 + x M y Mn 2-xy O 4 (M is one or more metal elements selected from Al, Mg and Co, and x is in the range of 0 ≦ x ≦ 0.33. Y takes a range of 0 ≦ y ≦ 0.2.) The spinel-type lithium-manganese composite oxide represented by (2), and the particle size distribution measured by the laser diffraction / scattering method has two frequency peaks. The first frequency peak has an apex between 4.0 and 7.0 μm, the second frequency peak has an apex between 10.0 and 17.0 μm, and the second peak Spinel type lithium manganese, characterized in that the height of the powder ranges from 2.5 to 5.0 times the height of the first peak, and all of the powder falls within the range of 2.0 to 45.0 μm Composite oxide powder. 前記スピネル型リチウムマンガン複合酸化物粉末は、その二次粒子表面及び内部にリン酸塩をPOとして全体で0.1質量%〜2.0質量%含むことを特徴とする請求項1に記載のスピネル型リチウムマンガン複合酸化物粉末。 The spinel-type lithium-manganese composite oxide powder, wherein the secondary particle surface and inside the phosphate to claim 1, characterized in that in total containing 0.1 wt% to 2.0 wt% as PO 4 Spinel type lithium manganese composite oxide powder. 前記リン酸塩がリン酸アルミニウム、リン酸マグネシウム、リン酸リチウム、リン酸二水素アンモニウムのいずれかあるいはその組み合わせであることを特徴とする請求項2に記載のスピネル型リチウムマンガン複合酸化物粉末。   The spinel-type lithium-manganese composite oxide powder according to claim 2, wherein the phosphate is any one of aluminum phosphate, magnesium phosphate, lithium phosphate, ammonium dihydrogen phosphate, or a combination thereof. リチウム化合物、マンガン化合物、他の金属M化合物(金属MはAl、Mg及びCoから選ばれた1種または2種以上の金属元素)、ホウ酸及びリン酸塩を混合し、600〜900℃で焼成し、解砕、整粒することを特徴とする請求項1〜請求項3のいずれかに記載のスピネル型リチウムマンガン複合酸化物粉末の製造方法。   Lithium compound, manganese compound, other metal M compound (metal M is one or more metal elements selected from Al, Mg and Co), boric acid and phosphate are mixed, at 600 to 900 ° C. The method for producing a spinel-type lithium manganese composite oxide powder according to any one of claims 1 to 3, which is fired, crushed and sized. 請求項1〜請求項3のいずれかに記載のスピネル型リチウムマンガン複合酸化物粉末と導電助剤及び結着剤からなり、導電材の割合は6質量%以下、結着剤の割合は4質量%以下であるリチウム二次電池用正極であり、プレス荷重4MPa時の該正極の合剤密度が2.75g/cm以上2.87g/cm以下であることを特徴とするリチウム二次電池用正極。 It consists of the spinel type lithium manganese complex oxide powder according to any one of claims 1 to 3, a conductive additive and a binder, the proportion of the conductive material is 6 mass% or less, and the proportion of the binder is 4 mass. % Lithium secondary battery, wherein the mixture density of the positive electrode at a press load of 4 MPa is 2.75 g / cm 3 or more and 2.87 g / cm 3 or less. Positive electrode.
JP2016243258A 2016-12-15 2016-12-15 Lithium-manganese composite oxide powder and method for producing the same, and positive electrode for nonaqueous electrolyte secondary battery Pending JP2018095529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243258A JP2018095529A (en) 2016-12-15 2016-12-15 Lithium-manganese composite oxide powder and method for producing the same, and positive electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243258A JP2018095529A (en) 2016-12-15 2016-12-15 Lithium-manganese composite oxide powder and method for producing the same, and positive electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2018095529A true JP2018095529A (en) 2018-06-21

Family

ID=62634373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243258A Pending JP2018095529A (en) 2016-12-15 2016-12-15 Lithium-manganese composite oxide powder and method for producing the same, and positive electrode for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2018095529A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125377A (en) * 2020-02-05 2021-08-30 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2022138660A1 (en) * 2020-12-25 2022-06-30 東ソー株式会社 Spinel-type lithium manganate, method for producing same and use of same
CN114864924A (en) * 2022-05-26 2022-08-05 上海瑞浦青创新能源有限公司 Ternary cathode material and application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125377A (en) * 2020-02-05 2021-08-30 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP7316529B2 (en) 2020-02-05 2023-07-28 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
WO2022138660A1 (en) * 2020-12-25 2022-06-30 東ソー株式会社 Spinel-type lithium manganate, method for producing same and use of same
CN114864924A (en) * 2022-05-26 2022-08-05 上海瑞浦青创新能源有限公司 Ternary cathode material and application
CN114864924B (en) * 2022-05-26 2023-04-28 上海瑞浦青创新能源有限公司 Ternary positive electrode material and application

Similar Documents

Publication Publication Date Title
JP6142929B2 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR101842823B1 (en) Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
JP4287901B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and secondary battery
JP4644895B2 (en) Lithium secondary battery
JP6631320B2 (en) Nickel composite hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6578635B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6167822B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
WO2012165654A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
KR101912546B1 (en) Precursors for lithium transition metal oxide cathode materials for rechargeable batteries
KR20160006172A (en) Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP6631321B2 (en) Nickel composite hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
CA2751819A1 (en) Non-homogeneous positive electrode materials combining high safety and high power in a li rechargeable battery
JP5776996B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
WO2019163846A1 (en) Metal composite hydroxide and method for producing same, positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP2007265784A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2020004506A (en) Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7167540B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2020009756A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018095529A (en) Lithium-manganese composite oxide powder and method for producing the same, and positive electrode for nonaqueous electrolyte secondary battery
JP2005050582A (en) Positive pole for lithium secondary battery and lithium secondary battery using it
JP2001015108A (en) Positive electrode active material for lithium secondary battery, its manufacture, and lithium secondary battery